大体积混凝土裂缝控制试验研究及温度应力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化建设的不断发展,越来越多的大体积混凝土结构被应用于工程实践中,但长期以来混凝土的裂缝问题一直困扰着工程技术人员。结构的破坏和倒塌都是从裂缝开始,裂缝的扩展是结构物破坏的初始阶段,其承载力也可能受到一定削弱。同时,结构物裂缝也可引起渗漏,使得其耐久性降低,如面层脱落,钢筋锈蚀,加剧冻融循环,混凝土碳化等。
     目前,大体积混凝土裂缝控制的主要措施是在保证质量的前提下,最大限度地降低温差,如在混凝土搅拌时加入冰块,通水冷却,喷雾隔热等,这些措施有效地减少了混凝土的开裂,但同时也增加了工程的造价。因此,在大体积混凝土裂缝控制中,需要统筹技术和经济两方面的要求,本文以试验为基础,主要进行了以下工作:
     (1)在已有研究成果的基础上,介绍了裂缝的成因和开裂机理,分析了温度场和温度应力的基本理论及温度场的计算方法,并根据变分原理建立了大体积混凝土非稳定温度场有限元公式,同时根据混凝土的弹塑性本构关系,建立了大体积混凝土温度应力弹塑性分析的有限元公式。
     (2)通过添加不同成分和数量的改性材料,采用模型试验方法,研究了改性混凝土材料物理力学性能的变化规律。研究表明:通过掺加适晕的粉煤灰和硅粉,可以降低其水化热,明显提高其密实度和强度等;通过加入适量的乳化沥青,可以比较明显地改善其和易性,同时起到减水作用;通过添加聚丙烯纤维,可以有效地提高混凝土材料的抗裂能力和极限拉伸变形。
     (3)运用SAP2000有限元分析软件,建立了大体积混凝土基础板的有限元分析模型,并以本次试验为基础,对添加改性材料和不添加改性材料的大体积混凝土板,进行了温度场和温度应力的比较分析,计算中主要对混凝土基础板模型的边界条件和尺寸等参数进行变化,以找出其与温度应力的变化关系和分布规律。
     (4)以控制混凝土温度和温度应力为目的,从原材料的选择、改性材料的掺入、配合比的优化、减小水化热等方面,研究延缓混凝土降温速率,控制施工质量,减少混凝土收缩,提高混凝土极限拉伸变形,改善约束程度,加强局部构造,进行温度实时监控的效果等,提出了相应的综合控制措施,可供同类结构设计施工时参考。
With the continuous development of modernized construction,more and more mass concrete structures have been applied to the engineering practice.But cracks of concrete structure have obsessed the engineering workers for a long time.The damage and collapse of construction starts from occurring the crack in structures. Otherwise,the growth of cracks of structures is the initial stage of building's damage as a result that the bearing capacity and durability of constructions are weakened, such as the leakage of roofs,the shedding of surfaces of concrete,the rebar corrosion in the concrete,the aggravation of freeze-thaw cycles,the concrete carbonation and soon.
     At present,in order to control the development of mass concrete cracks,many measuers and skills are took in the engineering projects,that reduces the temperture difference to the utmost level to make the concrete in the good condition.Such as adding the ice chippings in mixed concrete,cooling with moving recycling water, insulating heat by atomizing water,although those measures can greatly control the crack development,but greatly increase the project costs.Therefore,there is a need for balancing the method and cost as a whole in mass crack control projects.Based on the concrete test,the main work of this paper is follow as:
     1).Based on experience and measures of temperature control and crack prevention of mass concrete,this paper presents the formation cause and mechanism of cracking,and the basic theory and calculation method of temperature-field and thermal stress.Built upon variatbnal principles,the paper educes basic formulas of finite element methods in unsteady temperature-fie Id of concrete structures.Followed the concrete constitutive relationship of elastic-plastic body,the writer deduces the formula of finite element method of thermal stress in concrete.
     2).Using the model test method,the paper discusses the improved materials effecting on physical and mechanical properties of concrete by adding into heterogeneous and diverse mixed quantities.In order to depress the hydration heat, the concrete is added into the fly-ash and silica fume.To reduce water consumption and to improve workability of concrete,the Emulsified asphalt is doped.The polypropylene fiber is added to strengthen the anti-crack performance and to enhance the capability of ultimate tensile of materials.
     3).The model of mass concrete slab is built by SAP2000 finite element analysis software.In this model,the temperature field and thermal stress of concrete slab are compared and analyzed between added-in and added-not materials.In addition,the different boundary conditions and dimensional parameters of the models are analyzed to find out its effects on thermal stress distribution in concrete baseplate.
     4).In order to control temperature and thermal stress in mass concrete slab,the paper mentions different measures,such as raw material selected,special materials added in concrete,mix proportion optimized and hydration heat reduced.Besides,this paper discusses the ways and means,for example,minished constraints degree, reinforced local structure and real-time monitored temperature of mass concrete structures,allround to keep cooling rate of concrete,enhance construction quality, decrease shrinkage of concrete.This work can offer a reference to the mass concrete design and construction.
引文
[1]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2003
    [2]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991
    [3]美国内务部垦务局编.混凝土坝的冷却[M],北京:水利电力出版社,1958
    [4]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [5]周厚贵.三峡工程施工技术(—卷)[M].北京:中国水利水电出版社,1999
    [6]田先忠.综合降温技术在三峡工程碾压混凝土施工中的应用[J].中国三峡建设,1998(1):56-59
    [7]陈文耀,李文伟.三峡工程混凝土实验研究及实践[M].北京:中国电力出版社,2005
    [8]李彬彬.大体积混凝土温度应力有限元分析[D].西安:西安建筑科技大学硕士学位论文,2007
    [9]北京金土木软件技术有限公司编.SAP2000中文版使用指南[M].北京:人民交通出版社,2007
    [10]范奎.大体积混凝土温度场仿真与实测技术研究[D].浙江:浙江大学硕士学位论文,2009
    [11]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版,2004
    [12]麦家煊.水工建筑物[M].北京:清华大学出版社,2005
    [13]屈涛.大体积混凝土温度应力及裂缝扩展的研究[D].武汉:武汉理工大学硕士学位论文,2007
    [14]葛其荣.宁波白溪水库二期面板聚丙烯纤维混凝士试验研究[J].建筑结构,2001,3(6):24-27
    [15]蔡顺德,蔡德所.分布式光纤监测三峡工程大体混凝土水化热过程分析[J].工程力学,2003(增刊):336-343
    [16]李祝龙,梁乃兴.乳化沥青改性水泥砂浆的试验研究[J].公路,2001,12(11):117.119
    [17]李立权.混凝土配合比设于册[M].广州:华南理工大学出版社,2003
    [18]过镇海,时旭东.钢筋混凝土的原理和分析[M].北京:清华大学出版社,2004
    [19]张岩.WSP聚合物混凝土力学性能试验研究.两安:两安理工大学硕士学位论文,2008
    [20]中国建筑科学研究院主编.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [21]中华人民共和国建设部主编.普通混凝土力学性能试验方法.北京:中国建筑工业出版社,2003
    [22]王福川.土木工程材料[M].北京:中国建筑工业出版社,2001
    [23]陈昌礼.硅粉混凝土的基本性能与工程应用[J].新型建筑材料,2008,23(10):43-46
    [24]廖波.小浪底泄洪工程高标号混凝土裂缝产生的原因及防治[J].水利学报,2001,34(7):47-50
    [25]邹必魁.外掺硅粉混凝土在飞来峡水利枢纽工程中的应用[J]。西部探矿工程,2005(增刊).370-372
    [26]张奕.传热学[M].南京.东南大学出版社,2004
    [27]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998
    [28]章熙民,任泽霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社,1985
    [29]凌道盛.非线性有限元及程序[M].浙江:浙江大学出版社,2004
    [30]许文忠.大体积混凝土基础温度裂缝控制施工技术研究[D].上海:同济大学硕士学位论文,2007
    [31]彭诗明.大体积混凝土结构有限单元法应用研究[D].武汉:武汉大学硕士学位论文,2005
    [32]叶琳昌.大体积混凝土施工[M],北京:中国建筑工业出版社,1987
    [33]冯丽.混凝土成本分析[J].西北水力发电,2007,20(1):104-108
    [34]上海建工集团.上海建筑施工新技术.北京:中国建工出版社,1999
    [35]田培,王玲.2002-2003年中国砼外加剂现状及发展趋势[J].中国建筑材料科学研究院,2004,46(1):45-49
    [36]罗永会,韩玉芳,王朝.基于降低成本的高强混凝土配合比优化[J].国外建材科技,2005,26(4):11-13
    [37]粉煤灰混凝土应用技术规范(GBJ146-90)[S].北京:中国计划出版社,1991
    [38]普通混凝土配合比设计规程(JGJ55-2000)[S].北京:中国建筑工业出版社,2001
    [39]李湘荣.混凝土配合比多目标优化[J].水利学报,1996,46(4):34-39
    [40]俞锐.大体积砼温度监测系统及应用[J].工程设计CAD与智能建筑,2002(3):23-27
    [41]于海山,吴金林.大体积砼施工中的技术处理[J].铁道建筑,1996,37(1):34-37
    [42]刘海卿.大体积砼超强应力缓冲槽养护法[J].阜新矿业学院学报(自然科学版),1997,23(4):27-29
    [43]孙柏峰.大体积砼浇筑后裂缝控制及降温保温工艺探讨[J].安徽建筑,2004, 34(2)34-38
    [44]黄承逵.钢筋钢纤维混凝土轴拉构件裂缝宽度计算方法[J].建筑结构学报,1997,24(7):12-15
    [45]董苹、申俊红.高层建筑砼后浇带设计和施工的儿点体会[J].邮电设计技术,2003,45(11):32-36
    [46]朱伯芳.结构优化设计原理与应用[M].北京:水电出版社,1984
    [47]李继业、王仲发等.大体积砼结构防止产生裂缝的措施[J].山东农业大学学报,2002,28(1):51-55
    [48]归树茂.大体积砼基础内部温度的变化规律及对策.建筑技术[J],1997,27(11):18-19
    [49]吴胜兴.砼结构温度应力与温度裂缝控制研究[D].武汉:武汉理工人学博士学位论文,1994
    [50]朱伯芳.朱伯芳院士文选[M].北京:中国电力出版社.1997
    [51]丁宝瑛.国内典型砼坝裂缝情况调查与分析[M].北京:中国水电科研院.1988
    [52]昝德术,刘长河等.大体积砼施工温度场及温度应力研究[J].低温建筑技术,1997,24(1):25-29
    [53]鲁统卫.粉煤灰和膨胀剂配制高性能砼的研究及应用.混凝土,2002,46(15):39-42
    [54]Brown,T.D.The thermal conductivity of fresh concrete.Material and Structures.1970,V3(17):411-416
    [55]Eric Ayotte,Bruno Massicotte.Modeling the thermal stresses at early ages in a concrete monolith.ACI material journal,1997,V94(46):577-587.
    [56]Zhang Ziming,State of temperature and thermal stress in mass concrete structures subjected to therrmal shock.Dam Engineering,1996,V7(34):34-38
    [57]James Andrew.Thermal and shrinkage effects in high perforrmnce concrete structures during comtruction.Ottawa:National Library of Canada,2000
    [58]Mitchell,L.J.Thermal expansion test on aggregates,net cermen,and concrete,proceedings,ASTM.1953,V53(23):963-977
    [59]Bryam Mather,Concrete Durability,Cement and Comcrete Composites,2004,V 26(12):3-4
    [60]Y.N.Peng,C.L.Hwang.A design Consideration for durability of high-perforrmance concrete.Construction and Building Materials,1996,V11(35):27-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700