基于验证荷载和监测数据的桥梁可靠性修正与贝叶斯预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测是土木工程领域的当前热点研究方向,健康监测领域经历了两个阶段:第一阶段是传感器的安装以及数据的采集,此阶段现在已处于成熟阶段;第二阶段是健康监测数据的合理利用。结构健康监测系统在长期的运营中,积累了海量的数据,如何有效地分析这些数据,为桥梁结构的性能评估与预测提供科学依据,是健康监测领域的关键问题之一,也是当前迫切需要解决的问题之一。本文以贝叶斯修正和预测理论为基础,基于桥梁结构的验证荷载试验和健康监测数据,对桥梁结构构件及体系可靠性的修正与预测进行了系统的研究,主要内容包括:
     (1)研究了基于验证荷载信息和抗力退化模型的桥梁结构构件可靠性修正方法。结合确定性与随机性的荷载历史信息,考虑结构抗力的退化模型,采用截尾分布法和Bayes方法,得到了验证荷载信息以及抗力退化模型对桥梁构件可靠性的影响规律。
     (2)提出了基于贝叶斯动态线性模型的桥梁构件可靠性预测方法。采用健康监测数据,分别针对一次多项式回归模型、AR(1)模型和ARMA(1,1)模型,建立了相应的贝叶斯动态线性模型,研究了模型监控机制。考虑贝叶斯动态线性模型的多样性,建立了监测数据的混合贝叶斯动态线性模型;基于所建立的单一及混合贝叶斯动态线性模型,采用一次二阶矩方法,对桥梁构件可靠性进行了预测分析。
     (3)提出了基于贝叶斯动态非线性模型的桥梁构件可靠性预测方法。采用健康监测数据,分别详细建立了基于二次多项式函数和三次多项式函数的贝叶斯动态非线性模型,并提出了两种近似处理贝叶斯动态非线性模型的方法:其一,通过泰勒级数展开技术,将贝叶斯动态非线性模型近似转化为贝叶斯动态线性模型,并建立了相对应的模型监控机制;其二,直接通过马尔科夫链蒙特卡洛模拟(MCMC)实现。基于所建立的贝叶斯动态非线性模型,结合一次二阶矩方法,对桥梁构件可靠性进行了预测分析。
     (4)提出了基于混合高斯粒子滤波器的桥梁构件可靠性在线实时预测方法。建立了基于健康监测数据的动态模型,引入混合高斯粒子滤波器,基于粒子滤波方法和动态模型,对状态变量的分布参数和监测值的一步向前预测分布参数进行了预测。提出了混合高斯粒子滤波方法重采样技术,解决了粒子模拟退化的问题。结合一次二阶矩方法,对桥梁构件可靠性进行了预测分析。
     (5)研究了基于验证荷载效应和健康监测信息的桥梁结构体系可靠性在线实时预测方法。采用MIDAS软件模拟构件验证荷载效应,通过构件验证荷载效应修正构件的应力限值(广义抗力)分布,建立了基于健康监测数据(荷载效应)的混合高斯粒子滤波器,基于修正的应力限值分布和荷载效应的混合高斯粒子滤波器,实现了桥梁构件的可靠性修正与预测,采用结构体系可靠度方法,实现了结构体系的可靠性预测。以天津富民桥(单塔空间索面自锚式悬索桥)为工程应用背景,验证了所提理论与方法的正确性和适用性。
Structural health monitoring is one of present research hotspots in the field of civil engineering. The research on structural health monitoring generally experiences two stages. The first stage, falling in the mature stage, is to install sensors on the structures and conduct much research on the data transition system, data acquisition technology, system integration technology and other aspects. The second stage is mainly the application of health monitoring information. Novel monitoring systems used in structural engineering contain sensors providing a large amount of monitored data. Proper handling of the continuously provided monitored data is one of the main difficulties in the field of structural health monitoring. In this dissertation, based on Bayesian updating and prediction theory, the structural inspection data (e.g. proof loads and proof load effects) and monitored data, systematic research on reliability updating and prediction of bridge members or bridge system was carry out.
     The main research contents of this dissertation are described as follows:
     This paper presents the reliability updating method based on proof loads and resistance degradation model of bridge members. With the truncated method and Bayesian method, the effects of proof loads, proof load effects and resistance degradation model on the reliability of bridge members are analyzed.
     This paper presents the reliability prediction method of bridge members based on Bayesian dynamic linear model. With inspection data or monitored data, the1-order polynomial function, AR(1) model and ARMA(1,1) model are respectively adopted to build the corresponding Bayesian dynamic linear models (BDLM). And the model monitoring mechanism of BDLM is studied. Considering the diversity of BDLM, the combined BDLM is built based on the multiple BDLMs. Finally based on the single BDLM or combined BDLM, with first order second moment (FOSM) method, the reliability of structural member is predicted.
     This paper presents the reliability prediction method of bridge members based on Bayesian dynamic nonlinear model (BDNM). Mainly with monitored data,2-order polynomial function and3-order polynomial function are respectively adopted to build the corresponding BDNM. The simulation processes of BDNM are handled with the following two methods. One method is to transform the built BDNM into approximate BDLM with Taylor series expansion technique, the monitoring mechanism of approximate BDLM is also studied. The other method is to directly simulate the processes with Markov Chain Monte Carlo (MCMC) method. Finally based on the built BDNM, with FOSM method, the reliability of structural members is predicted.
     This paper presents the real-time on-line reliability prediction method of bridge members based on mixed Gaussian particle filter (MGPF). Firstly monitored data-based dynamic model is built, and then the MGPF is introduced. Based on the particle filter method and dynamic model, the distribution parameters of state variables and one-step prediction distribution are predicted. The MGPF solves the problem of particle simulation degeneracy through the resampling method. Finally with FOSM method, the reliability of structural members is predicted.
     The paper presents the reliability updating and prediction method of bridge system based on proof load effects and monitored data. The proof load effects of structural members are obtained with MIDAS software. Firstly the distribution of stress threshold (genaralized resiatance distribution) is updated with proof load effects. Then the moinitored data(load effect data)-based mixed gaussian particle filter(MGPF) is built, and then based on the updated stress threshold distribution and load effect MGPF, the reliability updating and prediction of structural members is solved, finally with the system reliability method, the reliability of structural system is updated and predicted, and Tianjin Fumin bridge is provided to illustrate the feasibility and application of the given models and methods.
引文
[1]秦权.基于时变可靠度的桥梁检测与维修方案优化[J].公路,2002,9(9):17-25.
    [2] Stewart MG. Effect of Construction and Service Loads on Reliability of ExistingRC Buildings [J]. Journal of Structural Engineering, ASCE,2001,127(10):1232-1235.
    [3] Hall WB. Reliability of Service-Proven Structures [J]. Journal of StructuralEngineering, ASCE,1988,114(3):608-624.
    [4] Estes AC, Frangopol DM. Repair optimization of highway bridges using systemreliability approach[J]. Journal of Structural Engineering1999,125(7):766-775
    [5] Enright MP, Frangopol DM.Service-life Prediction of deteriorating concretebridges[J].Journal of Structural Engineering.ASCE,1998,124(3):309-317
    [6] Ferhat Akgu, Frangopol DM. Time-dependent interaction between load ratingand reliability of deteriorating bridges[J]. Engineering Structures.2004,26:1751-1765
    [7] Li CQ. Reliability based service life prediction of corrosion affected concretestructures [J], Journal of Structural Engineering,2004,130(10),1570-1577.
    [8]赵羽习,金伟良.正常使用极限状态下混凝土结构构件可靠度的分析方法[J].浙江大学学报(工学版).2002,36(6):674-678.
    [9]俞智涛.既有钢筋混凝土桥梁可靠性评估的若干问题研究[D].华南理工大学博士学位论文,2003.
    [10]交通部.公路旧桥承载能力鉴定方法(试行)[S].人民交通出版社,1988.
    [11] Nowak AS. Bridge Evaluation, Repair and Rehabilitation [M]. KluwerAcademic Piblishers,1990.
    [12] Moses F, Verma D. Load capacity evaluation of existing bridge[R], NCHRP.Report301. Res. Board. Washington. D.C,1987.
    [13] Mori Y, Ellingwood BR. Reliability-based service-life assessment of agingconcrete structures [J]. Journal of Structural Engineering, ASCE,1993,119(5):1600-1621.
    [14] Mori Y, Ellingwood BR. Maintaining reliability of concrete structures. II:Optimum inspection/repair [J]. Journal of Structural Engineering, ASCE,1994,120(3):846-862.
    [15] Mori Y, Ellingwood BR. Reliability-based life prediction of structuresdegrading due to environment and repeated loading [C]. Proceedings of SeventhInternational conference on Applications of statistics and probability Balkema.Rotterdam, The Netherlands,1995:971-976.
    [16] Ellingwood BR. Reliability-based condition assessment and LRFD for existingstructures [J]. Structural Safety,1996,18(1):67-80.
    [17] Enright MP, Frangopol DM. Probabilistic analysis of resistance degradation ofreinforced concrete bridge beams under corrosion [J]. Engineering Structures,1998,20(11):960-971.
    [18] Gharaibeh ES, Frangopol DM, Onoufriou T. Reliability-based importanceassessment of structural members with applications to complex structures [J].Computer&Structures,2002,80:1113-1131.
    [19] Imai K, Frangopol DM. System reliability of suspension bridges [J]. StructuralSafety,2002,24:219-259.
    [20] Catbas FN, Susoy M, Frangopol DM. Structure health monitoring and reliabilityestimation: Long span truss bridge application with environmental monitoringdata [J]. Engineering Structure,2008,30:2347-2359.
    [21] Frangopol DM, Strauss A, Kim SY. Use of monitoring extreme data for theperformance prediction of structures: General approach [J]. EngineeringStructures,2008,30:3644-3653.
    [22] Strauss A, Frangopol DM, Kim SY. Use of monitoring extreme data for theperformance predicttion of structures: Bayesian updating [J]. EngineeringStructures,2008,30:3654-3666.
    [23] Liu M, Frangopol DM, Kwon Kihyon. Fatigue reliability assessment ofretrofitted steel bridges integrating monitored data [J]. Structural Safety.2010,32:77-89.
    [24] Kihyon K, Frangopol DM. Bridge fatigue reliability assessment usingprobability density functions of equivalent stress range based on fieldmonitoring data [J]. International Journal of Fatigue,2010,32:1221-1232.
    [25] Frangopol DM, Kim SY, et al. Optimization of bridge maintenance strategiesbased on multiple limit states and monitoring [J]. Engineering Structures,2010,32:627-640.
    [26] Kihyon K, Frangopol DM. Bridge fatigue assessment and management usingreliability-based crack growth and probability of detection models [J].Probabilistic Engineering Mechanics,2011,26:471-480.
    [27] Stewart MG. Time-Dependent Reliability of Existing RC Structures [J]. Journalof Structural Engineering, ASCE,1997,123(7):896-901.
    [28] Stewart MG, Val DV. Role of Load History in Reliability-based DecisionAnalysis of Aging Bridges [J]. Journal of Structural Engineering, ASCE,1999,125(7):776-783.
    [29] Stewart MG. Effect of Construction and Service Loads on Reliability of ExistingRC Buildings [J]. Journal of Structural Engineering, ASCE,2001,127(10):1232-1235.
    [30] Val DV, Stewart MG. Safety Factors for Assessment of Existing Structures [J].Journal of Structural Engineering, ASCE,2002,128(2):258-265.
    [31] Val DV and Melcher RE. Reliability assessment of existing concretebridges[C].Proceedings of the Workshop on Structural Reliability in BridgeEngineering.Boulder, Colorado,1996:227-232.
    [32] Val DV and Melchers RE. Reliability of deteriorating RC slab bridges [J].Journal of Structural Engineering, ASCE.1997.123(12):1638-1644.
    [33]王光远.结构服役期间动态可靠度极其维修理论初探[J].哈尔滨建筑工程学院学报,199023(2):1-9.
    [34]段忠东,欧进萍.基于概率疲劳累计损伤理论的构件抗力衰减分析[J].哈尔滨建筑大学学报.1996,29(1):1-8.
    [35]牛荻涛.服役结构可靠性的数学模式.西安建筑科技大学学报[J].1995,27(3):380-383.
    [36]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析[J].建筑结构学报,1998,19(5):43-51.
    [37]李贵青,李秋胜.工程结构时变可靠度理论极其应用[M].北京:科学出版社,2001.
    [38]张俊芝,李桂青.在役结构的模糊动态可靠度分析[J].广西大学学报(自然科学版),2002,27(3):268-272.
    [39]索清辉,钱永久,张方.对公路桥梁剩余寿命时变荷载取值的研究[J].中国工程科学,2004.6:52-56.
    [40]张建仁.钢筋混凝土桥梁服役期间的可靠性评价[J].中国公路学报,2001,14(2):61-65.
    [41]张宇贻,秦权.钢筋混凝土桥梁构件的时变可靠度分析[J].清华大学学报(自科版),2001,41(2):65-67.
    [42]张宇贻,秦权.基于可靠度的混凝土桥梁最优检测/维修规划[J].清华大学学报(自科版),2001,41(2):68-71.
    [43]杨跃新.混凝土连续梁桥的时变可靠度评定与寿命预测[D].硕士学位论文,哈尔滨工业大学,2007.
    [44] Zhao Z, Haldar A, Breen FLJr. Fatigue-reliability updating through inspectionsof steel bridges [J]. Journal of Structural Engineering, ASCE,1994,120(5):1624-1642.
    [45] Zheng RH, Ellingwood BR. Role of Non-Destructive Evaluation inTime-Dependent Reliability Analysis [J]. Structural Safety,1998,20(4):325-339.
    [46] Zhang RX, Sankaran Mahadevan. Fatigue Reliability Analysis UsingNondestructive Inspection [J]. Journal of Structural Engineering, ASCE,2001,127(8):957-965.
    [47] Zhang RX, Sankaran Mahadevan. Reliability-Based Reassessment of CorrosionFatigue Life [J]. Structural Safety,2001,23(1):77-91.
    [48] Mori Y, Ellingwood BR. Maintaining-reliability of concrete structures. I: Roleof inspection/repair[J]. Journal of Structural Engineering, ASCE,1994,120(3),824-845.
    [49] Ellingwood BR. Reliability-based Condition Assessment and LRFD for ExistingStructures [J]. Structural Safety,1996,18(2):67-80.
    [50] Hong HP. Reliability of Existing Structures [J]. Civil. Eng. And Eng. Syst.,1998,15:187-206.
    [51] Melchers RE. Assessment of Existing Structures—Approach and ResearchNeeds [J]. Journal of Structural Engineering, ASCE,2001,127(4),406-411.
    [52]张俊芝.验证荷载对服役结构抗力的影响分析[J].南昌大学学报.2001,6(25):187-196.
    [53]张俊芝,李桂青,陈平.验证荷载条件下的在役结构动态可靠度[J].武汉工业大学学报.2000,22(6):75-77.
    [54]刘扬,雷尧.既有钢筋混凝土梁桥的承载力可靠度分析[J].交通科学与工程.2013,29(4):33-39.
    [55]王光远.结构软设计理论初探[M].哈尔滨:哈尔滨建筑工程学院,1987
    [56]王光远.工程软设计理论[M].北京:科学出版社,1992
    [57] Bonstedt H. Life Cycle Cost Analysis for Bridges: In Search of BetterInvestment and Engineering Decisions[C]. http://www.pcap.org/presentations,2003
    [58] Gabler E. Transportation Asset Management: The Role of EngineeringEconomic Analysis[R]. Faderal Highway Administration.2003
    [59] Hastak M, Mirniran A, Deepak R. A Framework for Life-Cycle Cost Assessmentof Composites: in Construction[J]. Journal of Reinforced Plastics andComposites.2003,22(15):1409-1422
    [60] Chandler RF. Life-Cycle Cost Model for Evaluating the Sustainability of BridgeDecks: A Comparison of Conventional Concrete Joints and EngineeredCementitious Composite Link Slabs[R]. University of Michigan, Report No.CSS04-06,2004
    [61]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(I):系统设计[J].土木工程学报,2006,39(4):29-44
    [62]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(II):系统实现[J].土木工程学报,2006,.39(4):45-53
    [63]金伟良,宋志刚,赵羽习.工程结构全寿命可靠性与灾害作用下的安全性[J].浙江大学学报(工学版),2006,40(11):1862-1868.
    [64]陈继松,于群力,胡琦忠.跨海桥梁全寿命周期可靠性管理框架[J].世界桥梁.2008,3:71-74.
    [65]李惠,周文松,欧进萍,等.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):46-52.
    [66]李爱群,缪长青,李兆霞,等.润扬长江大桥结构健康监测系统研究[J].东南大学学报,2003,33(5):544-548.
    [67]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42.
    [68] Chana THT, Yua L, Tam HY. Fiber Bragg Grating Sensors for Structural HealthMonitoring of Tsing Ma Bridge: Background and Experimental Observation [J].Engineering Structures.2006,28:648-659.
    [69] Hodgson I. Personal discussion for the acquisition of the real data from themonitoring of the I-39Northbound Bridge over the Wisconsin River. IanHodgson, Senior Research Engineer. Department of Civil and EnvironmentalEngineering. ATLSS Center. Lehigh University.117ATLSS Dr. Bethlehem. PA18015-4729, personal contact on February12,2007.
    [70] Hu XY, Wang B, Ji H. A Wireless Sensor Network-based Structural HealthMonitoring System for Highway Bridges [J]. Computer-Aided Civil andInfrastructure Engineering,2013,28(3):193-209.
    [71] Liu M, Frangopol DM, Kim S. Bridge safety evaluation based on monitored liveload effects[J]. Journal of Bridge Engineering,2009,14(4):257-269.
    [72]王瑀,荆国强,王波.桥梁健康监测系统在线结构分析及状态评估方法[J].桥梁建设,2014,44(1):25-30
    [73] Ching J, Muto M, Beck JL. Structural Model Updating and Health Monitoringwith Incomplete Modal Data Using Gibbs Sampler [J]. Computer-Aided Civiland Infrastructure Engineering,2006,21(4):242-257.
    [74] García-Palencia AJ, Santini-Bell E. A Two-step Model Updating Algorithm forParameter Identification of Linear Elastic Damped Structures [J].Computer-Aided Civil and Infrastructure Engineering,2013,28(7):509-521.
    [75]李顺龙.基于健康监测技术的桥梁结构状态评估和预警方法研究[D].博士学位论文,哈尔滨工业大学,2009.
    [76] Lozano-Galant JA, Nogal M, Castillo E, Turmo J. Application of ObservabilityTechniques to Structural-System Identification [J]. Computer-Aided Civil andInfrastructure Engineering,2013,28(6):343-450.
    [77] Osornio-Rios RA, Amezquita-Sanchez JP, Romero-Troncoso RJ, Garcia-PerezA. MUSIC-Neural Network Analysis for locating Structural Damage inTruss-type Structures by Means of Vibrations[J]. Computer-Aided Civil andInfrastructure Engineering,2012,27(9):687-698.
    [78] O’Byrne M, Schoefs F, Ghosh B, Pakrashi V. Texture Analysis Based DamageDetection of Ageing Infrastructural Elements[J]. Computer-Aided Civil andInfrastructure Engineering,2013,28(3):162-177.
    [79] Qiao L, Esmaeily A, Melhem HG. Signal Pattern-Recognition for DamageDiagnosis in Structures [J]. Computer-Aided Civil and InfrastructureEngineering,2012,27(9):699-710.
    [80] Torbol M, Gomez H, Feng M. Fragility analysis of highway bridges based onlong term monitoring data [J]. Computer-Aided Civil and InfrastructureEngineering,2013,28(3):178-192.
    [81] Walsh SB, Borello DJ, Guldur B, Hajjar JF. Data Processing of Point Clouds forObject Detection for Structural Engineering Applications [J]. Computer-AidedCivil and Infrastructure Engineering,2013,28(7):495-508.
    [82] Xiang J, Liang M. Wavelet-based Detection of Beam Cracks Using ModalShape and Frequency Measurements [J]. Computer-Aided Civil andInfrastructure Engineering,2012,27(6):439-454.
    [83] Yuen KV, Katafygiotis LS. Substructure Identification and Health MonitoringUsing Response Measurement Only [J]. Computer-Aided Civil andInfrastructure Engineering.2006,21(4):280-291.
    [84] Frangopol DM. Life-cycle performance, management and optimization ofstructural systems under uncertain: accomplishments and challenges [J].Structure and Infrastructure Engineering. Taylor and Francis2011,7(6):389-413.
    [85] Frangopol DM, Strauss A, Kim S. Bridge reliability assessment based onmonitoring [J]. Journal of Bridge Engineering, ASCE2008,13(3):258-70.
    [86] Liu M, Frangopol DM, Kim S. Bridge system performance assessment fromstructural health monitoring: a case study [J]. Journal of Structural Engineering,ASCE2009,135(6):733-44.
    [87]赵卓.基于ARMA模型的伊通河桥监测数据建模与可靠度分析[D].硕士学位论文,哈尔滨工业大学,2012.
    [88] Stewart MG. Time-Dependent Reliability of Existing RC Structures [J]. Journalof Structural Engineering, ASCE,1997,123(7):896-901.
    [89] Stewart MG, Val DV. Role of Load History in Reliability-based DecisionAnalysis of Aging Bridges [J]. Journal of Structural Engineering, ASCE,1999,125(7):776-783.
    [90] Kim S, Stewart MG. Structural reliability of concrete bridges includingimproved chloride-induced corrosion models[J]. Structural Safety, Elsevier,2000,22(4):313-333.
    [91] Zhang RX, Sankaran Mahadevan. Model uncertainty and Bayesian updating inreliability-based inspection [J]. Structural Safety,2000,22(2):145-160.
    [92] Zhang RX, Sankaran Mahadevan. Bayesian Methodology for Reliability ModelAcceptance [J]. Reliability Engineering and System Safety,2003,80(1):95-103.
    [93] Igusa T, Buonopane SG, Ellingwood BR. Bayesian Analysis of Uncertainty forStructural Engineering Applications [J]. Structural Safety,2002,24(3):165-186.
    [94] Enright MP, Frangopol DM. Condition Prediction of Deteriorating ConcreteBridges Using Bayesian Updating[J]. Journal of Structural Engineering, ASCE,1999,125(10):1118-1125.
    [95] Beck JL, Katafygiotis LS. Updating Models and Their Uncertainties. I:Bayesian Statistical Framework [J]. Journal of Structural Engineering, ASCE,1998,124(4):455-467.
    [96] Papadimitriou CK, Beck JL, Katafygiotis LS. Updating Robust ReliabilityUsing Structural Test Data [J]. Probabilistic Engineering Mechanics,2001,16:103-113.
    [97] Faber MH, Sorensen JD. Indicators for Inspection and Maintenance Planning ofConcrete Structures [J]. Structural Safety,2002,24(4):377-396.
    [98] Sankaran Mahadevan, Zhang RX. Natasha Smith. Bayesian Networks forSystem Reliability Reassessment [J]. Structural Safety,2001,23(3):231-251.
    [99]李连友.预后验决策分析用于优化桥梁检修规划[D].清华大学硕士学位论文,2003.
    [100]李东方.混凝土桥梁构件的可靠性修正与检测维修决策[D].硕士学位论文,哈尔滨工业大学,2008.
    [101]West M, Harrison J. Bayesian forecasting and dynamic models (SecondEdition)[M]. Springer Series in Statistics,1997.
    [102]West M, Harrison J. Bayesian forecasting and dynamic models [M]. New York:Springer Verlag,1989.
    [103]汪树玉,刘国华,刘立军,等.大坝监测分析中的贝叶斯动态模型[J].水利学报,1998(7):1-5.
    [104]魏冠军,党亚民,章传银.应用贝叶斯动态模型的地基沉降概率分析与预测[J].测绘科学,2012,37(2):52-53.
    [105]Wang J, Liu XL. Application of Bayesian Dynamic Model in StructuralPerformance Prediction and Life-cycle Management[C]. In: Moe S Cheung,Chih-Chen Chang, eds. Proceedings of the International Workshop onIntegrated Life-cycle Management of Infrastructures. Hongkong: HKUST,2004,155-161.
    [106]郑瑶辰,陈建桥.基于马尔科夫链和贝叶斯动态预测的结构性能退化模型
    [C].第16届全国疲劳与断裂学术会议,北京,2012,163.
    [107]雷旭.在役混凝土桥梁基于风险的承载能力评估研究[D].长沙理工大学硕士学位论文,2011.
    [108]陈宣言,许有胜,左小刚,宗周红.基于静动力测试测试的多跨预应力连续梁桥承载力评估[J].福州大学学报(自然科学版).2006.34(4):582-588.
    [109]闫磊,赵勃,吕颖钊等.基于可靠性的在役桥梁承载力评价[J].西安建筑科技大学(自然科学版).2010.42(3):401-406.
    [110]李全旺,李春前,孙健康.基于结构可靠度理论的既有桥梁承载能力评估[J].工程力学.2010.27(II):142-151.
    [111]王草,李全旺,李连友.结构劣化对在役桥梁承载力更新的影响[C].第22届全国结构工程学术会议,2013,新疆. Ⅲ428-Ⅲ432.
    [112]Zhang LM, Tang WH, and Ng CWW. Reliability of axially loaded driven pilegroups[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(12),1051-1060.
    [113]Meyerhof GG. Bearing capacity and settlement of pile foundations [J]. Journalof Geotechnical Engineering, ASCE,1976,102(3):195-228.
    [114]中华人民共和国建设部.工程结构可靠度设计统一标准(GB50153-92)[S],1992.
    [115]交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)[S].2004.
    [116]钟才根,丁文其,王茂和.神经网络模型在高速公路软基沉降预测中的应用[J].中国公路学报,2003,16(2):31-34.
    [117]兰孝奇,杨永平,黄庆,等.建筑物沉降的时间序列分析与预报[J].河海大学学报(自然科学版),2006,34(4):426-429.
    [118]张仪萍,俞亚南,张土乔,等.沉降预测中的灰色模型理论与Asaoka法[J].系统工程理论与实践,2002(9):141-144.
    [119]杨叔子,吴雅,轩建平.时间序列分析的工程应用(第二版)[M].华中科技大学出版社,2007.
    [120]孙永福,王良曦,庞磊. GM(1,1)模型与指数回归模型的比较与研究[J].装甲兵工程学院学报.2000,14(1):76-79.
    [121]王剑,刘西拉.结构生命周期的可靠性管理[J].岩石力学和工程学报.2005,24(17):3125-3130.
    [122]王剑.基于信息更新的混凝土结构性能预测和可靠性管理[D].博士学位论文,清华大学,2006.
    [123]张孝令,刘福升,张承进,等.贝叶斯动态模型及其预测[M].济南:山东科技技出版社,1992.
    [124]Koch KR. Bayesian inference with geodetic appliances[M]. Berlin:Springer-Verlag,1990.
    [125]Sankaran M, Smith N. Bayesian networks for system reliability reassessment[J]. Structural Safety,2001,23(3):231-251.
    [126]Petris G,Petrone S,Campagnoli P. Dynamic linear models with R[M]. NewYork: Springer-Verlag,2009.
    [127]Mahmoud HN, Connor RJ&Bowman CA. Results of the fatigue evaluationand field monitoring of the I-39Northbound Bridge over the WisconsinRiver[R]. ATLSS report no.05-04, Bethlehem (PA, USA): Lehigh University,2005.
    [128]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [129]Zou YJ. The Role of Structural Health Monitoring in Bridge Assessment andManagement[D]. Thesis(MA.Sc), Lehigh University, Pennsylvania, USA,2011.
    [130]苏兵.贝叶斯动态模型的模拟处理[D].硕士学位论文,山东大学,2007.
    [131]中华人民共和国林业部.林区公路桥涵设计规范(LYJ106-1990)[S],1990.
    [132]Gordon NJ, Salmond DJ, Smith AFM. Novel approach tononlinear/non-Gaussian Bayesian state estimation[J]. Proceedings of InstituteElectric Engineering,1993,140(2):107-113.
    [133]彭云辉,刘云峰,缪栋,杨小冈.高斯混合粒子滤波器在状态估计中的应用[J].弹箭与制导学报.2007,27(1):271-274.
    [134]Melchers RE. Structural reliability, analysis and prediction[M]. Ellis Horwood,Chichester,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700