用户名: 密码: 验证码:
气候变化对空调室外计算参数的影响及确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室外空气设计计算参数是室外气候和建筑暖通设计的桥梁,对暖通空调负荷和相关设备选型具有非常重要的作用。我国的室外设计计算参数确定方法制定至今已有30多年,未曾有本质上的变化。当前,气候变暖已成为全球性的共识,围护结构保温性能也有很大的提高。在此背景下,有必要针对气候变暖对计算参数本身及确定方法的影响进行研究,并进一步结合新的气候特点和建筑特点,探究新的确定方法。
     本文利用气候学、数理统计和极值统计等相关交叉学科知识,在相关基金的支持下以天津市1960-2010年共51年的气象观测数据为基础数据,对原有确定方法的适应性和各国方法在中国的适应性进行了探讨,计算分析了气候变化的显著性以及在气候变化情况下各室外计算参数的数值变化,对室外计算参数统计时长的长短限值进行了研究,并利用平稳时间序列下的赋权对最优时长进行了较为深入的证明分析,最后建立了一套新的充分考虑气候特点和建筑需要的夏季空调室外设计参数确定方法体系,主要研究内容及结果如下:
     ①通过对比中英美方法下的同一地区室外设计计算参数,发现照搬国外设计参数确定方法存在一定不合理性,通过计算气候变化情况下,湿球温度和露点温度的不保证时长和变化趋势,发现现有确定方法下的状态点不能适应气候变化,也不能良好的反应干湿度的分布。
     ②利用M-K检验,证明空调采暖季天津地区平均干球温度、日较差均呈显著性变化,极端高温事件90年代后频数明显增加。计算气候变化下各室外计算参数发现,天津地区采暖室外计算温度每隔14年、冬季空调室外计算温度每隔20年、夏季空调室外计算温度每隔20年就会提高1℃。
     ③在标准差为定值条件下,经过计算各设计参数的统计年限并不完全相同,在标准差最大为1度、最小为0.1度的条件下,计算天津地区各参数的统一限值上下限分别为43年和13年。
     ④建立了一套新的方法证明考虑气候变化下最优统计年限:证明高温气象数据总体服从广义帕累托分布(GPD),并以天津地区为例进行了模型拟合,经模型诊断良好。在考虑气候变化的前提下,对气象数据样本引入时间维度,证明气温必符合平稳时间序列,定义描述对今影响程度的气象影响因子,计算影响因子并对不同年限组合序列赋以权值,与总体进行比较,最后得出考虑气候变化下的最优时长。以天津为例进行案例分析,发现天津地区的最优时长为17年。
     ⑤对固定不保证50小时存在的问题进行了计算,并提出了一种新方法来确定不保证率。采用阀值温度均值函数(SMEF)来初选设计温度,并按照一定连续发生事件处理数据样本,去掉建筑围护结构可抵御的事件,再次选取设计温度,如此反复迭代直至两次选取温度相差在0.1度之内停止,最后得到设计温度。以天津地区为例,空调室外设计干球温度按新方法计算为33.5摄氏度。
     ⑥在前人的基础上,扩展得到了一种考虑同时发生的空调室外设计参数的方法,根据某地区气象数据,得到干湿球温度的二维联合概率分布,在一定不保证率的条件下,以a作为代表,考虑建筑热物性对于建筑负荷特性的影响,确定出斜率为a的等负荷线的干湿球温度组合,同时为了保留空调室外设计参数的代表性,将所得到的干湿球温度求期望,从而最终获得在一定a时室外的设计计算参数。文章在假设a=2、a=1和a=0.5的情况下分别与ASHRAE、CIBSE所给出的设计参数进行对比,得到的结果表明新方法与ASHRAE中给出的湿球温度差别较大。
     本文还将第四章和第五章方法结合形成一套空调室外设计计算参数新的综合确定方法。新方法条件下,天津地区的空调室外设计计算干球温度为32.6摄氏度,湿球温度为26.1摄氏度。同时,基于不同的a值,本文给出了室外设计参数与不保证率的关系曲线供设计时选用。
Outdoor design parameter for AC system is the bridge between climate andHVAC design. It plays very important role in HVAC load calculation and equipmentselection。It has been30years since the determination method was firstly established,which hasn‘t been essentially changed since then。At present, global warming hasbecome a globalconsensus, hence in this context, it is necessary to study the impact ofclimate change and determination method of design parameters. Further integration ofcharacteristics of new climate and architectural features will be taken intoconsideration to build up a new system of generating outdoor design parameters.
     In this paper,climate science,mathematical statistics, extreme value statistics andsome other interdisciplinary knowledge are used. Meanwhile, in then support ofrelated fund and based on the hourly weather data of Tianjin from1960to2010,theadaptability of China National Standard and other determination method arediscussed.Related calculationhelps analyze the significance of climate change andrespective numerical difference of outdoor design parameters. This paper conductresearch on statistical length limitations used for calculation, andutilize determiningweights under stationary time series to analyze and prove the optimal length indepth.Finally this paper build up a whole new system fully considered thecharacteristics of local climate and architectural features to determine the optimaloutdoor design parameters.
     Main Contents and Results as follows:
     ①Comparing the difference of outdoor design parameters based on ChinaNational Standard,ASHRAE and CIBSE, we find that there is a certain irrationalityto process original method with new data. Further calculation on climate change,duration trends of risk levelshows that existing method cannot agree with the climatechange as well as the distribution of dry-and wet-bulb temperature.
     ②By utilizing M-K Test,it is proved that the average dry bulb temperature,dailytemperature difference changed significantly in air conditioning or heatingperiod.Besides, the occurrence frequency of extreme high temperature increased quitemuch.Moreover,by calculating outdoor design temperature in case of climate change, it is found that the outdoor design temperature raises1oC every14years forheating/20years for space heating/20years for cooling.
     ③Under the circumstance that the standard deviation remains constant,thestatistical life of each design parameters are not same as each other.Given that thestandard deviation ranges from0.1to1, the higher limit and lower limit of designparameters are43years and13years respectively.
     ④This paper established a new system to prove the best statistical lifeconsidering climate change:A new system proved that the high temperature weatherdata obey the Generalized Pareto Distribution (GPD), and the weather data of Tianjin,for example, fits the model diagnostics excellently. Considering the impact ofclimatechange, a time dimension is introduced to prove that temperature shall comply withthe stationary time series. We also define a meteorological impact factor which iscalculated for empowering value of different combination of vary statisticalperiod.After comparisonwith theoriginal data, an optimal duration is foundconsidering the impact of climate change.For example, Tianjin‘s optimal duration is17years.
     ⑤A series of calculation are conducted to find the problem of non-guaranteedduration length on certain50hrs.,and a new method is promoted to determine the ratewhich the real value exceeds the design parameters.We primarily choose the designtemperatures by utilizing SMEF and then process data in accordance with certaincontinuousoccurrence events, and then we reselect the design parameters removingthose events that the building envelope can resist.Keep doing so iteratively until thedifference of two selected temperature smaller than0.1degree. For Tianjin City,thedesign temperature is33.5degree.
     ⑥In the basis of the predecessors, an expansion has been established consideringthe coincidence of outdoor design parameters.Based on the hourly weather data ofcertain region,we can get the joint probability distribution of dry-and wet-bulbtemperature. Once the risk level and the variable a,which presents thermal andphysical properties of building, are determined, we could thus generate an assembly,which contains a series sets of dry-and wet-bulb temperaturethat leads to equalbuilding load. And the expectation of the assembly is the design parameters ofoutdoor air. This paper assumes3circumstances,that a=2,a=1and a=0.5,and thecorrespondingresults show that the wet-bulb temperature generated by newapproachdiffers much from ASHRAE.
     This Paper also combine the approaches promoted in Chapter4and Chapter5.Via the new approach, the outdoor design temperature of Tianjin is: DBT-33.5degree,WBT-26.3degree. At the meantime, based on different a‘value, this paperalso generates X-Y charts of outdoor design temperature and risk level.
引文
[1]中华人民共和国国民经济和社会发展第十一个五年规划纲要[R].国务院,2006.
    [2]中华人民共和国国民经济和社会发展第十二个五年规划纲要[R].国务院,2011.
    [3]江亿等.中国建筑节能年度发展研究报告[R].中国建筑工业出版社,2007.
    [4]中华人民共和国国务院新闻办公室[R].中国的能源状况与政策,2007.12.
    [5] GB50019-2003,采暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,2003.
    [6] GBJ19-87,采暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,1987.
    [7] TJ19-75,工业企业采暖通风和空气调节设计规范[S].北京:中国建筑工业出版社,1975.
    [8] GB50019-2011民用建筑采暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,2011.
    [9]王敏.室外空气计算参数的确定方法与数据更新[D].北京:中国建筑科学研究院环境与能源研究院,2009.
    [10]华北地区建筑标准设计协作组暖通专业组.工业企业采暖通风和空气调节设计规范中的几个问题的介绍[J].暖通空调,1975,5(2):19-25.
    [11]暖通规范管理组.暖通空调设计规范专题说明选编[M].北京:中国计划出版社,1990.
    [12]专题一:严寒和寒冷地区气候分区及参数计算[R].中国建筑科学研究院,2011.
    [13] ASHRAE. ASHRAE Handbook: Climate Design Information[M]. USA:ASHRAE,1997.
    [14] ASHRAE. ASHRAE Handbook: Climate Design Information[M]. USA:ASHRAE,2005.
    [15] CIBSE.CIBSE GUIDE in: External Design Data[M]. UK:CIBSE,2006.
    [16] T.Z. Hong, Y. Jiang. Outdoor synthetic temperature for the calculation of spaceheating load[J]. Energy and Buildings,1998,28(3):269-277.
    [17] J.C. Lam, S.C.M. Hui. Outdoor design conditions for HVAC system design andenergy estimation for buildings in Hong Kong[J]. Energy and Buildings,1995,22(1):25-43.
    [18] T. Hitoshi. Tokyo weather data for air-conditioning: Outdoor design conditionsfor heating and cooling loads by the TAC method[J]. Energy and Buildings,1990,15(1–2):263-269.
    [19]采暖通风和空气调节设计规范编制组.一种新的确定采暖室外计算温度的统计方法[J].暖通空调,1973,15(7):20-26.
    [20] L.W. Crow. Derivation of outdoor design temperatures from annual extremes inASHRAE Semiannual Meeting[M]. New Orleans: ASHRAE,1964.
    [21] R.G. Qu.Study on outdoor temperature parameter model in HVAC design[J].World Acad Union-World Acad Press,2008,12(3):135-143.
    [22] L. Yang, J.C. Lam, J.P. Liu. Analysis of typical meteorological years in differentclimates of China[J]. Energy Conversion and Management,2007,48(2):654-668.
    [23] J.C. Baltazar, D.E. Claridge. Study of cubic splines and Fourier series asinterpolation techniques for filling in short periods of missing building energyuse and weather data[J]. Journal of Solar Energy Engineering-Transactions ofthe Asme,2006,128(2):226-230.
    [24] O. Buyukalaca, H. Bulut. Detailed weather data for the provinces covered by theSoutheastern Anatolia Project (GAP) of Turkey[J]. Applied Energy,2004,77(2):187-204.
    [25] F. Gugliermetti, F. Bisegna. Meteorological days for HVAC system design inMediterranean climate[J]. Building and Environment,2003,38(8):1063-1074.
    [26] Q. Zhang, J. Huang, H. Yang. Development of the Typical and Design WeatherData for Asian Locations[J]. Journal of Asian Architecture and BuildingEngineering,2002,1(2):49-55.
    [27] O. Büyükalaca, H. Bulut, T. Y lmaz. Analysis of variable-base heating andcooling degree-days for Turkey[J]. Applied Energy,2001,69(4):269-283.
    [28] H. Bulut, O. Büyükalaca, T. Y lmaz. Bin weather data for Turkey[J]. AppliedEnergy,2001,70(2):135-155.
    [29] A. Satman, N. Yalcinkaya. Heating and cooling degree-hours for Turkey[J].Applied Energy,1999,24(10):833-840.
    [30] L. Bellia, P. Mazzei, A. Palombo. Weather data for building energy cost-benefitanalysis[J]. International Journal of Energy Research,1998,22(14):1205-1215.
    [31]张明,杨柳.原始气象数据对建筑设计室外计算参数的影响[J].山西建筑,2007,33(11):185-186.
    [32]何大四.暖通空调中气象数据相关的几个问题探讨[D].同济大学,2006.
    [33]Thom.H.C.S, Revised winter outdoor design temperatures[J]. ASHRAE Trans,1957,63:111-128.
    [34]W.L.HOLLADAY, Improves methods for calculation of design temperatures[J].ASHRAE Trans,1962,68:125-140.
    [35] T.M.K. M.D. Mason. Let‘s talk about weather[C]//Proceedings of IBPSABuilding Simulation. Adelaide,1993:487-494.
    [36] K.E.K.K. K.G. Hubbard,A.T. DeGaetano,K.T. Redmond. Sources of uncertaintyin the calculation of design weather conditions[J].ASHRAE Transactions,2005,111(2):10-12.
    [37] H.Z. D.G. Colliver, R.S. Gates, K.T. Priddy. Determination of the1%,2.5%, and5%occurrences of extreme dew-point temperatures and mean coincidentdry-bulb temperatures[J]. ASHRAE Transactions,1995,101(2):21-25.
    [38] R.S.G. D.G. Colliver, H. Zhang, K.T. Priddy. Sequences of extreme temperatureand humidity for design calculation[J]. ASHRAE Transactions,1998,104(1):12-18.
    [39] R.S.G. D.G. Colliver, T.F. Burks, H. Zhang. Development of the design climaticdata for the1997ASHRAE Handbook-Fundamentals[J]. ASHRAETransactions,2000,106(1):12-19.
    [40] A.T.D. Kenneth G. Hubbard, Kenneth E. Kunkel, Kelly T. Redmond. Sources ofUncertainty in the Calculation of Design Weather Conditions in the ASHRAEHandbook of Fundamentals[M].USA:ASHRAE,2005.
    [41] T.Y. Chen, F. Yik, J. Burnett. A rational method for selection of coincident designdry-and wet-bulb temperatures for required system reliability[J]. Energy andBuildings,2005,37(6):555-562.
    [42] T.Y. Chen, Y.M. Chen, F.W.H. Yik. Rational selection of near-extreme coincidentweather data with solar irradiation for risk-based air-conditioning design[J].Energy and Buildings,2007,39(12):1193-1201.
    [43] T.Y. Chen, Z. Yu. A statistical method for selection of sequences of coincidentweather parameters for design cooling load calculations[J].Energy Conversionand Management,2009,50(3):813-821.
    [44] L. Bellia, P. Mazzei, F. Minichiello. Outdoor-air design conditions relating to thecapacity of air-conditioning systems[J]. International Journal of EnergyResearch,2000,24(2):121-135.
    [45] H. Bulut, O. Buyukalaca,T. Yilmaz. New outdoor cooling design data forTurkey[J]. Energy,2002,27(10):923-946.
    [46] M. üner,A. leri. Typical weather data of main Turkish cities for energyapplications[J]. International Journal of Energy Research,2000,24(8):727-748.
    [47]中国有色金属工业公司.采暖通风与空气调节设计规范[R].中国计划出版社,北京,2001.
    [48]暖通规范管理组.采暖室外计算温度统计方法的确定[J].工业建筑,1980,24(12):29-40.
    [49]冶金部北京有色冶金设计院.《工业企业采暖通风和空气调节设计规范》TJ19-75编制内容简介[J].暖通空调,1977,20(1):28-34.
    [50]江亿.空调负荷计算用随机气象模型[J].制冷学报,1981,11(3):14-20.
    [51]颜秉铎,崔永江.建筑物冷热负荷计算气象参数构成方法的研究[J].暖通空调,1982,9(4):8-13.
    [52]洪天真,江亿.冬季供暖系统负荷计算用的室外综合计算温度[J].暖通空调,1993,10(3):38-45.
    [53]洪天真,江亿,彦启森.供热空调系统保证率设计的概念[J].暖通空调,1994,30(6):16-22.
    [54]付祥钊,陈敏.关于民用建筑通风室内外计算参数的思考[J].暖通空调,2011,41(5):67-71.
    [55]赵康,刘晓华,张涛等.关于夏季空气调节室外空气计算参数的讨论[J].暖通空调,2011,41(1):28-34.
    [56]李明财,郭军,田喆.气候变化对华北4个城市建筑节能设计气象参数的影响[J].气候变化研究进展,2011,7(6):34-39.
    [57] K.X.Liu,Z.Tian,C.Zhang. Establishment and validation of modified star-typeRC-network model for concrete core cooling slab[J]. Energy and Buildings,2011,43(9):2378-2384.
    [58] D. J. Anderson. The home range: a new nonparametric estimation technique[J].Ecology,1982,63(4):103-112.
    [59] B. J. Worton. Kernel Methods for Estimating the Utilization Distribution inHome-Range Studies[J]. Ecology,1989,70(1):164-168.
    [60] A. A. Balkema and L. de Haan. Residual Life Time at Great Age[J]. Ann. Probab,1974,2(5):792-804.
    [61] James PickandsIII. Statistical Inference Using Extreme Order Statistices[J]. TheAnnals of Statistics,1975,3(1):119-131.
    [62] J. D. Holmes, W. W. Moriarty. Application of the generalized Pareto distributionto extreme value analysis in wind engineering[J]. Journal of Wind Engineeringand Industrial Aerodynamics,1999,83(3):1-10.
    [63]汪方,丁裕国,范金松.江苏夏日逐日降水极值统计特征诊断研究[J].气象科学,2002,22(4):435-443.
    [64]程炳岩,丁裕国,张金玲.广义帕累托分布在重庆暴雨强降水研究中的应用[J].高原气象,2008,27(5):1004-1009.
    [65] M. A. J. Van Montfory, J. V. Witter. The Generalized Pareto distribution appliedto rainfall depths[J]. Hydrological Sciences Journal,1986,31(2):151-162.
    [66]刘广海,谢如鹤.基于耿贝尔分布的高温参数模型的分析与确定[J].广州大学学报,2009,8(4):83-86.
    [67] A. F. Jenkinson. The frequency distribution of the annual maximum(or minimum)of meteorological elements[J]. Quart. J. Roy. Meteorol. Soc.,1955,81(9):158-171
    [68] Jin Zhang. Likelihood Moment Estimation For The Generalized ParetoDistribution[J]. Aust. N. Z. J. Stat.,2007,49(1):69-77.
    [69] J. R. M. Hosking. L-moments: Analysis and Estimation of Distributions usingLinear Combinations of Order Statistics[J]. J. R. Statist. Soc. B,1990,52(1):105-124.
    [70] J. R. M. Hosking, J. R. Wallis. E. F. Wood,Estimation of the generalizedextreme-value distribution by the method of probability-weighted moments[J].Technimetrics,1985,27(8):251-261.
    [71] Peter F. Rasmussen. Generalized probability weighted moments: Application tothe generalized Pareto Distribution[J]. Water Resources Research,2001,37(6):1745-1751.
    [72] J. Guilt.ARMA techniques for modeling tree-ring response to climate and forreconstructing variations of paleoclimates[J]. Ecological Modeling,1986,33(4):149-171.
    [73]毕晓丽,王辉,葛剑平.植被归一化指数(NDVI)及气候因子相关起伏型时间序列变化分析[J].应用生态学报,2005,16(2):284-288.
    [74]李广华,李力,汤光华.一类ARMA模型在气象预报中的应用[C]//江苏:江苏省现场统计研究会第九次年会论文集.
    [75]曾大才.时间序列的客观分析方法在天气分析中的应用[J].广西气象,1990,11(3):14-16.
    [76]中国建筑科学研究院.夏季室外气象条件所采用的计算方法[R].建筑科学研究院,1959.
    [77] Colliver D G,Burks T F,Gates R S,et al. Development of the design climate datafor the1997ASHRAE handbook-Fundamentals[J]ASHRAE Trans,2000,106(1):929-940.
    [78] ASHRAE.2001ASHRAE handbook-Fundamentals[M]. Atlanta:AHSRAE,2001.
    [79]李婷.气象灾害生态风险的预测、分析与实例评价[D].兰州:兰州大学,2007,5.
    [80]桂文林.基于极端值理论(EVT)的金融风险度量[D].广州:暨南大学,2005,6.
    [81]张国辉.极值理论及其在风险价值中的应用[D].杭州:浙江大学,2003,2.
    [82] Pareto V. Cours Economic Politique[M]. Language and Paris:Rouge and Cie,1987.
    [83] Embrechts P,Kluppelberg C,Mikosch T. Modeling Extremal Events for Insuranceand Finance[M]. Berlin:Springer,1997.
    [84]桂文林,韩兆州,潘庆年.POT模型中GPD―厚尾‖性及金融风险测度[J].数量经济技术经济研究,2010,8(1):107-118.
    [85]李宏男等.极值风速概率方法研究进展[J].自然灾害学报,2009,8(4):15-26.
    [86]程炳岩等.广义帕雷托分布在重庆暴雨强降水研究中的应用[J].高原气象,2008,10(5):1004-1009.
    [87]丁裕国,李佳耘等.极值统计理的进展及其在气候变化研究中的应用[J].气候变化研究进展,2011,12(7):248-252.
    [88]杨彬,张永任.基于极值理论的股票VAR和ES测度[J].统计与决策,2006,9(3):117-118.
    [89]毕祥娟,李波.定数截尾试验下两总体双参数Pareto分布尺度参数的比较[J].统计与决策,2007,23(10):14-16.
    [90]翁毅,李序颖. POT方法在波罗的海巴拿马型船运价指数风险测度中的应用[C]//中国现场统计研究会第十三届学术年会,上海,2007:217-221.
    [91]蔡敏,丁裕国,江志红.我国东部极端降水时空分布及其概率特征[J].高原气象,2007,10(2):309-317.
    [92]刘聪等.基于广义极值分布的设计基本风速及其置信限计算[J].东南大学学报:自然科学版,2006,35(2):331-334.
    [93]吴香华等.中国南方6省1月份降水和极端低温的分布特征[J].大气科学学报,2009,25(6):807-814.
    [94]王剑峰,宋松柏.广义Pareto分布在超定量洪水序列频率分析中的应用[J].西北农业科技大学学报,2010,2(1):191-196.
    [95]高松,李琳,史道济.平稳序列的POT模型及其在汇率风险价值中的应用[J].系统工程,2004,6(3):49-53.
    [96]李婷婷,汪飞星.基于极值理论和Bootstrap方法的E-VAR研究和实例分析[J].价值工程,2007,3(1):102-106.
    [97]杨旭,聂磊.再保险业务风险分布特征的实例分析[J].统计研究,2008,9(8):32-35.
    [98]高洪忠.用POT方法估计损失分布尾部的效应分析[J].数理统计与管理,2003,7(1):64-69.
    [99]司继文,杨智勤,龚朴.广义Pareto分布下风险值估计[J].华中科技大学学报,2004,6(5):12-15.
    [100]刘广海,谢如鹤,屈睿瑰.夏季室外高温皮尔逊—Ⅲ分布模型的分析与确定[J].重庆建筑大学学报,2007,4(1):107-110.
    [101]高绍凤.应用气候学[M].北京:气象出版社,2001.
    [102]马开玉.现代应用统计学[M].北京:气象出版社,2004.
    [103]盛骤,谢式千.概率论与数理统计[M].北京:高等教育出版社,1997.
    [104] D.G. Colliver, R.S.Gates, H.Zhang. Sequence of extreme temperature andhumidity for design calculation[J]. ASHRAE Transactions,1998,104(1):133-144.
    [105] Tingyao Chen, YoumingChen, FrancisW.H.Yik. Rational Selection of nearextreme coincident weather data with solar irradiation for risk basedair-conditioning design[J]. Energy and Buildings,2007,39(7):1193-1201.
    [106] Hayter, Anthony J. Probability and Statistics for Engineers and Scientists[M].New York: Brooks/Cole,2006.
    [107]么枕生.气候统计学基础[M].北京:中国科学出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700