混合动力液压挖掘机势能回收系统的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机是一种用量大、能耗高、排放差的工程机械,因此研究液压挖掘机的节能在当前社会能源紧缺和环境恶化问题日趋严重的情况下具有重要的现实意义。液压挖掘机各执行机构及负载惯性较大,各机械臂的上下摆动比较频繁,在机械臂下降制动时,具有很大的势能,若能将这部分能量进行回收并加以再利用,可进一步提高液压挖掘机的节能效果。在传统液压挖掘机中,这部分能量难以进行回收、存储和再利用。在液压挖掘机中引入混合动力系统后,由于动力系统中具备电池或电容等储能装置,易于实现能量的回收和存储,为能量回收提供了一条新的途径。
     论文针对液压挖掘机的节能需求,对液压挖掘机装备混合动力系统后进行能量回收的方法进行研究,包括能量回收系统结构,高效能量回收系统的参数优化,以及既可高效回收能量又可保证液压挖掘机执行机构采用能量回收系统后仍然具有良好操纵性的控制方法及策略,从而为混合动力液压挖掘机提供一种性能优异的、工程应用性强的能量回收方法,并且作为一种典型的工程机械,混合动力液压挖掘机的能量回收方法研究将为同类型的其它工程机械相关问题的解决提供借鉴。
     各章内容分述如下:
     第一章论述了在当前能源紧缺、环境恶化的情况下研究液压挖掘机能量回收系统的重要意义,介绍了各种类型的能量回收系统的特点及应用场合,对比分析了能量回收技术在汽车领域和液压挖掘机上应用的不同点,介绍了能量回收系统在工程机械领域和液压挖掘机的研究现状,概述了本论文的研究内容及论文的研究工作。
     第二章以某7吨级液压挖掘机为对象建立了液压挖掘机的负载测试系统,基于液压挖掘机工作中的实测数据,研究液压挖掘机各执行机构能量回收再利用的可行性以及各执行机构可回收能量所占比重,分析了液压挖掘机动臂势能回收的工况特点。针对液压挖掘机引入混合动力系统后具备电量储存装置的特点,分析了能量回收系统的基本结构和工作原理,建立动臂速度控制的数学模型并对控制特性进行了分析,同时建立了AMESim和MATLAB的联合仿真模型,从管道长度、等效转动惯量以及发电机控制参数等研究了其对系统操作性能的影响。
     第三章以斜轴式轴向柱塞液压马达为研究对象,建立了其效率数学模型,通过借助试验方法和MATLAB中辨识函数等辨识得到各损耗参数,从液压马达排量、液压马达压力等方面研究了液压马达的效率特性。基于考虑永磁同步发电机的铁损后的按转子磁场定向的d-q轴等效电路图以及id=O的控制策略,建立了发电机的效率数学模型,研究了发电机效率和转速、转矩等的关系。建立了超级电容的效率数学模型,通过试验平台测试了超级电容的容量特性、内阻特性以及超级电容效率与充放电状态的关系。最后,提出了能量转换单元在变转速控制模式和变转速和变排量复合控制两种模式时的效率优化策略。
     第四章提出了一种基于节流辅助调速的势能能量回收系统,分析了其系统结构及工作原理,建立了数学模型并完成了控制性能分析。提出了液压挖掘机采用能量回收系统后动臂新型工作模式的判断规则。以高效回收能量为目标,考虑到低速控制精度差、系统损耗以及防止液压马达吸空现象,提出了发电机动态修正工作点的控制规则。考虑到实际液压挖掘机难以安装速度传感器等特点,提出了一种基于发电机转速波动的比例节流阀分流以及比例方向阀限流的节流调速和容积调速的复合控制规则。从操作性能和能量回收效率两方面展开了试验研究,试验表明该方案可以解决基本能量回收系统中低目标速度时震荡较大和高目标速度时动态响应较低的问题,同时能量回收效率在无变量马达优化时维持在35%,而有变量马达优化时维持在39%。
     第五章提出了一种基于蓄能器的液压马达-发电机能量回收系统,分析了其系统结构及工作原理,建立了数学模型并完成了性能分析。基于蓄能器最大能量密度、动臂下放驱动性能等约束条件,完成了蓄能器、液压马达、发电机的参数优化设计。为了保证最小能量回收时间以及防止电磁换向阀的频繁切换造成压力和流量冲击,提出了两级压力判断的液压马达-发电机工作模式决策准则。分析了液压马达-发电机的最小能量回收时间、额定能量回收时间以及极限大能量回收时间的确定。针对采用能量回收系统后,动臂下放过程和液压马达-发电机能量回收过程实现相互独立的特点,研究了动臂下放和非下放两种模式的比例方向阀和发电机不同的控制规则。基于所研制的试验平台展开了试验研究,试验表明,该方案可以大幅度降低液压马达-发电机的功率等级,提高能量回收时间,在稳定发电机工作点方面、极限工况回收能量等方面具有明显的优势,同时不影响其操作性能。
     第六章概括了论文的主要研究工作和成果,并展望了今后的研究工作和方向。
Following the "energy crisis", the demand for more environmental and fuel efficient construction machinery, especially for hydraulic excavator (HE), has been increased in response to growing concerns on the clean environment and saving energy. Most of the time, in a typical working cycle, the weight of the boom itself is much heavier than the load. When the load goes down it does not need energy, but energy losses rise up in breaking the load motion. The gravitational potential energy is dissipated into heat in the control valves of the hydraulic system. So it is required for us to make maximum use of regenerative energy for further improvement of fuel consumption and also to ensure higher system control performance equivalent to that of conventional control system. The successful application of hybrid system in construction machinery provides a new way for hydraulic excavator to achieve energy saving.
     The chapters of this dissertation are organized as follows.
     In Chapter 1, the the significance of the research on energy regeneration system (ERS) based on HEs is discussed, and some characteristics and shortcomings of kinds of ERS are analyzed. Then, the difference between the ERS based on the hybrid automobile vehicle and the ERS based on the hybrid hydraulic excavator (HHE) are reviewed. The development of ERS in construction machineries and HEs are introduced. Finally, the primary research contents of this dissertation are provided.
     In Chapter 2, Applying the ERS in HHE, the system has to be considered to fit its special working style, a 7-ton HE was tested and the data of the pressure of the cylinder raw chamber, the pressure of the cylinder rod chamber and so on. Then, we caculated the regenerated energy of the boom, the arm, the bucket and the swing. The typical working condition of Boom ERS based on HEs is analyzed based on the the measured working data. Then, we have proposed a Motor-generator ERS(MGERS), the mathematical model of MGERS is constructed. The effects and improvements of system dynamic response are analyzed. Secondly, united simulation of the MGERS with AMESim and MATLAB/simulink for the MGERS is carried out and the influence on the control performance of the the pipe length, the time constant of the generator and the rotary inertia of the motor and the generator is brought forward.
     In Chapter 3, when the boom goes down, the gravitational potential energy is converted into electric energy to be stored in the capacitor. And the motor, the generator, the capacitor is the key components. Hence, the efficiency mathematical model of the motor, the generator and the capacitor are constructed. As some parameter of the motor are unknown, we test a rig and propose a measure method to identify the unknown parameters. At last, the characteristics of efficiency of the key components in ERS are analyzed. The analyses provide rules for the control strategy applied in the two proposed ERSs which are shown in Chapter 4 and Chapter 5.
     In Chapter 4, In order to control the boom in quick and precise responses when the boom velocity is controlled by the motor and the generator in the ERS, a new ERS that used a proportional throttle valve to help the hydraulic motor contol the boom is proposed. here we call is JMGERS. The mathematical model of JMGERS is constructed. The effects of system dynamic response are analyzed.
     When the conventional boom control circuit is enabled, it works with two modes: 'Boom Up', and'Boom Down'including digging. On the contrary, the operation of the boom system with an ERS is divided into four modes:'Boom Up'with holding function, 'Boom Stop Down','Boom ER Down', and'Digging'. The working principle of the boom system is characterized by the status of the joystick and the pressure of the boom cylinder. Considering the bad control performance in the low rotational speed, the total-power loss, the efficiency of the motor and the generator, a dynamic-working-points of the generator and the motor is discussed. Then, as the displacement and the velocity sensors can not be assembled in HE, a compound control that consist of orifice control and volume control is presented. At last, a test rig is constructed, an estimated 35%-39%of the total potential energy could be regenerated at the lowering of the boom in the JMGERS and it is also shown that the JMGERS features better speed control of the boom and response characteristics than the MGERS.
     In Chapter 5, As the hydraulic accumulator systems have an order of magnitude advantage in terms of the power density over electric system and the energy storage density is severely limited relative to other competing technologies, an energy recovery system that combines the advantages of an electric and hydraulic accumulator is proposed, here we call is AMGERS. Then, the mathematical model of AMGERS is constructed. The effects of system dynamic response are analyzed.
     As the hydraulic accumulator plays a very important role in the AMGERS, it must be properly designed to offset the gap between the load power and the generator power input. The parameter matching for the AMGERS are discussed by considering economics, weight saving, installation and controllability. Then, the control strategy incuclude the working mode of the motor-generator, how to control the generator and the control valves at the lowering of the boom, how to improving the recovery effieciency when the boom stops to go down are presented.
     The main conclusions and achievements are summarized in Chapter 6, and the further research work is put forward.
引文
[1]杨为民,姚喜,朱成建,孙小梅.WY22Lc型履带式液压挖掘机[J].工程机械,2002(07):16-18.
    [2]刘崇.观拉斯韦加斯博览会-谈液压挖掘机发展.建筑机械化[J],2002(4):19-20.
    [3]Liang X G, Virvalo T. What's Wrong with Energy Utilization in Hydraulic Cranes [C]. The Fifth International Conference on Fluid Power Transmission and Control, Hangzhou, China,2001: 419-424.
    [4]Liang X G, Virvalo T, Linjama M. The Influence of Control Valves on the Efficiency of a Hydraulic Crane [C]. The Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland,1999:381-394.
    [5]Kagoshima M, Komiyama M, Nanjo T, Tsutsui A, Development of New Hybrid Excavator[J], Kobelco Technology Review,2007 (27):39-42.
    [6]TakaoNANJO, EtsujiroIMANISHI, KazuhiroOOTANI.Simulationand Evaluation Teehnique for Power System and Related Energy Saving on Hydraulie Exeavator[J].Kobeleo teehnology review, 2007,27:28-34.
    [7]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    [8]Backe W, Zahe B. Electrohydraulic load sensing[J], SAE Trans,1991,100 (22):303-311.
    [9]Uehara K, Tominaga H. Energy saving on hydraulic systems of excavators[J], SAE paper, 1982.
    [10]UEHARA K, TOMINAGA H. Energy saving on hydraulic systems of excavators [J]. SAE Paper, 1982,10(1):57-63.
    [11]高峰,潘双夏.液压挖掘机负流量负荷传感控制策略[J].农业机械学报,2005,36(7):111-113.
    [12]赵波,刘杰,戴丽等.挖掘机液压系统的节能技术分析[J].流体传动与控制,2007.23(4):40-42.
    [13]Monika I. Pump Controlled Actuator-A Realistic Alternative for Heavy Duty Manipulators and Robots[J]. Developments in Fluid Power Control of Machinery and Manipulators, Cracow, 2000:102.
    [14]Sakurai Y, Takahashi K. Modelling and Simulation of a Load Sensing System by Bond-Graph Method[C], The Fifth Scandinavian International Conference on Fluid Power, Linkoping, Sweden,1997:87-198.
    [15]ZHANG Haitao, HE Qinghua, SHI Shengxian. The applica-tion of LUDV load-sensing system on the hydraulic excavator [J]. Construction Machinery,2004(10):61-63(in Chinese).
    [16]Erkkila M. Practical Modelling of Load-Sensing Systems[C]. The 6th Scandinavian International Conference on Fluid Power, Tampere, Finland,1999:445-458.
    [17]Pizon A, Sikora K. Computer Simulation Research of Load Sensing Systems[C]. The Third International Conference on Fluid Power Transmission and Control, Hangzhou, China,1993: 404-409.
    [18]Mattila J, Virvalo T. Computed Force Control of Hydraulic Servodrive with a Novel LSsystem[C]. The Fourth International Conference on Fluid Power Transmission and Control, Hangzhou, China,1997:97-102.
    [19]Mattila J, Virvalo T. Computed Force Control of Hydraulic Manipulators[C]. The Fifth Scandinavian International Conference on Fluid Power, Linkoping, Sweden,1997:139-154.
    [20]Pedersen H C, Andersen T O, Hansen M R. Load Sensing System-A Review of the Research Contributions Throughout the last Decades[C].4th International Fluid Power Conference, Dresden, Germany,2004:125-139.
    [21]Wu D, Burton R T, Schoenau G J, Bitner D V. Steady State Analysis of a Load Sensing and Pressure Compensated System[C],50th National Conference on Fluid Power, Las Vegas, Nevada USA,2005:33-45.
    [22]Backe W, Hydraulic Drives with High Efficiency [J], Fluid Power Systems and Technology, 1995(2):45-73.
    [23]宋世鹏,朱新云,赵磊.液压挖掘机功率损失分析及节能控制技术[J].中国设备工程,2008,11:31-32.
    [24]广濑久士,丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程,2003(2):204-209.
    [25]Katrasnik T. Hybridization of powertrain and downsizing of IC ICE - a way to reduce fuel consumption and pollutant emissions-Part 1. Energy Conversion and Management[J].2007,48 (5):1411-1423.
    [26]Katrasnik T. Hybridization of powertrain and downsizing of IC ICE-analysis and parametric study-Part 2[J]. Energy Conversion and Management,2007,48 (5):1424-1434.
    [27]Zhu Y, Chen Y B, Tian G Y, Chen Q S. A four-step method to design an energy management strategy for hybrid vehicle[C]. American Control Conference,2004,1 (30):156-161.
    [28]Niels J S, Mutasim A S, Naim A K. Energy Management Strategies for Parallel Hybrid Vehicles Using Fuzzy Logic[J]. Control Engineering Practice,2003(11):171-177.
    [29]Sasaki M. Development of Capacitor Hybrid System for Urban Buses[J]. JSAE Review,2002(23): 451-457.
    [30]Rodatz P, Paganelli G, Sciarretta A, Guzzella L. Optimal Power Management of an Experimental Fuel cell/supercapacitor-Powered Hybrid Vehicle[J]. Control Engineering Practice, 2005(13):41-53
    [31]Phillips, Mark A, Blankenship. Energy Control Strategy for a Hybrid Electric Vehicle: US, 6449537[P].2002-8-27.
    [32]Phillips, Mark A, Bailey. Control System and Method for a Parallel Hybrid Electric Vehicle:US, 6735502[P].2004-5-11.
    [33]Lin C C, Peng H, Grizzle J W. A Stochastic Control Strategy for Hybrid Electric Vehicles[C]. Proceedings of the 2004 American Control Conference,2004:4710-4715.
    [34]Salman M, Schouten N J, Kheir N A. Control Strategies for Parallel Hybrid Vehicles[C]. Proceedings of the American Control Conference,2000:524-528.
    [35]Tzeng S C, Huang K D, Chen C C. Optimization of the Dual Energy-Integration Mechanism in a Parallel-Type Hybrid Vehicle[J]. Applied Energy,2005(80):225-245.
    [36]刘良臣.混合动力工程机械的现状及展望[J].工程机械与维修,2010(1):42-44.
    [37]吴永平.混合动力液压挖掘机技术分析[J].设计研究,2010(08):47-50.
    [38]Morgan G H. Hydraulic drive with regeneration circuit:US,6438951[P].2001-5-9.
    [39]Hajek, J. Thomas J. Triffaux, V. Hydraulic system with an actuator having independent meter-in meter-out control:US,6691604.1999-9-2.
    [40]徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统[J].浙江大学学报(工学版),2002(36)5:521-525.
    [41]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公交车辆驱动中的节能技术研究[J].中国机械工程,2001(12)3:270-272.
    [42]江祖德,曹志锡,何少勇,傅志平.自由活塞式液压能量回收机的研制[J].中国机械工程,1995(4):49-52.
    [43]田联房,于慈远,李尚义,刘庆和.能量回收技术在液压系统中的应用[J].工程机械,1997(4):31-32.
    [44]聂相虹,俞小莉,方奕栋,陈平录.基于冷却水能量回收的气动/柴油混合动力试验研究[J].内燃机工程,2010,31(5):58:62.
    [45]徐兵,林建杰,杨华勇.液压电梯中的能量回收技术[J].液压与气动,2004(6):72-74.
    [46]王晓霞,王洪祥,潘琪.液压技术中的节能与能量回收[J].机械工程师,1997(7):24-25.
    [47]刘冬红.液压技术在能量回收中的应用[J].南京理工大学学报,1997(2):153~156.
    [48]张建成,陈志业,杨以涵,飞轮储能技术在电力系统中的应用[J],电力情报,No.3,1997,4~7
    [49]陈华志,苑士华.城市用车辆制动能量回收的液压系统设计[J].液压与气动,2003(4):1-3.
    [50]任国军祝凤金.液压混合动力车辆中蓄能器的参数设计研究[J].液压与气动,2010(8):11-14.
    [51]Cholula S, Claudio A, Ruiz J. Intelligent control of the regenerative braking in an induction motor drive[c]. The 2nd International Conference on Electrical and Electronics Engineering,7-9 Sep,2005:302-308.
    [52]Lowther, Frank E. Vehicle braking and kinetic energy recovery system: US,197800094282. 1981-9-22.
    [53]Vaughan N D, Dorey R E. Hydraulic accumulator energy storage in a city bus[J]. Integrated Engine Transmission Systems. C196/86,1986:105-116.
    [54]Gao Y, Chen L, Ehsani M. Investigation of the Effectiveness of Regenerative Braking for EV and HEV[J]. SAE Paper,1999(01):2910.
    [55]Mueller F, Lueck P. Hybrid Electric Vehicles-Discussion of Different Configurations[J]. Advanced Propulsion & Emission Technology,2000:54-63.
    [56]Wyczalk F A. Regenerative Braking Concepts for Electric Vehicle-A Primer[C]. SAE 920648.
    [57]Yeo H, Kim H. Hardware in the Loop Simulation of Regenerative Braking for a Hybrid Electric Vehicle[C]. Proc Instn Mech Engrs, Vol.216, Part D:J Automobile Engineering,2002:855-864.
    [58]Beachley N, Fronczak J. Modeling of a hydraulic energy regeneration system-part two:Analytical Treatment[J]. Transactions of the ASME.1992(114):155-159.
    [59]Beachley N, Fronczak J. Modeling of a hydraulic energy regeneration system-part two: Experiment program[J]. Transactions of the ASME.1992(114):160-165.
    [60]陈华志.车辆制动能量回收与再利用系统及控制技术研究[D].北京:北京理工大学,2003.
    [61]程树康,王铁成,崔淑梅,邱长华.混合动力电动车能量匹配的仿真研究[J].高技术通讯,2001(6):73-75。
    [62]陈全世,杨宏亮,田光宇.混合动力电动汽车结构分析[J].汽车技术,2001(9):6-11.
    [63]李相哲,丁干,石常青.混合电动车及其蓄电池[J].电池工业,2003(2):81-85
    [64]黄榕清,廖权来,姜招良.HEV6700混合驱动中型客车的研制[J].汽车研究与开发,2000(6): 12-14.
    [65]孙冬野,秦大同.基于无级变速传动的并联式混合动利汽车动力学仿真研究[J].机械工程学报,2003(1):79-83.
    [66]窦国珍,黄念慈,张志钊,贺明智.节能型电动车驱动系统的研究[J].电力电子技术,2003(2):4-6.
    [67]罗玉涛,俞明,陈炳坤,陈统坚.电动车制动能量再生反馈控制研究[J].机床与液压,2002(5):162-164.
    [68]詹迅,秦大同.轻度混合动力汽车再生制动控制策略与仿真研究[J].中国机械工程.2006(3):321-324.
    [69]白志峰,曹秉刚等.电动汽车再生制动H-∞鲁棒控制仿真研究[J].系统仿真学报,2005(12):2975-2978.
    [70]王保华,张建武.并联混合动力客车再生制动仿真研究[J].汽车工程,2005(6):648-651.
    [71]耿聪,张欣.混合动力电动公交汽车(HEB)再生制动的控制策略与性能仿真[J].高技术通讯,2004(8):80~83.
    [72]李广海,叶勇.3kW开关磁阻电机的再生制动实现[J].中国电机工程学报,2004(2):123~127.
    [73]曹志亮,朱学忠.开关磁阻电机再生制动分析与应用[J].南京航空航天大学学报,2001(1):60~63.
    [74]罗禹贡,李蓬等.基于最优控制理论的制动能量回收策略研究[J].汽车工程,2006(4):356~360.
    [75]仇斌,陈全世等.北京市区电动轻型客车制动能量回收潜力[J].机械工程学报,2005(12):321~326.
    [76]李蓬,金达锋等.轻度混合动力汽车制动能量回收控制策略研究[J].汽车工程,2005(5):570~574.
    [77]罗玉涛,吴诰硅等.EV 6600电动客车能量反馈系统设计[J].公路交通科技,2003(3):167~169.
    [78]X.G. Liang, T. Virvalo, Development and research of an energy saving drive in a hydraulic Crane[C],7th Scandinavian International Conference on Fluid Power,2001, pp.151 161, Sweden.
    [79]X.G. Liang, T. Virvalo, Energy reutilization and balance analysis in a hydraulic crane[C].5th International Conference on Fluid Power Transmission and Control,2001, pp.306 310, Hangzhou.
    [80]J. Nyman, K.-E. Rydberg, Energy saving lifting hydraulic systems[C].7th Scandinavian International Conference on Fluid Power,2001, pp.163 177, Sweden.
    [81]T. Virvalo, W. Sun, Improving energy utilization in hydraulic booms — what it is all about[J]. 6th International Conference on Fluid Power Transmission and Control,2005, pp.55 65, Hangzhou.
    [82]W. Sun, T. Virvalo, Accumulator-pump-motor as energy saving in hydraulic boom[J].8th Scandinavian International Conference on Fluid Power,2003, pp.297 309, Tampere.
    [83]W. Sun, T. Virvalo, Simulation study on a hydraulic-accumulator-balancing energy-saving system in hydraulic boom[C],50th National Conference on Fluid Power,2005, pp.371 381, Las Vegas.
    [84]M. Ochiai, S. Rye, Hybrid in construction machinery[C], Proceedings of the 7th JFPS International Symposium on Fluid Power,2008, pp.4144, ISBN:4-931070-07-X, Toyama.
    [85]M. Ochiai, Development for environment friendly construction machinery [J], Construction 9 (2003) 24-28.
    [86]产品·国外[J].今日工程机械,2011(06):24~25.
    [87]T.O. Andersen, M.R. Hansen, H.C. Pedersen, F. Conrad, Regeneration of potential energy in hydraulic forklift trucks[C].6th International Conference on Fluid Power Transmission and Control,2005, pp.302-306, Hangzhou.
    [88]欧阳明高.我国节能与新能源汽车技术发展战略与对策[J].中国科技产业,2006(02):156~159.
    [89]吴森,金德先,林枫,王深,段海涛.混合动力电动轮胎门式吊船机.中国:CN200410012876.4 [P].2005-01-12.
    [90]罗列英.利用超级电容的起重机械新型混合动力系统研究[D].武汉:武汉理工大学,2007.
    [91]王志冰.基于超级电容的起重机能量管理系统的研究[D].武汉:武汉理工大学.2006.
    [92]常晓清.应用超级电容的轮胎式集装箱起重机节能特性研究[D].上海:同济大学,2007.
    [93]江明辉,萧子渊.电动叉车的能量回收控制[J].流体传动与控制.2005,2(9):29~30.
    [94]Komatsu Corporate Profile 2008, PC200-8 hybrid hydraulic excavator contributes to reducing CO2 Emissions[J]. Views 2008 3 (2008) 4-5.
    [95]HiroakiInoue.IntroduCtionofPC200-8 Hybrid Hydraulic excavators [J]. KOMATSU TECHNICAL REPORT,2008(54):151.
    [96]Komatsu launches world's first hybrid excavator[J], Down to Earth 7 (48) (2008) 23.
    [97]M. Kagoshima, M. Komiyama, T. Nanjo, A.Tsutsui, Development of new hybrid excavator [J], Kobelco Technology Review 27 (2007) 39-42.
    [98]M. Naruse, M. Tamaru, K. Kimoto, Hybrid construction equipment: US,6708787 [P]. 2004-03-23.
    [99]M. Ochiai. Development for environment friendly construction machinery [J]. International Construction 9 (2003):24-28.
    [100]Ochiai M, Rye S. Hybrid in construction machinery[C]. The 7th JFPS International Symposium on Fluid Power, Toyama,2008:41-44.
    [101]Becca W. Earthmoving[C]. International Construction 47(10) (2008):25-34.
    [102]Riyuu S, Tamura M, Ochiai M, Hybrid construction machine:JP,2003328397[P]. 2003-11-19.
    [103]Hitachi construction machinery Co.Ltd. Dvelopment of battery driven construction machinery for CO2 reduction [J]. Technical report for development of technical measure for global warming control,2005.
    [104]Bruun L. Svenskutvecklat energisparsystem Caterpillars gravmaskiner [J]. Scandinavia,2002: 6-9.
    [105]Rydberg K E. Hydraulic Accumulators as Key Components in Energy Efficient Mobile Systems [C].6th International Conference on Fluid Power Transmission and Control, Hangzhou,2005: 124-129.
    [106]Rydberg K E. Energy Efficient Hydraulic Systems and Regenerative Capabilities [C].9th Scandinavian International Conference on Fluid Power, Linkoping,2005:2-5.
    [107]Kyoung K A, Dinh Q T. Development of energy saving hybrid excavator using hybrid actuator [C]. The Seventh International Conference on Fluid Power Transmission and Control, Hangzhou, 2009:205-209.
    [108]Zhang Y T, Wang Q F, Xiao Q. Simulation research on energy saving of hydraulic system in hybrid construction machinery [C]. The Sixth International Conference on Fluid Power Transmission and Control, Hangzhou,2005:509-513.
    [109]Wang D Y, Guan C, Pan S X, Zhang M J, Lin X. Performance analysis of hydraulic excavator power train hybridization [J]. Automation in Construction,2009,18 (3):249-257.
    [110]肖清,王庆丰,张彦廷,付强.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报(工学版),2007,41(3):480-483.
    [111]张彦廷,王庆丰,肖清.混合动力液压挖掘机液压马达能量回收的仿真及试验研究[J].机械工程学报,2007,43(8):218-223.
    [112]肖清.液压挖掘机混合动力系统的控制策略与参数匹配研究[D].杭州:浙江大学,2008.
    [113]张彦庭.基于混合动力与能量回收的液压挖掘机节能研究D].杭州:浙江大学,2006.
    [114]肖清,王庆丰.混合动力液压挖掘机动力系统的参数匹配研究[J].中国公路学报,2008,21(1):121-126.
    [115]Zhang Y T, Wang Q F, Xiao Q, Fu Q. Constant work-point control for parallel hybrid system with capacitor accumulator in hydraulic excavator [J]. Chinese Journal of Mechanical Engineering, 2006,19 (4):505-508.
    [116]Xiao Q, Wang Q F, Zhang Y T. Control strategies of power system in hybrid hydraulic excavator [J]. Automation in Construction,2008,17 (4):361-367.
    [117]Xiao Q, Wang Q F, Zhang Y T. Research on control strategy and work point optimization of power system in hybrid hydraulic excavator [C]. The Tenth Scandinavian International Conference on Fluid Power, May 21-23, Tampere, Finland:51-59.
    [118]Xiao Q, Wang Q F, Zhang Y T. Research on parallel hybrid hydraulic excavator based on energy regeneration and capacitor accumulator [J]. Proceedings of the Fifth International Symposium on Fluid Power Transmission and Control, Beidaihe, China,2007:922-925.
    [119]http://www.AMESim.com.cn/, AMESim 中文网.
    [120]IMAGINE 公司. AMESimUser Manual [J].2002, (3).
    [121]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002:552-554.
    [122]上海煤矿机械研究所.液压技术文集液压泵和液压马达[M].北京:煤炭工业出版社,1976:63~83,116~138.
    [123]柯明纯,丁凡,李宾,陈召国.背压对液压马达效率影响的探讨[J].农业机械学报,2006,37(10):127:131
    [124][苏]波诺马连科.径向柱塞式大转矩液压马达[M].北京:机械工业出版社,1977.
    [125]N. H. Beachley, F. J. Fronczak. Modeling of a Hydraulic Energy Regeneration System-Part I: Analytical Treatment Journal of Dynamic Systems [J]. Measurement, and Control. MARCH, 1992, Vol.114/155.
    [126]魏巍主编.MATLAB控制工程工具箱技术手册[M].北京:国防工业出版社,2004.
    [127]齐晓慧,田庆民,董海瑞.基于MATLAB系统辨识工具箱的系统建模[J].软件开发与应用.2006,25(10):88—90.
    [128]王秀和,杨玉波,朱常青.异步起动永磁同步电动机理论、设计与测试[M].北京:机械工业出版社,2009.7.
    [129]郭庆鼎,赵希梅.直流无刷电动机原理与技术应用[M].北京:中国电力出版社,2008.
    [130]黄国治,傅丰礼.中小旋转电机设计手册.北京:中国电力出版社,2007
    [131]Shigeo Morimoto, Yi Tong, Voji Takeda. et o2. Loss Minimization Control of Permanent Magnet Synchronous MOtor Drives[J]. IEEE Trans. on Industrial Electronics.1994,41(5):511-517.
    [132]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [133]Andrew Chu.Comparison of commercial supercapacitors and high-power lithium-ion batteries for power assist applications in hybrid electric vehicles [J]. J ournal of Power Sources, 2002, 112:236-246.
    [134]Wendy G. Pell, Brain E. Conway, William A. Adams. Elect rochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications [J]. Journal of Power Sources,1999,80:134-141.
    [135]顾临怡.大惯性负载进、出口独立调节数字控制及多执行器复合控制研究[D].杭州:浙江大学,1998.
    [136]许小庆,权龙,王永进.伺服阀流量动态校正改善电液位置系统性能的理论和方法[J].机械工程学报,2009,45(8):95-100.
    [137]黎启柏.液压元件手册[M].北京:冶金工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700