声场结构耦合系统的有限元分析及灵敏度计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声场及其与结构耦合系统的数值分析在汽车、航空、航天等工业领域有着广泛的应用。噪声问题越来越引起人们的高度重视,在汽车等结构设计中减少噪声和振动已经成为一个重要的问题,噪声水平是评价工程结构设计质量优劣的重要指标之一。传统理论方法对复杂结构的内场噪声声压级进行预估非常困难,而有限元等方法则可以对几何形状和边界条件复杂的振动问题和声学问题进行数值分析,将其用于声场-结构耦合系统分析,可在设计阶段实现噪声响应的理论分析与预测,为声振耦合特性的分析研究提供声学设计的基础。因此,应用计算机辅助设计技术,特别是结构和多学科系统的优化设计方法,来降低结构噪声是有实际意义的。
     本文应用有限元方法对声场-结构耦合系统进行数值模拟和灵敏度分析。内场噪声分析与优化设计,不仅要计算声场-结构耦合系统的本征值和本征向量,还要计算它们对设计变量的敏度。本文计算采用了声场-结构耦合系统本征值所对应的左、右本征向量,对其四个基本假设给予了证明。在耦合系统的正交归一化条件下,实现了特征值和特征向量及其灵敏度计算、声压响应水平及其灵敏度计算。研究工作结合大型有限元分析与结构优化设计软件JIFEX展开,为声场-结构耦合系统优化设计建立了基础。
     本文主要研究内容如下:
     (1)在声场和结构分别进行有限元分析的基础上,建立了声场-结构耦合系统分析的有限元模型,应用新的正交归一化条件实现了声场-结构耦合系统的频率和模态计算。
     (2)声场-结构耦合系统的灵敏度分析,实现了耦合系统特征值灵敏度和特征向量灵敏度的计算,并对本文方法可能产生的误差进行了分析。
     (3)分别采用直接法和模态叠加法,计算声场-结构耦合系统的声压响应水平及其敏度。
     本文研究工作是国家重点基础研究发展规划项目“大规模科学计算研究”课题(G1999032805)和国家自然科学基金重点项目“耦合系统的多学科优化设计理论与数值方法”(10032030)的部分内容。
The numerical analysis for acoustic and the acoustic-structural coupling system has broad application in the industrial fields, such as the automobile, the aviation and the aerospace. Nowadays, people pay more and more serious attention to the noise problems. To reduce the noise and the vibration in the structure design, such as the automobile, has become a serous problem. The noise level is one of the key indexes to the evaluation for the design quality of the engineering structure. The conventional method for the analysis of the interior field noise sound level of the complicated structure is very difficulty, but the finite element method provides a very powerful methodology for analyzing vibration and acoustic problems with complicated geometry and boundary conditions. Therefore, this method can be used to acoustic-structural coupled system and to accomplish the theoretical analysis and prediction of noise response during design stages and provide the sound design basis for the analysis of the acoustic-structural coupling system. Therefore, it is helpful to reduce the noise with computer-aided design technique, in particular, the design optimization method of structural and multidisciplinary systems.
    This paper studies the numerical simulation and sensitivity analysis of coupled acoustic-structure systems with finite element method. For the analyzing and the optimization design of the interior noise, it is necessary not only to calculate the eigenvalue and the eigenvector, but also to calculate their sensitivities to the design variables. The concept of the left and right eigenvectors with regard to the eigenvalue problems of coupled systems is used in the paper and four propositions concerning this concept are then proved. In the new orthogonality and M-normalization condition of the coupled system, this paper accomplished the calculation of the eigenvalue, the eigenvector and their sensitivities, the sound pressure level and its sensitivity. The aim of this thesis is to provide the basis analysis of the acoustic-structural systems based on JIFEX, the large-scale engineering structural analysis and optimization software.
    The author's work includes:
    (1) Development of the finite element model for the acoustic-structural system based on the sound and the structure finite element analysis. Accomplishment the calculation of frequencies and modes with the new orthogonality and the M-normalization condition.
    (2) Dynamic sensitivity analyses of natural frequencies and the eigenvectors for the coupled system. Accomplishment of the calculation of the sensitivities of eigenvalue and the eigenvector. The accuracy analysis of this method is performed.
    (3) The modal frequency response and its sensitivity analysis for the coupled system using the direct method and the eigenmodes.
    This thesis is one of the part of the national key basis research development plan project (G1999032805) and the key project of the National Natural Science Foundation of China (No. 10032030).
引文
1.钱维权,周强,黄端生等.轨道段飞船舱内噪声允许水平的研究.航天医学工程研究所论文汇编第三集,1981,10-17.
    2.赵明,田丽江,陈晓东.飞机噪声对机场周围环境污染的调查.中国公共卫生,1999,15(8):716.
    3.陈越澎,潭林森.船舶舱室噪声控制技术综述.武汉造船,1995,No.,34-40.
    4.胡正元,史秀凤等.潜艇航行时舱室中噪声水平的探讨.中华航海医学杂志,1997,4(2):69-71.
    5.唐人辉,唐光武.汽车噪声控制技术及低噪声客车产品开发措施.客车技术与研究,2001,23(6):19-21.
    6.金磊.全球减灾与灾害物理学(三)—灾害声学及其噪声控制技术.工程物理,1999,9(1):29-32.
    7.李敬东,王炳权,宫瑞婷.建筑设计中声环境的研究.北京建筑工程学院学报,2001,17(4):104-106.
    8.孙广容.从建筑声学到环境声学.应用声学,2002,21(1):46-49.
    9.田新浩.电力机车司机室的噪声特性研究.环境工程,2000,18(3):36-39.
    10.滕合芹,尹正莲,安月东.舱室噪声对船员听觉及心血管系统的影响.中华劳动卫生职业病杂志,1994,12(5):286-287.
    11.歼-8D飞机噪声对对飞行员工效影响的试验研究.中华航空航天医学杂志,1998,9(3):172.
    12.应怀樵.现代振动与噪声技术(第2卷).北京:航空工业出版社,2000,1-5.
    13.黎志勤,黎苏.汽车排气系统噪声和消声器设计.中国环境科学出版社,1991.
    14.丁渭平.车声结构低频声学分析理论及设计方法研究.西安交通大学机械工程专业博士学位论文
    15.蔡秀兰等.北京机场周围的飞机噪声.应用声学,1991,10.
    16.刘岩,阿久津胜则.高速铁道车辆噪声机理解析.大连铁道学院学报,2001,22(1):5-8.
    17.马大猷.第八届全国噪声与振动控制工程学术会议大会报告.噪声与振动控制,1999,No.4,2-5.
    18.郑治国.水利机械内部流场的数值模拟与流固耦合问题研究.[博士学位论文].大连:大连理工大学,1997.
    19.盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.北京:科学出版社,2001,60-61.
    20. G.M.L. Gladwell, G. Zimmermann. On energy and complementary energy formulations of acoustic and structural vibration problem. Journal of sound and vibration, 1966, No.3:233-241
    21. A. Craggs. The use of simple three-dimensional acoustic finite element for determining the natural modes and frequencies of complex shaped enclosure. Journal of sound and vibration, 1972, 23: 331-339.
    22. T. Shuku, K. Ishihara. The analysis of the acoustic field in irregular shaped rooms by the finite element methods. Journal of Sound and Vibration, 1973, 29:67-76.
    23. D.J. Nefske, L.J. Howell. Automotive interior noise reduction using finite element methods, Transactions of the Society of Automotive Engineering. 1987, 1726-1737.
    24. Y.R Wang, M.Q Zheng. Prediction and reduction of structure borne noise in vehicle. Journal of Institute of Technology, 1995, 4(2):160-167.
    25. J. Yong, M.J. Croker. Prediction of transmission loss in muffers by finite element method. J.A.S.A, 1956, 57:144.
    
    
    26. D.J. Nefske, J.A. Wolf, L.J.Howell. Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice. Journal of Sound and Vibration, 1982, 80(2): 247-266.
    27. 张维雄,翟红生,冯华.汽车乘坐室内声学特性的有限元分析.西安公路交通大学学报,1995,15(2):50-55.
    28. M. Petyt, J. Lea, G.H.Koopmann. A Finite element method for determining the acoustic modes of irregular Shaped Cavities. Journal of sound and vibration, 1976, 45(4): 495-502.
    29. T. Shuku, K. Ishihara. The analysis of the acoustic field in irregular shaped rooms by the finite element methods. Journal of sound and vibration, 1973, 29: 67-76.
    30.王维琮,吴卫彬,孙洪生.轴对称形消声器的有限元分析.应用声学,1985,1.
    31.沈壕,孙洪生.工程声学的有限元法.声学学报,1981,7:249-259.
    32.吴小清,王登峰,徐诚,程悦荪.壁面有吸声材料时驾驶室内噪声响应的灵敏度分析.农业工程学报,1999,15(3):151-155.
    33.王登峰.拖拉机驾驶室声固耦合动态择优声学设计.农业机械学报,1994,25(3):23-26.
    34.高虎,冉一元,杨涛.二维声场的边界元分析.振动与冲击,1991,3.
    35.胡选利,陈花玲,赵建平.声振耦合数值模型合理性分析和实验验证.西安交通大学学报,1997,31(7):1-6.
    36.盛美萍.复杂耦合系统的统计能量分析极其应用.中国工程科学,2002,4(6):77-84.
    37.消明康,李强,李天匀.复杂结构-声场耦合系统的响应和声辐射预测.船舶与海洋工程研究专集,2001,(143):88-90.
    38.张传立,张系斌,宋天霞.结构动力形状优化中灵敏度分析的两种算法.江汉石油学院学报,1994,16(4):83-89.
    39. H.M. Adelman, R.T. Haftka. Sensitivity analysis of discrete structural systems. AIAAJ., 1986, 24(5): 823-832.
    40. R.L. Fox, M.P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA J., 1968, 6(12): 2426-2429.
    41. B.P. Wang. Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA J., 1991, 29(6): 1018-1020.
    42.陈塑寰,刘中生,赵又群.振型一阶导数的高精度截尾模态法.力学学报,1993,25(4).
    43. R.B. Nelson. Simplified calculation of eigenvector derivatives. AIAA J., 1976, 14(9): 1201-1205.
    44. G.L.W. Hou, S.P. Kenny. Eigenvalue and eigenvector approximate analysis for repeated eigenvalue problems. AIAA J., 1992, 30(.9): 2317-2324.
    45. G.D. High. An iterative method for eigenvector derivatives. MSC World Users Conferences Proceedings, Macneal Schwendler Corp., Los Angeles, CA, March, 1990.
    46. T. Christensen, S.V. Sorokin, N. Olhoff. On analysis and optimization in structural acoustics-Part Ⅰ: Problem formulation and solution techniques. Structural Optimization, 1998, 16: 83-95.
    47. T. Christensen, S.V. Sorokin S V, N. Olhoff. On analysis and optimization in structural acoustics-Part Ⅱ: Exemplifications for axisymmetric structures. Structural Optimization, 1998, 16: 96-107.
    48. W. Kozukue, I. Hagiwara. Topology optimization analysis for reduction of interior noise using homogenization method for mean eigenvalue. JSME, 1995: 2746-2752.
    49. R.H. Macneal, R. Citepley, M.Chargin, A symmetric modal formulation of Fluid-structure
    
    Iteration. ASME paper, 1980:90-117.
    50. G.C.Everstine. A symmetric potential formulation for fluid-structure interaction. Journal of sound and vibration, 1981, 79(3): 157-160.
    51. R. Ohayon. Transient and modal analysis of bounded medium fluid structure problems. Proceedings of an International Conference, Venice, Nova Sciences Pub Inc, 1984.
    52. G. Sandberg., P.A. Goransson. A symmetric finite element formulation for acoustic fluid structure interaction analysis. Journal of sound and vibration, 1988, 123 (3): 507-515.
    53.丁渭平,陈花玲.腔体声振耦合的对称化有限元模型及其特性研究.西安交通大学学报,2000,34:58-62.
    54. I. Hagiwara, Z.D.Ma, K.D.Nagabuchi, Development of an eigenmode sensitivity analysis method for coupled acoustic-structural systems. Trans. Jpn. Soc. Mech. Eng., 1990, 56(527): 1704.
    55. Z.D.Ma, I.Hagiwara, Sensitivity Analysis Methods for Coupled Acoustic-Structural Systems Part Ⅰ: Modal Sensitivities. AIAA J., 1991, 29(11): 1787-1795.
    56. Z.D.Ma, I.Hagiwara, Sensitivity Analysis Methods for Coupled Acoustic-Structural Systems Part Ⅱ: Direct Frequency Response and Its Sensitivities. AIAA J. 1991, 29(11): 1796-1801.
    57. Y.X.Gu, H.W.Zhang, etc. New generation software of structural analysis and design optimization—JIFEX. Structural Engineering and Mechanics, 1999, 7(6): 589-599.
    58.钟万勰.一个多用途的结构分析程序JIGFEX.大连理工大学学报,1977,16(3):19-42,16(4):14-35.
    59.钟万勰.计算结构力学微机程序设计.北京:水利水电出版社,1986.
    60.顾元宪.计算机辅助结构优化设计的研究与MCADS系统的开发.[博士学位论文].大连:大连理工大学,1988.
    61.杜功焕,朱哲民,龚秀芬.声学基础.第二版.南京:南京大学出版社,2001.168.
    62.丁渭平.车辆乘坐室声学泄漏分析的声振耦合有限元模型.噪声与振动控制,2002,2(1):6-8.
    63.林家浩,曲乃泗,孙焕纯.计算结构动力学.北京:高等教育出版社,1989,247-251.
    64.钱令希.特征值问题的一个算法.大连理工大学学报,1999,39(2).
    65.钟万勰.计算结构力学与最优控制.大连:大连理工大学出版社,1993.
    66. D.J.Ewins. Estimation of Resonant Peak Amplitudes. Journal of Sound and Vibration, 1975, 43: 595-605.
    67.陈立新.齿轮传动系统振动特性及噪声预估.[博士学位论文].北京:清华大学,1990.
    68.张传立,张系斌,宋天霞.结构动力形状优化中灵敏度分析的两种算法.江汉石油学院学报,1994,16(4):83-89.
    69.刘延柱,陈文良,陈立群.振动力学.高等教育出版社,1998,10.
    70.林树枝,程耿东,动力响应敏度分析的振型空间法.地震工程与工程振动,1990,3:85-91.
    71.傅志方.振动模态分析与参数识别.机械工业出版社,1990.
    72.刘鸿文.板壳理论.杭州:浙江大学出版社,1987.
    73.徐稼轩,郑铁生.结构动力分析的数值方法.西安:西安交通大学出版社,1993.
    74.丁渭平.车身结构的低噪声优化设计研究.机械设计与制,2002,1:50-52.
    75.胡海仓,刘中生,王大均.约束位置的修改对振动模态的影响.力学学报,28:1
    76. G.H.Gdub, C.F.L.Van, Matrix computation. The John Hopkins Univ. Press, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700