西南山区高等级公路岩质边坡稳定性分级研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等级公路建设勘测阶段工期紧迫、一般难以在对每一个工点的地质条件及岩体力学特征作详细勘测后进行稳定性计算分析工作。边坡岩体分级系统以其简便、快速的特点,在公路边坡稳定性评价领域具有广泛应用前景。本文在对西南地区几条在建高等级公路实地采集的100余个边坡样本进行统计分析后,结合公路边坡的特点,将SMR-CSMR体系改进,提出了适宜于公路边坡稳定性评价实践的HSMR系统(Highway Slope Mass Rating)。
     1.根据分级结果对比发现,Q系统具有分级指标获取困难的特点,且未能考虑边坡走向、坡角与结构面组合情况及坡高等因素对边坡稳定性的影响,难以适应边坡工程中稳定性评价的要求。SMR法在RMR分类体系的基础上合理地考虑了结构面产状及其与临空面的组合情况对边坡稳定性的影响,另外将边坡开挖方式作为参评因子,较全面地考虑了各种影响因素的综合作用。但由于未考虑坡高等因素,SMR评分值较边坡实际稳定状况低5~10个分值。CSMR法引进了坡高修正系数以补充SMR法未考虑边坡高度的欠缺,但由于坡高修正系数取值不合理,所以分值普遍偏高。
     2.根据公路边坡自身的特点,结合力学分析,运用数理统计分析手段,将坡高修正系数进行改进,使之更加合理地反映了公路边坡坡高对边坡稳定性的影响。首次将不同岩性组合形式对边坡稳定性的影响以岩性组合系数的形式引入边坡稳定性分级系统,并将结构面修正系数进行局部调整,提出了针对公路边坡的HSMR分级体系。
     3.提出“合理开挖坡角”的概念,经统计分析后建立了合理开挖坡角与HSMR的量化关系,并对不同稳定级别的边坡作出相应开挖坡角的建议。在分析各稳定级别边坡可能破坏模式的基础上,根据公路行业通常采用的支护手段,提供更详细、更具针对性的系统化边坡治理措施建议。
     4.对边坡稳定性分级细则进一步规范和明确化,有助于形成统一标准,使得评分结果更加客观、准确,利于保证系统的可靠性。
     5.对典型样本的校验结果显示,HSMR系统分级结果与边坡实际稳定状况最为接近,建议治理措施和合理开挖坡角对于工程实践具有一定的参考意义。同时,该系统具有操作简便,指标易于提取等特点,能基本满足公路边坡稳定性初步评价的需要。
On account of limited time of highway construction, we can hardly explore geologic status and rock mass mechanic character for all slopes in detail, before a stability analysis. Slope rock mass rating system, a convenient method, sees a bright future in the field of highway slope stability evaluation. More than 100 highway slopes collected from south-west area of China are analyzed statistically in this paper. A new slope stability system HSMR (Highway Slope Mass Rating), improved from SMR-CSMR, is given here.
    1). There are many difficulties in getting parameters when using Q system. In addition, the compound of strike, angle of gradient and discontinuities were not taken into consideration. Therefore, the system is hard to appraise slope stability precisely. In SMR system, the relation between discontinuities and slope freeing face was considered, so was excavating method. However, slope height was omitted in this system. As a result, SMR is 5-10 point lower than that of actual stability. Based on SMR, CSMR system has adopted slope height coefficient, to show the relation between slope height and slope stability. However, the coefficient is unreasonable to highway slope, so CSMR is higher on average.
    2). After a mechanical analysis, slope height coefficient was updated by statistical means. The amended coefficient is more effective for evaluating the effect of highway slope height. For the first time, multiple lithology factor, was brought into slope stability rating system. The values of different discontinuities' coefficients were partly modified. HSMR system for highway rock slope was presented here.
    3). A quantitative relation between befitting gradient and HSMR was established by statistic means, and a corresponding gradient to different stability level was suggested. Through a analysis of possible failure styles relative to different stability levels, this paper gave some detailed systematized advice on slope support patterns, which are widely used in highway engineering.
    4). Standardizing detailed rules about slope stability rating, what made for a uniform standard, and helps to an objective result. Accordingly, reliability of this system was ensured.
    5). Verifying typical samples showed that HSMR is preciser than other rock mass rating systems when estimating highway slope stability, besides, support patterns and befitting gradient suggested provide engineer a effective reference to rock slope design. Characterized by convenience, HSMR system can satisfy preliminary stability evaluation to highway slope well.
引文
[1] 柳赋铮,岩体基本质量和工程岩体分级,长江科学院院报,1991,26:55~63
    [2] 胡卸文、黄润秋,水利水电工程中的岩体质量分类探讨,成都理工学院学报,1996,7(3):64~68
    [3] Barton. Recent experiences with the q-system of tunnel support design. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 1977, 1 107-117
    [4] Bieniawski Z T. Rock mass classification in rock engineering. Proc. Symp, on Exploration for Rock Engineering, Ralkema, Rotterdam, 1976, 97~106
    [5] 杨子文,岩体工程分级,《岩石力学的理论与实践》,北京:水利出版社,1981
    [6] 孙玉科、牟会宠、姚宝魁,边坡岩体稳定性分析,北京:科学出版社,1988.2
    [7] 孔宪立《岩体工程地质及其灾害》,上海:同济大学出版社,1993.4
    [8] 张成,小湾电站左岸高边坡岩体质量和稳定性研究,成都理工学院硕士论文,1994.5
    [9] 中国水力发电工程——工程地质卷,北京:中国电力出版社,2000.8
    [10] 刘汉超、陈明东,库区环境地质评价研究,成都:成都科技大学出版社,1993.6
    [11] 卫宏、王兰生,川西山区公路边坡地质灾害研究,北京:煤炭工业出版社 2001
    [12] 黄昌乾等,边坡岩体质量分类的SMR法及其应用实例,岩土工程技术,1998,No3,P7~13
    [13] 孙东亚、陈祖煜等,边坡稳定性评价方法RMR-SMR体系及其修正,岩石力学与工程学报,1997.16(4),P297~304
    [14] Romana.M, SMR classification, In: Proc 7th ISRM Congress, 1991, 955~960
    [15] 付永胜、李隽蓬,铁路岩石边坡坡角的确定方法,西南交通大学学报,1991.2,56~60
    [16] 孔德坊,工程岩土学,北京:地质出版社,1992
    [17] 张倬元、王士天、王兰生,工程地质分析原理(第二版),北京:地质出版社,1994
    [18] 黄润秋,高边坡整体稳定性综合评价探讨,水文地质工程地质,1995,22(6)
    [19] 李胜伟,溪洛渡水电站拱肩槽高边坡稳定性研究,成都理工大学硕士论文,1994.5
    [20] 李胜伟、李天斌、王兰生,边坡岩体质量分类体系的CSMR法及应用,地质灾害与环境保护,2001,No.2
    [21] E.Hoek and J.W.Bray,岩石边坡工程,冶金工业出版社,北京:冶金工业出版社
    [22] Romana M, etc. The SMR geomechanical classification for slopes. Proc. Int. Symp, on Landslides international conference and field trip on landslides. 1996, 255-267
    [23] 蒋爵光、钱惠国,影响铁路岩石边坡稳定性因素的关联分析,西南交通大学学报,1991(2):23~29
    [24] 晏鄂川、王晋等,浅析山区高等级公路中的边坡工程岩体[J]地球科学——中国地质大学学报,2001.7(4):347~350.
    [25] 沈新普,边坡岩体力学分析中的系统科学方法及认识论问题,科学技术与辩证法,1994,(5):25~27
    [26] Barton, N. R. The Shear Strength of Rock and Rock Joints. Int. J. Rock Mech. Min. Sci. 1976,255~279.
    [27] 魏安、蒋爵光,铁路岩石边坡稳定性分类的逐步判别分析,西南交通大学学报 1991,(2):49~55
    [28] 肖远、王思敬,边坡岩体弯曲破坏研究,岩石力学与工程学报,1991,10(4).331~338.
    [29] 冯光乐,罗蓉等,RMR法在公路边坡应用中的几点修正,长安大学学报,2002,22(6).19~24.
    [30] 孙广忠,论“岩体结构控制论”,工程地质学报,1993,1(1).14~18
    [31] Sen.Zekai etc. Modified rock mass classification system by continuous rating. Engineering Geology, 2003, 67(3-4): 269-280
    
    
    [32] Inyang, H.I. Development of a preliminary rock mass classification scheme for near-surface excavation. International Journal of Surface Mining & Reclamation, 1991, 5(2): 65-74
    [33] Choubey, Vishnu D. Geotechnical appraisal of the foundation rock mass behaviour of Narmada Sagar Dam project, central India. Canadian Geotechnical Journal, 1991, 28(1): 148-159
    [34] El-Naqa, Ali.etc. Engineering geological characterisation of the rock masses at Tarmur Dam site, South Jordan. Environmental Geology, 2002, 42(7): 817-826
    [35] Schultz, Richard A. Stability of rock slopes in Valles Marineris, Mars. Geophysical Research Letters. 2002, 29(19): 38-1~38-4
    [36] Hodkin, David. Classification systems for payment purposes Tunnels and Tunnelling. 1994, 26(1): 4
    [37] Jasarevic. etc. High slope stability in the case of improvement of the mechanical properties of the rock mass. Proceedings of the ISRM International Symposium, 1993, 1: 817
    [38] Hack, R. Geophysics for slope stability. Surveys in Geophysics. 2000, 21(4): 423-448
    [39] 何沛田、崔洪业等,重庆市工程岩体分级讨论,地下空间,2002,22(3):274~277
    [40] 杜时贵等,岩石质量指标RQD与工程岩体分类,工程地质学报,2000,8(3):351~356
    [41] 魏继红等,岩体分类实例分析与研究,工程地质学报,2002,10(1):50~54
    [42] 王维刚、单守智,岩石分级的理论与实践.工程地质学报,1993,3:43~53.王维刚、单守智,岩石分级的理论与实践.工程地质学报,1993,3:43~53.
    [43] 费寿林,凿碎法岩石可钻性分级,中国金属学会1979-1980年优秀论文选集,北京:冶金工业出版社,49~84
    [44] 林韵梅,围岩稳定性的动态分级法,金属矿山,1985,(8):2~6
    [45] 钮强,我国矿山岩石爆破性分级的研究,爆破,1984,(1)
    [46] 东北工学院岩石三性综合分级课题组,岩石三性综合分级的研究,金属矿山,1992,(8):16~23
    [47] 韩爱果、聂德新,某地下厂房围岩质量综合分级,地质灾害与环境保护,2002,13(2):74~79
    [48] 董学晟,工程岩体分级标准的研究,长江科学院院报,1992,9(4):1~9
    [49] 余诗刚译,隧道的岩体分类-岩体分类系统之间的对应关系,隧道译丛,1990,(1),12~15
    [50] 王明华、冯文凯等,溪洛渡水电站地下厂房岩体结构特征及围岩分类,2003,21(1),101~105
    [51] 杨新安等,软弱岩体分类及其变形规律的研究,上海铁道大学学报,1997,18(4),113~118
    [52] 陈昌彦,王贵荣,各类岩体质量评价方法的相关性探讨,岩石力学与工程学报,2002,21(12),1984~1900
    [53] Littlechild, Brian D. etc. Determination of rock mass modulus for foundation design. Geotechnical Special Publication. 2000, 97: 213-228
    [55] Singh, V.K.etc. Slope design, based on geotechnical study and numerical modelling of a deep open pit mine in India. International Journal of Surface Mining, Reclamation and Environment. 1995, 9(3): 105-111
    [56] Sonmez, H. etc. Practical procedure for the back analysis of slope failures in closely jointed rock masses. International Journal of Rock Mechanics and Mining Sciences. 1998, 35(2): 219-233
    [57] Singh, V.K. etc. Optimization of slope angle of a lead - zinc mine. Geotechnical and Geological Engineering.1995.13(3): p 143-156
    [58] Kockar, M.K. etc. Engineering geological investigations along the Iliksu Tunnels, Alanya, Southern Turkey. Engineering Geology. 2003, 68(3-4): 141-158
    [59] Ozsan, A. etc. Geotechnical rock-mass evaluation of the Anamur dam site, Turkey. Engineering Geology. 1996, 42(1): 65-70
    [60] Moon, V. etc. The value of rock mass classification systems for weak rock masses: A case example from Huntly, New Zealand. Engineering Geology. 2001, 61(1): 53-67
    [61] Sandbak, Lo Rock mass classification in lhd mining at san manuel, arizona. Preprint-Society of Mining Engineers of AIME. 1988, 20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700