构造应力场作用方式的模糊综合评判方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力问题是工程地质、岩石力学及相关学科的一个重要研究领域。构造应
    力是地应力的重要组成部分。对构造应力的研究不仅要确定构造应力的大小,还
    要包括构造应力作用形式和方向的确定。构造应力作用形式和方向的确定也是进
    一步初始地应力场回归计算的重要依据。详细了解构造应力的作用形式和方向对
    隧洞的洞线确定、地下洞室的方位布置,地下洞室开挖方式等都具有参考价值。
    目前构造应力作用研究还不能给出精确的解析解,其影响因素很多是模糊的。
    本文提出依据实测地应力值用模糊综合评判方法研究构造应力作用形式和
    组合。通过对地应力场构造应力场的研究,确定所有可能的构造应力场作用形式
    和组合方案。根据地质勘测资料(岩性指标)和测量资料(地形、地貌),建立工程
    区岩体有限元计算模型,然后将各种构造应力作用组合形式作为边界荷载条件,
    利用有限元计算软件计算所有可能情况构造应力场作用形式和组合荷载情况下
    的应力。将计算出的各测孔位置的应力矢量计入构造应力作用库中。建立模糊隶
    属度函数,将实测地应力矢量与构造应力作用库中的进行比对,通过模糊综合评
    判得出各种构造应力场作用形式和组合的隶属度,分析得到最接近真实情况的构
    造应力场作用形式。
    本文提出根据断层信息模糊综合评判构造应力作用形式和组合。断层是在岩
    体中普遍存在的,断层信息(断层的走向、倾角及断距)不同程度上表征着构造
    应力作用形式和组合,也是判断构造应力方向不可忽略的信息。本文根据其断层
    走向与构造应力作用方向之间的关系,以走向作为评判因素集,构造应力荷载组
    合形式为评语集,分别给出不同走向下每种组合形式的隶属度。最终在已知断层
    信息的情况下,来综合判断该区域所属的最有可能构造应力组合形式。
    模糊综合评判构造应力场作用形式和组合是一种行之有效的方法。通过对上
    述两个内容的评判结果的相互印证,最终能够得出一个最接近实际的答案。模糊
    综合评判得出的结果比以往凭经验判断更有依据、更可靠、更有说服力。
The In-situ stress problem is an important investigation area of engineering geology, rock
    mechanics and relating disciplines. Tectonic Stress is an important constituent of ground
    stress. To study on tectonic stress, not only its magnitude should be determined, but
    also its action mode and direction. Determining the action mode and direction of
    tectonic stress is an important basing for further initial in-situ stress field regress
    calculating. Acknowledging the action mode and direction of tectonic stress has
    reference merit in determining cave line, location and excavation mode. Now, the
    precise analytical of tectonic stress can’t be given due to many fuzzy influent factors.
     In this paper, the fuzzy comprehensive appraising method, base on actual
    measurement, is put forward to study the action form and combination scheme of
    tectonic stress. The entire possible action form and combination scheme of tectonic
    stress is determined by study on tectonic stress initial in-situ stress field. The finite
    element model is found basing on geology reconnaissance and survey data. Then, the
    stress of all possible action modes of tectonic stress is calculated with finite element
    computer software by makes use of various tectonic stress combination form as
    boundary loading condition. The results of every gaging hole are reckoned in tectonic
    stress database. Founding the fuzzy subordinate function and comparing the actual
    survey in-situ stress vector with tectonic stress in database, the subordinate degrees of
    various tectonic stress action forms and combination are educed. Analyzing with these
    degrees, the closest actual condition of tectonic stress action forms is got.
     The fuzzy comprehensive appraisal of tectonic stress action forms and combination is
    put forward base on fault information. The fault is universal existence in lithosome. To some
    extent, the fault information attributes the tectonic stress action forms and combination and
    is the need information to judge the direction of tectonic stress. According to the
    relations between the strike fault and the direction of tectonic stress, the subordinate
    degree of each combination form of difference strike, whose appraisal factor set is
    strike and comment set is load combination form of tectonic stress, is given. In the
    end, the most possible load combination form of tectonic stress, which belong to one
    area, is comprehensively appraisal under the condition of known fault information.
     Analyzing with above method gets the closest actual condition solution. The result shows that
    the outcome of fuzzy comprehensive appraisal is more reliable and convince than judging with
    experience. Therefore, the fuzzy comprehensively appraisal method is an effective means
    in appraising the tectonic stress action form and combination and can be used in
    engineering practice.
引文
参考文献
    [1] W.D 米恩斯,丁中一,殷有泉译,应力和应变, 北京:科学出版社,1982
    [2] 苏生瑞,黄润秋等,断裂构造对地应力场的影响及其工程应用,科学出版
     社,2002
    [3] 陈中基,1988,我国在复杂岩层中的港道掘进,岩石力学与工程学报,
     Vol.7,No.1,1~5
    [4] 陶振宇,对岩体初始应力的几点初步认识,水文地质工程地质,1980,4
    [5] 朱焕春,陶振宇,地形地貌与地应力分布的初步分析,水利水电技术,1994,
     1:29~34
    [6] 李四光,地质力学概论,北京:科学出版社,1973
    [7] 张明利,万天丰,含油气盆地构造应力场研究新进展,石油学报
    [8] 万天丰,构造应力场研究的新进展,地学前缘,1995,2(2):226~235
    [9] Zadeh.L.A.,Fuzzy Sets, Inf. Control,1965,8,338-348
    [10] 汪培庄,模糊集合论及其应用,上海科学技术出版社,1983
    [11] 彭祖赠,孙韫玉,模糊(Fuzzy)数学及其应用,武汉:武汉大学出版,2002
    [12] 郭怀志,马启超,薛玺成,岩体初始应力场的分析方法,岩土工程学报,
     1983,5(3):63-75
    [13] 张有天等,地应力场的趋势分析,水利学报,1984,(4)
    [14] 肖明,三维初始应力场反演与应力函数拟合,1989,8(4):337-345
    [15] 肖位枢,模糊数学基础及应用,航空工业出版社,1992
    [16] 何新贵,模糊知识处理(第二版),国防工业出版社,1998
    [17] 贺仲雄,模糊数学及其应用,天津科技出版社,1981
    [18] 杨伦标等,模糊数学原理及应用,华南理工大学出版社,1992
    [19] 刘增良,刘有才等,模糊逻辑与神经网络-理论研究与探索,北航大学出
     版社,1996
    [20] 丁旭初,梁海庆,1982, 活动型断裂附近的剪应力,中国地震学会地震
     地质专业委员会,中国活动断裂.北京:地震出版社,122~126
    [21] 戚蓝,初始地应力场系统分析理论与研究,博士学位论文,天津大学,2002
    [22] 楼顺天等,Matlab5.3 程序设计语言,西安电子科技大学出版社,2000
    [23] 孙广忠,岩体结构力学,北京:科学出版社,1988
    [24] 万天丰编著,古构造应力场,北京:地质出版社,1988
     48
    
    
    参考文献
    [25] 万天丰,论构造应力-应变系统的复杂性,地学前缘,2003,7(1):161~
     168
    [26] 同济大学工程地质与水文地质教研室,构造地质与地质力学,中国建筑工
     业出版社,1982
    [27] 格佐夫斯基 M. B.,刘鼎文等译,构造物理学基础,北京:地震出版社,
     1975.
    [28] Liao J. J,Savage W.Z. and Amadei B.1992,Gravitational stresses
     in anisotropic ridges and valleys with small slopes.J. Geophys.
     Res,97:3325~3336
    [29] 马启超,工程岩体应力场的成因分析与分布规律,岩石力学与工程学报,
     1986,Vol.5,No.2,97~108
    [30] 周荣福,王江生,王晓珍,地应力估算方法的应用探索,矿山压力与顶总
     管理,2000,4:78~79
    [31] Lee J.S.,The fundamental cause of evolution of the Earth’s
     surface-features, bulletin,Geological Society of China,1995,
     5(3/4)
    [32] Zoback M.L., 1989,Global patterns of tectonic stress. Nature.
     Vol.341,No.6240,291~298
    [33] Huson J.A. and cooling C.M. 1988. In situ rock stresses and their
     measurement in the UK-Part Ⅰ,the current state of knowledge. Int,
     J. Rock Mech.Mech. Min. Sci.& Geomech. Abstr.,25,363-370
    [34] 朱焕春,陶振宇,不同岩石中的地应力分布,地震学报,1994,(1)
    [35] Kohlberg F.,Roch K.-H. and Scheidegger A.E.1980,In situ stress
     measurements in Australia, Rock Mechanics, Suppol.9,21~29
    [36] Terzaghi K. Van. 1923. Die Berechnyg der durchfassigkeitsziffer des
     Tones Aus dem Verlauf der hydrodynamischen Spannungserscheinungen,
     Sitz. Akad. Wiss. Wien, Math, Naturwiss, Kl. Abt. 2A,132
    [37] Anderson E.M. 1951. The Dynamics of the formation of cone-sheets,
     ring-dykes and cauldron-subsidence, Proc. Roy. Soc.,Edinburgh,
     56
    [38] Bell J. S. 1989. Vertical migration of Hydrocarbons at Alma,
     offshore eastern Canada. Bulletin of Canada Petroleum Geology.
     Vol.37, No.3,358~364
    [39] 苏金明,阮沈勇,MATLAB6.1 实用指南,电子工业出版社,2002
     49
    
    
    参考文献
    [40] B.Kosko,Fuzzy systems and Neural networks,Prentice-Hall,INC.,
     New Jersy,1992
    [41] Dubois D. and Prade H. Fuzzy Sets and Systems: Theory and
     Applications. New York,1980
    [42] F.L.Chung and T.Lee, Fuzzy Competitive learning, Neural Networks,
     7(1994):539-552
    [43] Lee Rand Chang C L. Some Properties of Fuzzy Logic. Inf. And Control,
     1971(19):417-413
    [44] Timothy J.Ross 著,钱同惠等译,模糊逻辑及其工程应用,电子工业出
     版社,2001
    [45] 刘普寅,吴孟达著,模糊理论及其应用,国防科技大学出版社,1998
    [46] 杨松林,工程模糊论方法及其应用,国防工业出版社,1996
    [47] 徐开礼,朱志澄,构造地质学,地震出版社,1984
    [48] 卓越,张佐,吴秋峰,一种基于模糊集理论的群决策综合评判方法,控制
     与决策,1998.7,433~437
    [49] 狄建华,模糊数学理论在建筑安全综合评价中的应用,华南理工大学学报,
     2002.7,87~90
    [50] Ronger Jang J S,MATLAB Fuzzy Logical Toolbox,The mathworks Inc,1997
    [51] 程鹏,钟芳源,工程结构应力集中的模糊评判,电站系统工程,1995.6,
     51~55
    [52] 李章华,赵飞,模糊集重心法在综合评价中的应用,北京联合大学学报,
     1997.12,57~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700