PI3K/Akt信号途径及MPTP介导七氟醚后处理脑保护机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上脑动脉粥样硬化、严重的颅脑外伤、脑血管栓塞、动脉畸形等病人都有发生脑缺血的可能。脑缺血会严重影响病人的健康,给患者本人、家属及社会造成严重的负担。早期恢复血流是治疗脑缺血的关键。但随着受阻血管血流的恢复,往往会导致局部性脑组织发生缺血再灌注(ischemic-reperfusion, I/R)损伤。大量的研究表明在发生脑缺血前进行预处理能减少缺血再灌注损伤。但由于脑缺血的发生具有不可预知性,故预处理的临床应用受到很大的局限。相对于脑缺血的不可预见性,再灌注发生的时机较易控制。所以人们越来越关注于脑缺血发生后进行的后处理的研究。现已有研究证明了缺血后处理(ischemic postconditioning, IPSC)能降低脑缺血再灌注损伤,促进神经功能的恢复。但缺血后处理毕竟是有创的、伤害性操作,虽然很多动物实验都证实反复多次短暂的缺血并不会加重损伤,但真正应用于临床时,临床医生还是存在顾虑的。相对于缺血后处理,七氟醚后处理临床医生更易接受。七氟醚是目前比较理想的吸入麻醉药之一,临床上使用具有苏醒快、刺激小,不良反应少,对器官有保护作用等优点。在对其脑缺血再灌注机制的研究中发现,它能降低颅内压,减少梗死容积,抑制神经细胞凋亡,能起到良好的脑保护作用。目前在对心脏的研究中也发现七氟醚后处理能减少再灌注损伤,抑制细胞凋亡,促进功能恢复。但七氟醚后处理的脑保护机制目前仍不清楚,值得我们进行研究。线粒体渗透性转化孔(Mitochondrial permeability transition pore,MPTP)是吸入性麻醉药预处理产生脑保护作用的机制之一。人们已经在心脏的缺血再灌注模型中证实了七氟醚后处理能通过抑制MPTP的开放发挥心肌保护效应。因此我们推测MPTP有可能参与了七氟醚后处理的神经保护机制。蛋白激酶B (Protein kinase B,PKB),也被称为Akt。磷脂酰肌醇-3激酶(Phosphoinositide-3 kinase,PI3K)/Akt细胞内信号途径具有促进细胞增殖、分化,调节细胞存活、内皮生长、血管生成等广泛的生物学效应,是一种重要的神经保护机制。现在也已经证实PI3K/Akt途径参与了七氟醚后处理的心肌保护机制。因此,本课题主要是探讨脑缺血再灌注的同时吸入60min的七氟醚进行后处理是否能产生脑保护效应,以及MPTP与PI3K/Akt途径是否参与其中。
     本课题首先通过观察缺血后大鼠的神经功能恢复情况、测定脑梗死容积百分比、HE染色评价缺血侧皮层的神经元形态学改变及Nissl染色进行缺血半影区存活神经细胞计数,明确不同浓度的七氟醚后处理是否对Sprague-Dawley大鼠脑缺血再灌注损伤具有保护作用;其次,第二部分通过加入特异性MPTP开放剂和PI3K/Akt通道阻断剂,观察缺血后大鼠的神经功能恢复情况、测定脑梗死容积百分比,分光光度法测定各组缺血皮层半影区神经元MPTP的开放度,测定半影区磷酸化的Akt、磷酸化的糖原合成激酶3β(Glycogen synthase kinase 3β, GSK-3β)的表达,探讨七氟醚后处理的脑保护效应可能是通过激活PI3K/Akt/GSK-3β途径,增加p-Akt, p-GSK-3β的表达,抑制MPTP的开放而介导的。随后,第三部分通过计数缺血半影区的凋亡细胞和Caspase-3,8,9阳性细胞,证实七氟醚后处理可能通过对PI3K/Akt途径和MPTP进行调控,抑制线粒体凋亡途径,从而减少神经细胞的死亡。最后通过检测半影区脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)和血管内皮生长因子(Vascular endothelial growth factor, VEGF)的表达,推测七氟醚后处理有可能通过上调BDNF和VEGF的水平,进而促进神经干细胞(Neural stem cell, NSC)的激活和新生血管的形成,有利于神经功能的重建和修复。结果证实:(1)脑缺血再灌注的同时吸入2.4%及4.0%的七氟醚进行后处理具有脑保护作用,但是未发现七氟醚后处理在本实验模型中的保护效应具有剂量依赖性。(2)七氟醚后处理可通过激活PI3K/Akt/GSK-3β途径,促进Akt的活化,增加p-GSK-3β的表达,进而抑制MPTP的开放,降低脑缺血再灌注损伤。(3)七氟醚后处理可通过抑制线粒体凋亡途径,减少脑缺血再灌注造成的神经元死亡,发挥显著的脑保护作用。其机制可能与激活PI3K/Akt途径,抑制MPTP的开放有关。(4)七氟醚后处理可通过上调BDNF和VEGF的水平,参与神经保护作用。
     总之,脑缺血及再灌注所致的神经元损伤是一系列极为复杂的病理生理过程,而七氟醚后处理也是一个多分子参与的多信号通路交织的复杂级联反应。七氟醚后处理的脑保护作用并非仅仅局限于某一环节或某一方面,它与脑缺血交织在一起,是多位点、多途径、相互作用的结果。
     目的:观察脑缺血再灌注的同时吸入2.4%或4.0%的七氟醚60min是否会产生脑保护效应。方法:健康雄性SD大鼠,体重300-350g,随机分为四组:假手术组(Sham),缺血再灌注组(工/R),缺血再灌注+2.4%七氟醚1组(Sevol),缺血再灌注+4.0%七氟醚2组(Sevo2)。电凝法进行左侧大脑中动脉永久性阻断(Permanent middle cerebral artery occlusion, pMCAO),双侧颈总动脉阻断60min后松开,造成脑缺血再灌注,气管插管,再灌注的同时,机械通气,吸入2.4%或4%的七氟醚+氧气,连续吸入60min。Sham组开颅,暴露大脑中动脉,但不烧灼,分离两侧颈总动脉,但不夹闭,气管插管,吸入100%纯氧60 min; I/R组再灌注的同时吸入100%纯氧60 min。各组在麻醉后5min、大脑中动脉永久性阻断后15min及再灌注后15min分别记录平均动脉压、心率、体温,并抽动脉血,行血气分析。于再灌注1d、3d、7d,用神经功能评分观察动物神经行为学的变化、HE染色评价缺血侧皮层神经元形态学的改变及Nissl染色进行缺血半影区存活神经元计数。于再灌注3d,运用2,3,5-三苯基氯化四氮唑(2,3,5-triphenyltetrazolium chloride, TTC)法测定大鼠脑梗死容积百分比。结果:与Sham组相比,除了Sevo2组在再灌注15min的MAP值降低(P<0.05)之外,其余各组pH值、动脉血二氧化碳分压(PaCO2)、动脉血氧分压(Pa02)、平均动脉压(MAP)及体温(T)差异无统计学意义(P>0.05)。与I/R组相比,再灌注1d、3d、7d,神经功能评分显示Sevol组和Sevo2组均能明显改善神经功能(P<0.05), Nissl染色显示Sevol组和Sevo2组均能显著增加缺血半影区存活神经细胞的数量(P<0.05),再灌注3d, TTC染色法显示,Sevol组和Sevo2组脑梗死容积百分比较I/R组显著减少(P<0.05)。但Sevol组和Sevo2组的神经功能评分、半影区存活神经细胞数目及脑梗死容积比之间的差异无统计学意义(P>0.05)。结论:七氟醚后处理能明显改善脑缺血后的神经功能,减少梗死容积,增加神经细胞的存活,产生有效的脑保护效应。但未证实七氟醚后处理在本模型中的保护效应具有剂量依赖性。
     目的:探讨PI3K/Akt/GSK-3β信号途径及MPTP在七氟醚后处理脑保护效应中的作用。方法:健康雄性SD大鼠,体重300-350g,随机分为八组:假手术组(Sham),缺血再灌注组(I/R),缺血再灌注+七氟醚组(Sevo),缺血再灌注+DMSO组(DMSO)组,缺血再灌注+七氟醚+MPTP特异性开放剂Atractyloside组(Sevo+Atr),缺血再灌注+七氟醚+PI3K特异性抑制剂LY294002组(Sevo+LY),缺血再灌注+Atractyloside组(Atr),缺血再灌注+LY294002组(LY)。缺血再灌注模型为pMCAO+夹闭双侧颈总动脉60min。再灌注的同时,予2.4%的七氟醚持续吸入60min,进行七氟醚后处理。Sham组开颅,暴露大脑中动脉,但不烧灼,分离两侧颈总动脉,但不夹闭,气管插管,吸入100%纯氧60 mmin;I/R组再灌注的同时吸入100%纯氧60 min。Atractyloside 1.6mg/mL,30μL,溶于DMSO中,再灌注的前10min侧脑室给药。LY294002 1.7mg/mL,30μL,溶于DMSO中,再灌注的前10min侧脑室给药。于再灌注1d、3d、7d,用神经功能评分观察动物神经行为学的变化。再灌注3d,运用TTC法测定大鼠脑梗死容积百分比,分光光度法测定各组大鼠缺血皮层半影区神经元MPTP的开放度。再灌注6h、1d、3d、7d取大鼠缺血侧顶叶皮层半影区,Western Blot检测p-Akt、P-GSK-3β的表达。结果:与I/R组相比,七氟醚后处理能缓解大鼠脑缺血再灌注损伤后Ca2+诱导的(max A520 min A520)的下降,促进神经功能的恢复,减少脑梗死容积(P<0.05)。而MPTP特异性开放剂Atractyloside和PI3K特异性抑制剂LY294002能拮抗七氟醚的脑保护效应(P<0.05),单独使用DMSO、Atractyloside及LY294002则无明显影响(P>0.05)。与I/R组相比,七氟醚后处理能增加各时点Akt-Ser473和GSK-3β-Ser9磷酸化的表达(P<0.05)。七氟醚的此效应也可以被PI3K特异性抑制剂LY294002所废止。结论:七氟醚后处理可通过激活PI3K/Akt/GSK-3β途径,促进Akt的活化,增加P-GSK-3β的表达,进而抑制MPTP的开放,降低脑缺血再灌注损伤。
     目的:观察七氟醚后处理对脑缺血再灌注缺血半影区Caspase-3,8,9的影响以及MPTP与细胞凋亡的关系。方法:健康雄性SD大鼠,体重300-350g,随机分为七组:假手术组(Sham),缺血再灌注组(I/R),缺血再灌注+七氟醚组(Sevo),缺血再灌注+七氟醚+MPTP特异性开放剂Atractyloside组(Sevo+Atr),缺血再灌注+七氟醚+PI3K特异性抑制剂LY294002组(Sevo+LY),缺血再灌注+Atractyloside组(Atr),缺血再灌注+LY294002组(LY)。缺血再灌注模型为pMCAO+夹闭双侧颈总动脉60min。再灌注的同时,予2.4%的七氟醚持续吸入60min,进行七氟醚后处理。于再灌注1d、3d、7d对缺血半影区进行观察,原位末端标记(Terminal deoxynucleotidyl transferase mediated Biotin-dUTP niek-end labeling,TUNEL)法检测神经元的凋亡情况,免疫组化法计数Caspase-3,8,9的阳性细胞数量。结果:Sham组大脑皮质中未见明显凋亡细胞,神经元中Caspase-3,8,9的表达也极少。与Sham组相比,缺血再灌注组(I/R)半影区的凋亡细胞、Caspase-3,8,9阳性细胞数目明显增多(P<0.05)。与I/R组相比,七氟醚后处理能减少各时点半影区的神经元凋亡,降低Caspase-3,9的表达(P<0.05),但对Caspase-8的表达无明显影响(P>0.05)。同样,MPTP特异性开放剂Atractyloside和PI3K特异性抑制剂LY294002可以废除七氟醚后处理抑制凋亡的效应。结论:七氟醚后处理可通过抑制线粒体凋亡途径,减少脑缺血再灌注造成神经元的死亡,发挥显著的脑保护作用。其机制可能与激活PI3K/Akt途径,抑制MPTP的开放有关。
     目的:观察七氟醚后处理对脑缺血再灌注后缺血侧顶叶皮层半影区BDNF和VEGF的影响。方法:健康雄性SD大鼠,体重300-350g,随机分为三组:假手术组(Sham),缺血再灌注组(I/R),缺血再灌注+七氟醚组(Sevo)。缺血再灌注模型为pMCAO+夹闭双侧颈总动脉60min。再灌注的同时,予2.4%的七氟醚持续吸入60min,进行七氟醚后处理。于缺血再灌注的6h、1d、3d、7d,用RT-PCR和Western blot检测缺血侧顶叶皮层半影区BDNF和VEGF的表达。结果:Sham组脑皮质中仅有少量的BDNF和VEGF表达。与Sham组相比较,缺血再灌注组(I/R) BDNF和VEGF的表达均于再灌注后6h开始增加,1d达到高峰,BDNF蛋白和VEGFmRNA的表达于3d逐渐衰减,7d与Sham组无明显差别。BDNFmRNA的表达衰减较快,3d就已经衰减到与Sham组无明显差异。而VEGF蛋白的表达可持续到7d。与I/R组相比,七氟醚后处理能明显上调各时点半影区BDNF和VEGF的水平(P<0.05)。结论:七氟醚后处理可通过上调BDNF和VEGF的表达,发挥神经保护作用。
Objective:To investigate the protective effects of 2.4% and 4.0% sevoflurane postconditioning against cerebral ischemia-reperfusion injury in rats. Methods:Adult male Sprague-Dawley rats (300-350g) were randomly assigned into four groups:Sham group, Ischemia reperfusion group (I/R), Ischemia-reperfusion+2.4% Sevoflurane group (Sevol), Ischemia reperfusion+4.0% Sevoflurane group (Sevo2). The left distal middle cerebral artery was occluded permanently by electrocogulation; subsequently both commom carotid arteries were exposed and occluded with miniature clips for 60 mins. Lossening the clips resulted in the cerebral ischemia-reperfusion injury. Tracheal intubated, at the same time of reperfusion, the animals were inhaled of 2.4% or 4% sevoflourane +oxygen or 100% oxygen for 60 mins. The Sham group was exposed the left distal middle cerebral artery and the commom carotid arteries, but did not operated. Physiological variables (mean arterial blood pressure, heart rate, temperature, plasma glucose and arterial blood gases)were measured 5 min after induction of anesthesia,15 min after ischemic,15 min after reperfusion. Results:Compared with Sham group, the mean arterial blood pressure was lower in Sevo2 group 15 min after reperfusion. No difference was found in rectal temperature, mean arterial blood pressure, arterial pH, PaCO2, PaO2 and blood glucose level in other groups. Compared with I/R group, the Sevol and Sevo2 groups improved the neurological functions and increased the numbers of the surviving nerve cells in ischemic penumbra after pMCAO followed by reperfusion on 1d, 3d and 7d (P<0.05). Animals in Sevol and Sevo2 groups developed smaller brain infarct volumes than I/R group after reperfusion on 3d (P<0.05). But No difference was found in neurological scores, the numbers of the surviving nerve cells and the infarct volumes between the Sevol and Sevo2 groups (P>0.05). Conclusion:Sevoflurane postconditioning could induce the neuroprotection against cerebral ischemia-reperfusion injury, but the protective effect was not dose-dependent in this model.
     Objective:To investigate the effects of sevoflurane on PI3K/Akt/ GSK-3βpathway and MPTP in this neuroprotection against cerebral ischemia reperfusion. Methods:Adult male Sprague-Dawley rats (300-350g) were randomly assigned into eight groups:Sham group, Ischemia-reperfusion group (I/R), Ischemia-reperfusion+Sevoflurane group (Sevo), Ischemia-reperfusion+DMSO group (DMSO), Ischemia reperfusion+Sevoflurane+a selective mitochondrial permeability transition pore (MPTP) opener Atractyloside group (Sevo+Atr), Ischemia reperfusion+Sevoflurane+a selective PI3K inhibitor LY294002 group (Sevo+LY), Ischemia reperfusion+Atractyloside group (Atr), Ischemia reperfusion+LY294002 group (LY). Atractyloside (1.6mg/mL,30μL, in DMSO) and LY294002 (1.7mg/mL,30μL, in DMSO) were right intracerebroventricularly injected before the reperfusion. Result:Compared with I/R group, sevoflurane inhibited the decrease of calcium induced mitochondrial absorbance at 520 nm (A520), improved neurological functions and developed smaller brain infarct volumes (P<0.05). This protection was reversed by administration of Atractyloside and LY294002, but no distinguished difference was found among I/R, DMSO, Atr and LY groups (P>0.05). Compared with I/R group, sevoflurane postconditioning could not only increase the phosphorylated Akt and GSK-3βin ischemic penumbra, but also inhibit the MPTP opening (P<0.05). This effect was also abolished by LY294002. Conclusion:The sevoflurane postconditioning induced neuroprotective effect could be exerted via the activation of the PI3K/Akt/GSK-3p pathway and inhibition of MPTP.
     Objective:To study the effects of sevoflurane on neuronal apoptosis, caspase-3,8,9 expressions after cerebral ischemia in rats, and to disclose the relationship between MPTP and neuronal apoptosis. Methods:Adult male Sprague-Dawley rats (300-350g) were randomly assigned into seven groups:Sham group, Ischemia-reperfusion group (I/R), Ischemia-reperfusion+Sevoflurane group (Sevo), Ischemia-reperfusion +Sevoflurane+a selective MPTP opener Atractyloside group (Sevo+Atr), Ischemia reperfusion+Sevoflurane+a selective PI3K inhibitor LY294002 group (Sevo+LY), Ischemia-reperfusion+ Atractyloside group (Atr), Ischemia-reperfusion+LY294002 group (LY).At the 1d,3d and 7d after reperfusion, the rats were anesthetized and the brains were removed. Caspase-3,8,9 expressions were determined by immunohistological staining. Apoptosis was also determined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) staining. Result: Compared with I/R group, sevoflurane decreased the numbers of TUNEL and caspase-3,9 positive cells in ischemic penumbra (P<0.05). This effect was also abolished by Atractyloside and LY294002. No distinguished difference was found among I/R and Sevo groups about caspase-8. Conclusion:Sevoflurane postconditioning could inhibit the neuronal apoptosis by inactivating the mitochondrial pathway of apoptosis in cerebral ischemia reperfusion injury. The neuroprotection of sevoflurane may be mediated by PI3K/Akt pathway and MPTP.
     Objective:To investigate the effects of sevoflurane postconditioning on BDNF and VEGF in ischemic penumbra after cerebral ischemic reperfusion. Methods:Adult male Sprague-Dawley rats (300-350g) were randomly assigned into three groups:Sham group, Ischemia-reperfusion group (I/R), Ischemia-reperfusion+Sevoflurane group (Sevo). The expressions of BDNF and VEGF in ischemic penumbra were determined by RT-PCR and Western blot after reperfusion on 6h, 1d,3d and 7d. Result:Compared with Sham group, the expressions of BDNF and VEGF in I/R group were increased. Compared with I/R group, sevoflurane postconditioning could significantly increase the levels of BDNF and VEGF. Conclusion:Sevoflurane postconditioning could play a neuroprotective role by increasing the levels of BDNF and VEGF in penumbra after cerebral ischemic reperfusion.
引文
[1]Liu XQ, Sheng R, Qin ZH. The neuroprotective mechanism of brain ischemic preconditioning. [J] Acta Pharmacol Sin.2009 Aug; 30(8):1071-80.
    [2]Wang J, Lei B, Popp S, et al. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. [J]. Neuroscience 2007; 145:1097-1107.
    [3]Yunoki M, Nishio S, Ukita N, et al. Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. [J].Exp Neurol 2003; 181:291-300.
    [4]Horiguchi T, Kis B, Rajapakse N, et al.Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. [J].Stroke 2003; 34:1015-1020.
    [5]Zhao ZQ, Corvera JS, Halkos ME, et al.Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. [J].Am J Physiol,2003; 285:H579-H588.
    [6]Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. [J] Cereb Blood Flow Metab.2009 May; 29(5):873-85.
    [7]Jeong Jin Lee, Liaoliao Li, Hae-Hyuk Jung. Postconditioning with Isoflurane Reduced Ischemia-induced Brain Injury in Rats. [J]. Anesthesiology 2008; 108:1055-1062
    [8]Payne RS, Akca O, Roewer N, et al. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 2005; 1034:147-152.
    [9]Chen HT, Yang CX, Li H, et al. Cardioprotection of sevoflurane postconditioning by activating extracellular signal-regulated kinase 1/2 in isolated rat hearts. [J]. Acta Pharmacol Sin.2008 Aug; 29(8):931-41.
    [10]Neumann-Haefelin T, duMesnil de Rochemont R, Fiebach JB, et al. Effect of incomplete (spontaneous and postthrombolytic) recanalization after middle cerebral artery occlusion:a magnetic resonanceimaging study. [J].Stroke 2004; 35:2004 109-114.
    [11]Chen ST, Hsu CY, Hogan EL, et al. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. [J]. Stroke 1986; 17:738-743.
    [12]Zhao H, Yenari MA, Cheng D, et al. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. [J]. Cereb Blood Flow Metab.2004; 24:681-692.
    [13]Zhao H, Yenari MA, Cheng D, et al.Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. [J].Neurochem.2003; 85:1026-1036.
    [14]Butovas S, Lukkarinen J, Virtanen T,et al. Differential effect of the alpha2-adrenoceptor antagonist, atipamezole, in limb-placing task and skilled forepaw use following experimental stroke. [J]. Restor Neurol Neurosci.2001; 18(4):143-51.
    [15]Juha Yrja nheikki, Jari Koistinahob, Mikko Kettunenb, et al. Long-term protective effect of atorvastatin in permanent focal cerebral ischemia.[J]. Brain Res.2005; 1052:174-179.
    [16]Matei G, Pavlik R, McCadden T, et al. Sevoflurane improves electrophysiological recovery of rat hippocampal slice CA1 pyramidal neurons after hypoxia. [J]. Neurosurg Anesthesiol 2002; 14:293-298.
    [17]Moe MC, Berg Johnsen J, Larsen GA, et al.The effect of isoflurane and sevoflurane on cerebrocortical presynaptic Ca2+and protein kinase C activity. [J]. Neurosurg Anest hesiol,2003,15:209-214.
    [18]Engelhard K, Werner C, Eberspacher E,et al. Sevoflurane and propofol influence the expression of apoptosis regulating proteins after cerebral ischaemia and reperfusion in rats. [J]. Eur J Anaest hesiol,2004,21:530-537.
    [19]Kehl F, Payne RS, Roewer N, et al. Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res.2004.Sep 17; 1021(1):76-81.
    [20]Wise-Faberowski L, Raizada MK, Sumners C. Desflurane and sevoflurane attenuate oxygen and glucose deprivation-induced neuronal cell death. [J]. Neurosurg Anesthesiol 2003; 15:193-199.
    [21]Guo ZH, Li F, Wang WZ. The mechanisms of brain ischemic insult and potential protective interventions. [J]. Neurosci Bull.2009 Jun; 25(3):139-52.
    [22]Yao Y, Li L, Gao C, et al. Sevoflurane postconditioning protects chronically-infarcted rat hearts against ischemia-reperfusion injury by activation of pro-survival kinases and inhibition of mitochondrial permeability transition pore opening upon reperfusion. [J]. Biol Pharm Bull.2009 Nov; 32(11):1854-61.
    [23]Solit DB, Basso AD, Olshen AB, et al.Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. [J].Cancer Res.2003; 63:2139-2144.
    [24]Trotman, LC. and Pandolfi,PP. PTEN and p53:Who will get the ypper hand? [J].Cancer Cell.2003; 3:97-99.
    [25]Schmitt, C.A Senescence, apoptosis and therapy-cutting the lifelines of cancer. [J].Nat.Rev.Cancer.2003; 3:286-295.
    [26]Welch, HC, Coadwell, WJ, Stephens, LR., et al.Phosphoinositide 3-kinase dependent activation of Rac. [J].FEBS Lett.2003; 546:93-97.
    [27]Kelly M.Regula, Delphine Baetz, and Lorrie A.Kirshenbaum.Nuclear Factor-κB represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes. [J].Circulation, Dec.2004; 110:3795-3802.
    [28]Vivanco, I and Sawyers, C.L.The Phosphatidylinositol 3-kinase AKT pathway in human cancer. [J].Nat.Rev.Cancer.2002; 2:489-501.
    [29]Zhou,B.P.,Liao,Y,.Xia,W., et al.HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosporylation. [J].Nat.Celll Biol.2001; 3:973-982.
    [30]Kurose, K., Gilley, K, Matsumoto,S., et al.Frequent somatic mutations in PTEN and TP53 are mutually exclusivein the stroma of breast carcinomas. [J].Nat.Genet.2002; 32:355-357.
    [31]Fang NX, Yao YT, Shi CX, et al. Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts. [J]. Mol Biol Rep.2010 Mar 10.397-399.
    [32]Di Lisa F, Canton M, Menabo, R,et al..Mitochondria and reperfusion injury. The role of permeability transition. [J]. Basic Res Cardiol 2003;98:235-241
    [33]Bernardi P. Mitochondrial transport of cations:channels, exchangers and permeability transition.[J].Physiol Rev 1999;79:1127-1155
    [34]Bernardi P, Petronilli V, Di Lisa F,et al. A mitochondrial perspective on cell death. [J]. Trends Biochem Sci 2001; 26:112-117.
    [35]Zhang JF, Ma YT, Yang YN,et al. Effects of ischemia postconditioning on ischemia-reperfusion injury and reperfusion injury salvage kinase signal transduction pathways in isolated mouse hearts. [J]. Zhonghua Xin Xue Guan Bing Za Zhi.2008 Feb; 36(2):161-6.
    [36]Solit DB, Basso AD, Olshen AB, et al.Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. [J].Cancer Res.2003; 63:2139-2144.
    [37]Kelly M.Regula, Delphine Baetz and Lorrie A.Kirshenbaum.Nuclear Factor-κB represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes. [J].Circulation, Dec.2004; 110:3795-3802.
    [38]Parcellier A, Tintignac LA, Zhuravleva E,et al. PKB and the mitochondria: AKTing on apoptosis. [J].Cell Signal.2008; 20:21-30.
    [39]Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. [J].Circulation.2000; 101:660-667.
    [40]Forde JE, Dale TC.Glycogen synthase kinase 3:a key regulator of cellular fate. [J].Cell Mol Life Sci.2007; 64:1930-1944.
    [41]Gao X, Zhang H, Takahashi T, et al. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. [J]. Neurochem.2008 May; 105(3):943-955.
    [42]Lim, S.Y., Davidson, S.M., Hausenloy, et al. Preconditioning and postconditioning:the essential role of the mitochondrial permeability transition pore. [J]. Cardiovasc. Res.2007.; 75,530-535.
    [43]Wu LP, Sheng F, Lin L, et al. The neuroprotection conferred by activating the mitochondrial ATP sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. [J]. Neuroscience Letters, 2006:184-189.
    [44]van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death. [J]. Biochem BiophysRes Commun,2003,304:487-497.
    [45]Kroemer G, The mitochondrial permeability transition pore complex as a pharmacological target. [J]. An introduction. Curr Med Chem,2003,10: 1469-1472.
    [46]Van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death. [J]. Biochem BiophysRes Commun,2003,304:487-497.
    [47]Sheng J, Sun Z, Liu HJ, et al. Protective effect of isoflurane preconditioning on the brain against ischemis-reperfusion jnjury in gerbils. [J]. Chin J Anesthesiol, 2006,26; 242-246.
    [48]G. Kroemer, J.C. Reed, Mitochondrial control of cell death, [J].Nat. Med.2000; 6:513-519.
    [49]Fulton, D., Gratton, I.P, McCabe, T.J., et al.Regulation of endothelium-devived nitric oxide production by the protein kinase Akt. [J].Nature.1999; 399:597-601.
    [50]Zhou, B.P., Liao, Y., Xia, W, et al.HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. [J].Nat.Cell.Biol.2001; 3:973-982.
    [51]Schmitt, C, A. Senescence, apoptosis and therapy-cutting the lifelines of cancer. [J].Nat.Rev.Cancer.2003; 3:286-295.
    [52]Solit DB, Basso AD, Olshen AB, et al.Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. [J].Cancer Res.2003; 63:2139-2144.
    [53]Andjelkovic, M., Alessi, D.R., Meier, R., et al.Role of translocation in the activation and function of protein kinase B. [J]. Biol. Chem.1997; 272, 31515-31524.
    [54]Gao X, Zhang H, Takahashi T, et al.The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. [J]. Neurochem.2008; 105:943-55.
    [55]Pignataro G, Meller R, Inoue K, et al. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke:ischemic postconditioning. [J].Cereb Blood Flow Metab.2008; 28:232-41.
    [56]Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. [J]. Cereb Blood Flow Metab.2006; 26:1114-21.
    [57]Scartabelli T, Gerace E, Landucci E,et al. Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway:a novel postconditioning strategy? [J].Neuropharmacology.2008; 55:509-16.
    [58]Gross, E.R., Hsu, A.K., Gross, G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase b inhibition during reperfusion in intact rat hearts. [J].Circ.Res.2004; 94,960-966.
    [59]Juhaszova, M., Zorov, D.B., Kim, S.H., et al. Glycogen synthase kinase-3b mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. [J].Clin. Invest.2004; 113,1535-1549.
    [60]Jinkun Xi, Huihua Wang, Robert A.et.al Mechanism for resveratrol-induced cardioprotection against reperfusion injury nvolves glycogen synthase kinase 3β and mitochondrial permeability transition pore. [J]. European Journal of Pharmacology 604 (2009) 111-116
    [61]Nishihara, M., Miura, T., Miki, T.,et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3b-mediated myocardial protection. [J]. Mol. Cell.Cardiol.2007; 43,564-570.
    [62]Kokoszka, J.E., Waymire, K.G., Levy, S.E., et al. The ADP/ATP translocator is not essential for themitochondrial permeability transition pore. [J]. Nature.2004; 427,461-465.
    [63]Lutz, M., Liu, H.. Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure. [J]. Anesth Analg.102,984-990.
    [64]Ginsberg MD. Injury mechanisms in the ischemic penumbra-approaches to neuroprotection in acute ischemic stroke. [J]. Cerebrovas Dis,1997,7:7-22.
    [65]Le DA, Wu Y, Huang Z, et al. Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. [J]. Proc Natl Acad Sci USA,2002,99(23):15 188-15 193.
    [66]Di Lisa F, Canton M, Menabo, R, et al.Mitochondria and reperfusion injury. The role of permeability transition. [J]. Basic Res Cardiol 2003;98:235-241
    [67]Lin HF, Zhu ZR, Hu ZY. Protective effects of sevoflurane preconditioning on cerebral ischemia-reperfusion injury in rats. [J]. Zhonghua Yi Xue Za Zhi.2009 Nov 10; 89(41):2943-5.
    [68]Codaccioni JL, Velly LJ, Moubarik C, et al. Sevoflurane preconditioning against focal cerebral ischemia:inhibition of apoptosis in the face of transient improvement of neurological outcome. [J]. Anesthesiology.2009 Jun; 110(6):1271-8.
    [69]Sigaut S, Jannier V, Rouelle D, et al. The preconditioning effect of sevoflurane on the oxygen glucose-deprived hippocampal slice:the role of tyrosine kinases and duration of ischemia. [J]. Anesth Analg.2009 Feb; 108(2):601-8.
    [70]Wang J, Lei B, Popp S, et al. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. [J]. Neuroscience.2007 Mar 30; 145(3):1097-107. Epub 2007 Feb 8.
    [71]Hengartner MO. The biochemistry of apoptosis. [J]. Nature.2000 Oct 12; 407(6805):770-6.
    [72]Savill J, Fadok V. Corpse clearance defines the meaning of cell death. [J]. Nature.2000 Oct 12; 407(6805):784-8.
    [73]Kurosaka K, Takahashi M, Watanabe N, et al. Silent cleanup of very early apoptotic cells by macrophages. [J]. Immunol.2003 Nov 1; 171(9):4672-9.
    [74]Faubel, S., Edelstein, C.L., Caspases as drug targets in ischemic organ injury. [J].Current Drug Targets-Immune, Endocrine & Metabolic Disorders.2005; 5, 269-287.
    [75]Salvesen GS. Caspases and apoptosis. [J]. Essays Biochem.2002; 38:9-19.
    [76]Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. [J]. Cell.2009 Sep 4; 138(5):838-54.
    [77]Duncan JS, Turowec JP, Vilk G, et al. Regulation of cell proliferation and survival:convergence of protein kinases and caspases. [J]. Biochim Biophys Acta.2010 Mar; 1804(3):505-10. Epub 2009 Nov 10.
    [78]Mashima, T., Naito,M., Fujita, N., et al. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. [J].Biochemical and Biophysical Research Communications.1995; 217,1185-1192.
    [79]Juo, P., Kuo, C.J., Yuan, J., et al.Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. [J].Current Biology.1998; 8, 1001-1008.
    [80]Tomomi, K., Smith, J.J., Marta, M., et al. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. [J].The Journal of Biological Chemistry.1998; 273,16589-16594.
    [81]Yin, X. M. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. [J].Cell Research.2000; 10,161-167.
    [82]Allan LA, Clarke PR. Apoptosis and autophagy:Regulation of caspase-9 by phosphorylation. [J]. FEBS J.2009 Nov; 276(21):6063-73. Epub 2009 Sep 29.
    [83]Martin MC, Allan LA, Lickrish M, et al. Protein kinase. A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. [J]. J Biol Chem.2005 Apr 15; 280(15):15449-55. Epub 2005 Feb 9.
    [84]Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. [J].EMBO J.2000 Aug 15;19(16):4310-22.
    [85]Cain K. Chemical-induced apoptosis:formation of the Apaf-1 apoptosome. [J]. Drug Metab Rev.2003 Nov; 35(4):337-63.
    [86]Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome:a large caspase-activating complex. [J]. Biochimie.2002 Feb-Mar; 84(2-3):203-14.
    [87]Gaga.FH.Mammalian neural stem cell. [J].Science.2000; 287:1433-1438.
    [88]Cameron HA, Wolley CS, McEwen BS, et al.Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. [J]. Neuroscience.1993; 56:337-344.
    [89]Raineteau O, Rietschin L, Gradwohl G, et al.Neurogenesis in hippocampal slice cultures. [J].Mol Cell Neurosci.2004; 26:241-250.
    [90]Van Praag H, Schlinder AF, Christle BR,et al.Functional neurogenesis in the adult hippocampus. [J].Nature.2002; 415:1030-1034.
    [91]Schabitz W.R., Sommer C, Zoder W., et al.Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. [J].Stroke.2000; 31, 2212-2217.
    [92]Wu D. and Pardridge W.M. Neuroprotection with noninvasive neurotrophin delivery to the brain. [J].Proc. Natl. Acad. Sci. USA.1999; 96,254-259.
    [93]Palmer TD, Willhoite AR, Gage FH.Vascular niche for adult hippocampal neurogenesis. [J].Comp Neurol.2000; 425:479-494.
    [94]Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. [J].Trends Cardiovasc Med.2002 Feb; 12(2):62-6.
    [95]Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.[J].Clin Invest.2000 Oct; 106(7):829-38.
    [96]Qiu MH, Zhang R, Sun FY.2003. Enhancement of ischemia-induced tyrosine phosphorylation of Kvl.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. [J].Neurochem 87:1509-1517.
    [97]Almeida R.D., Manadas B.J., Melo C.V..Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. [J].Cell Death Differ.12,1329-1343.
    [98]Chen M.J., Nguyen T.V., Pike C.J. et al. Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. [J].Cell. Signal.2007;19,114-128.
    [99]Jin KL, Mao XO, Nagayama T,.Induction of vascular endothelial growth factor receptors and phosphati-dylinositol 3(?)-kinase/Akt signaling by global cerebral ischemia in the rat. [J].Neuroscience.2000; 100:713-717.
    [100]Jin K, Mao XO, Batteur SP,et al. Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. [J].Neuroscience.2001; 108:351-358.
    [101]Qiu MH, Zhang R, Sun FY.Enhancement of ischemia-induced tyrosine phosphorylation of Kvl.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. [J]. Neurochem.2003; 87:1509-1517.
    [102]Huang E.J. and Reichardt L.F. Trk receptors:roles in neuronal signal transduction. [J].Annu. Rev. Biochem.2003; 72,609-642.
    [103]Lu Y, Christian K. and Lu B. BDNF:a key regulator for protein synthesis-dependent LTP and long-term memory? [Jj.Neurobiol. Learn. Mem. 2008; 89,312-323.
    [104]Carvalho A.L., Caldeira M.V., Santos S.D.et al. Role of the brain-derived neurotrophic factor at glutamatergic synapses. [J]. Pharmacol.2008; 153, S310-S324.
    [105]Sala R., Viegi A., Rossi F.M., et al.Nerve growth factor and brain-derived neurotrophic factor increase neurotransmitter release in the rat visual cortex. [J]. Neurosci.1998; 10,2185-2191.
    [106]Pereira D.B., Rebola N., Rodrigues R.J.et al.Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. [J]. Neurosci. Res.2006; 83,832-844.
    [107]Jovanovic J.N., Czernik A.J., Fienberg A.A.et al.Synapsins as mediators of BDNF-enhanced neurotransmitter release. [J].Nat. Neurosci.2000; 3,323-329.
    [108]Bao WL, Lu SD, Wang H, et al. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. [J].Zhongguo Yao Li Xue Bao.1999; 20:313-318.
    [109]Yang ZJ, Bao WL, Qiu MH, et al.Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. [J].Neurosci Res.2002; 70:140-149.
    [110]Sun Y, Jin K, Xie L, et al.VEGF-induced neuroprotection, neurogenesis, and angiogenesi after focal cerebral ischemia. [J].Clin Invest.2003; 111:1843-1851.
    [1]Bigelow WG, Lindsay WK, Greenwood WE Hypothermia; its possible role in cardiac surgery:an investigation of factors governing survival in dogs at low body temperatures. [J].Ann Surg 1950;132:849-866
    [2]Goldstein A, Jr, Wells BA, Keats AS. Increased tolerance tocerebral anoxia by pentobarbital. [J].Arch Int Pharmacodyn Ther 1966; 161:138-143
    [3]Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. [J].Anesthesiology 1973; 39:510-517
    [4]Mandal PK, Pettegrew JW. Abeta peptide interactions with isoflurane, propofol, thiopental and combined thiopental with halothane:a NMR study. [J]. Biochim Biophys Acta.2008;1778(11):2633-2639.
    [5]Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass:cerebral protection by a barbiturate. [J].Anesthesiology 1986; 64:165-170.
    [6]Zaidan JR, Klochany A, Martin WM, et al. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. [J].Anesthesiology 1991; 74:406-411.
    [7]Tobias JD. Bispectral index monitoring documents burst suppression during pentobarbital coma. [J]. Intensive Care Med.2008;23(4):258-262.
    [8]Nasu I, Yokoo N, Takaoka S, et al. The dose-dependent effects of isoflurane on outcome from severe forebrain ischemia in the rat. [J].Anesth Analg 2006; 103: 413-418.
    [9]Elsersy H, Sheng H, Lynch JR, et al. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. [J].Anesthesiology 2004; 100:1160-1166.
    [10]Sakai H, Sheng H, Yates RB, et al.Isoflurane provides long-term protection against focal cerebral ischemia in the rat. [J].Anesthesiology 2007; 106:92-99.
    [11]Li L, Zuo Z. Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats.[J]. Neuroscience. 2009;164(2):497-506.
    [12]Canas PT, Velly LJ, Labrande CN, et al. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation:involvement of glutamate uptake and reactive oxygen species. [J]. Anesthesiology 2006; 105:990-998.
    [13]Elsersy H, Mixco J, Sheng H, et al. Selective gamma-aminobutyric acid type A receptor antagonism reverses isoflurane ischemic neuroprotection. [J]. Anesthesiology.2006; 105:81-90
    [14]Baxter MG, Murphy KL, Crosby G, et al. Different behavioral effects of neurotoxic dorsal hippocampal lesions placed under either isoflurane or propofol anesthesia. [J]. Hippocampus.2008;18(3):245-50.
    [15]Gray JJ, Bickler PE, Fahlman CS, et al. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca 2p and mitogen-activated protein kinases. [J].Anesthesiology 2005; 102:606-615.
    [16]Franks NP, Honore E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. [J].Trends Pharmacol Sci 2004; 25:601-608.
    [17]Wang HY, Wang GL, Yu YH, et al. The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats. [J]. Brain Res.2009;1297:177-184.
    [18]Pittman JE, Sheng H, Pearlstein RD, et al. Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarction size after temporary focal ischemia in the rat. [J]. Anesthesiology 1997; 87:1139-1144.
    [19]Bayona NA, Gelb AW, Jiang Z, et al. Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. [J]. Anesthesiology 2004; 100:1151-1159.
    [20]Adembri C, Venturi L, Pellegrini-Giampietro DE. Neuroprotective effects of propofol in acute cerebral injury. [J]. CNS Drug Rev.2007;13(3):333-351.
    [21]Drummond JC, McKay LD, Cole DJ, et al. The role of nitric oxide synthase inhibition in the adverse effects of etomidate in the setting of focal cerebral ischemia in rats. [J].Anesth Analg 2005; 100:841-846.
    [22]Hoffman WE, Charbel FT, Edelman G, et al. Comparison of the effect of etomidate and desflurane on brain tissue gases and pH during prolonged middle cerebral artery occlusion. [J].Anesthesiology 1998; 88:1188-1194.
    [23]Seyfried FJ, Adachi N, Arai T. Suppression of energy requirement by lidocaine in the ischemic mouse brain. [J].Neurosurg Anesthesiol 2005; 17:75-81.
    [24]Shokunbi MT, Gelb AW, Wu XM, et al. Continuous lidocaine infusion and focal feline cerebral ischemia. [J].Stroke 1990; 21:107-111.
    [25]Goyagi T, Nishikawa T, Tobe Y, et al. The combined neuroprotective effects of lidocaine and dexmedetomidine after transient forebrain ischemia in rats. [J]. Acta Anaesthesiol Scand.2009;53(9):1176-1183.
    [26]David HN, Haelewyn B, Rouillon C, et al. Neuroprotective effects of xenon:a therapeutic window of opportunity in rats subjected to transient cerebral ischemia. [J]. FASEB J.2008;22(4):1275-1286.
    [27]Wilhelm S, Ma D, Maze M, et al. Effects of xenon on in vitro and in vivo models of neuronal injury. [J].Anesthesiology 2002; 96:1485-1491.
    [28]Luo Y, Ma D, Ieong E, et al. Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. [J]. Anesthesiology.2008;109(5):782-789.
    [29]Dingley J, Tooley J, Porter H, et al. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. [J].Stroke 2006; 37:501-506.
    [30]Ma D, Hossain M, Chow A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. [J].Ann Neurol 2005; 58:182-193.
    [31]Ma D, Hossain M, Pettet GK, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. [J].Cereb Blood Flow Metab 2006; 26:199-208.
    [32]Basagan-Mogol E, Buyukuysal RL, Korfali G. Effects of ketamine and thiopental on ischemia reoxygenation-induced LDH leakage and amino acid release from rat striatal slices. [J]. Neurosurg Anesthesiol 2005; 17:20-26.
    [33]Himmelseher S, Durieux ME. Revising a dogma:ketamine for patients with neurological injury? [J].Anesth Analg 2005; 101:524-534.
    [34]Nagels W, Demeyere R, Van Hemelrijck J, et al. Evaluation of the neuroprotective effects of S (p)-ketamine during open-heart surgery. [J].Anesth Analg 2004; 98:1595-1603.
    [35]Westphalen RI, Hemmings HC Jr. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals:basal release. [J]. Pharmacol Exp Ther. 2006;316(1):208-215.
    [36]Zheng S, Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. [J]. Brain Res.2005;1054(2):143-151.
    [37]Bickler PE, Warner DS, Stratmann G, et al. gamma-Aminobutyric acid-Areceptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. [J].Anesth Analg 2003; 97:564-571.
    [38]Payne RS, Akca O, Roewer N, et al. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. [J]. Brain Res 2005; 1034:147-152.
    [39]Li L, Peng L, Zuo Z. Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. [J]. Pharmacol.2008;586(1-3):106-113.
    [40]Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. [J].Neuroscience 2003; 118:99-106.
    [41]Bickler PE, Fahlman CS. The inhaled anesthetic, isoflurane, enhances Ca2b-dependent survival signaling in cortical neurons and modulates MAP kinases, apoptosis proteins and transcription factors during hypoxia. [J].Anesth Analg 2006; 103:419-429.
    [42]Kitano H, Young JM, Cheng J, et al. Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. [J].Cereb Blood Flow Metab 2007; 27:1377-1386.
    [43]Patel AJ, Honore E. Anesthetic-sensitive 2P domain Kp channels. [J].Anesthesiology 2001; 95:1013-1021.
    [44]Heurteaux C, Guy N, Laigle C, et al. TREK-1, a Kb channel involved in neuroprotection and general anesthesia. [J]. Embo J 2004; 23:2684-2695.
    [45]Franks NP, Honore E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. [J].Trends Pharmacol Sci 2004; 25:601-608.
    [46]Kluska MM, Witte OW, Bolz J, et al. Neurogenesis in the adult dentate gyrus after cortical infarcts:effects of infarct location, N-methyl-D-aspartate receptor blockade and anti-inflammatory treatment. [J].Neuroscience 2005; 135:723-735.
    [47]Engelhard K, Winkelheide U, Werner C, et al. Sevoflurane affects neurogenesis after forebrain ischemia in rats. [J].Anesth Analg 2007; 104:898-903.
    [48]Lyden P, Krieger DW, Yenari MA, et al. Therapeutic hypothermia for acute stroke. [J]. Int Stroke 2006; 1:9-19.
    [49]Koda Y, Tsuruta R, Fujita M, et al. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. [J]. Brain Res. 2010;1311:197-205.
    [50]Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. [J]. Cereb Blood Flow Metab 2003; 23:513-530.
    [51]Liu L, Yenari MA. Therapeutic hypothermia:Neuroprotective mechanisms. [J]. Front Biosci 2007; 12:816-825.
    [52]Ohta H, Terao Y, Shintani Y, et al. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. [J]. Neurosci Res 2007; 57:424-433.
    [53]Webster CM, Kelly S, Koike MA, et al. Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. [J]. Neurobiol Dis.2009;33(2):301-312.
    [54]Zhao H, Shimohata T, Wang JQ, et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. [J]. Neurosci.2005; 25:9794-9806.
    [55]Van der Worp HB, Sena ES, Donnan GA, et al.Hypothermia in animal models of acute ischaemic stroke:A systematic review and meta-analysis. [J]. Brain 2007; 130:3063-3074。
    [56]Baird TA, Parsons MW, Phanh T, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. [J].Stroke 2003; 34:2208-2214.
    [57]Gentile NT, Seftchick MW, Huynh T, et al. Decreased mortality by normalizing blood glucose after acute ischemic stroke. [J]. Acad Emerg Med 2006; 13: 174-180
    [58]Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury, effect on ischemic burden and cerebral oxidative metabolism. [J]. Crit Care Med 2007; 35:568-578
    [59]Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury:a randomized clinical trial. [J]. Neurosurg 1991; 75:731-739
    [60]62 Simard D, Paulson OB. Artifical hyperventilation in stroke. [J]. Trans Am Neurol Assoc 1973; 98:309-310
    [61]Klinger G, Beyene J, Shah P, et al. Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? [J]. Arch Dis Child Fetal Neonatal Ed 2005; 90:F49-52
    [62]Veltkamp R, Sun L, Herrmann O, et al. Oxygen therapy in permanent brain ischemia:potential and limitations. [J]. Brain Res 2006; 1107:185-191.
    [63]Vereczki V, Martin E, Rosenthal RE, et al. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. [J].Cereb Blood Flow Metab 2006; 26:821-835.
    [64]Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. [J].National Acute Spinal Cord Injury Study. JAMA 1997; 277:1597-1604.
    [65]Jastremski M, Sutton-Tyrrell K, Vaagenes P, et al.Glucocorticoid treatment does notimprove neurological recovery following cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. [J]. JAMA 1989; 262:3427-3430
    [66]Cheng MY, Sun G, Jin M, et al. Blocking glucocorticoid and enhancing estrogenic genomic signaling protects against cerebral ischemia. [J]. Cereb Blood Flow Metab.2009;29(1):130-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700