胺碘酮与抗心律失常肽合用对陈旧心肌梗死兔心缝隙连接和室性心律失常诱发率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陈旧心肌梗死或心力衰竭并发的恶性心律失常是临床最常见的死亡原因之一。目前抗心律失常药物疗效并不能令人满意,而且抗心律失常药物常常带来致心律失常的问题。折返参与了大多数心律失常的发生和维持。折返激动得以维持的条件是心脏激动的波长(传导速度×有效不应期)一定要小于解剖学上的折返路径。因此增快传导速度或延长不应期理论上都能抑制折返的形成。目前延长不应期的药物主要通过Ⅲ类抗心律失常药物延长心肌细胞的动作电位实现,但Ⅲ类抗心律失常药物常常增加心肌的复极离散度而导致尖端扭转型室速的发生。缝隙连接是细胞间特殊的离子通道,对细胞间小分子物质交换和电信号的传导有重要意义。缝隙连接失偶联参与了跨室壁复极离散度的形成。多种器质性心脏病可以出现缝隙连接的重构,表现为缝隙连接蛋白表达减少,缝隙连接从心肌细胞间端端分布转变为侧侧分布,这些情况都造成缝隙连接功能的下降,导致传导的减慢和复极离散度的增加,从而产生致心律失常的基质。缝隙连接增效剂的研发为心律失常的治疗开辟了新的方向。许多研究证实缝隙连接增效剂可以抑制心律失常。我们设想缝隙连接增效剂加快传导,Ⅲ类抗心律失常药物延长不应期,这两种药物优势互补,可以通过抑制折返起到抗心律失常的协同作用。本研究利用陈旧心肌梗死兔楔形心肌块体外灌流制备室性心律失常模型,采用2×2析因设计方法,研究缝隙连接增效剂与Ⅲ类抗心律失常药物胺碘酮合用预防室性心律失常的效果。
     第一部分陈旧心肌梗死模型兔的制作
     目的制备适用于离体灌流的陈旧心肌梗死模型兔。研究改性壳聚糖防粘连膜预防心脏与周围组织粘连的效果。观察捶击复律对急性心肌梗死兔早期原发性室颤的效果。
     方法日本长耳兔200只,随机分为假手术组20只(A组)和心肌梗死模型组180只,假手术组开胸后不结扎冠脉直接关胸,心肌梗死模型组开胸结扎冠脉左旋支的左室支制作心肌梗死模型,对急性心肌梗死造模过程中的原发性心室颤动采取心前区捶击,观察复律效果。实验中随机选择25只兔子术中加用改性壳聚糖防粘连膜以预防心脏与周围组织粘连,三月后分别行磁共振电影和二次开胸评价粘连程度。心肌梗死模型组术后存活160只。术后8周末,再将存活的124只心肌梗死兔随机分为对照组31只(B组)、胺碘酮组31只(C组)、抗心律失常肽组31只(D组)、胺碘酮+抗心律失常肽组31只(E组)。第9周开始给A组、B组及D组口饲生理盐水2ml QD×4周,给C组及E组口饲含胺碘酮100mg/Kg的生理盐水2ml QDx4周。12周末A、B、C、D、E组各存活20、24、26、25、27只。行超声心动图评价心功能。
     结果开胸结扎兔左旋支左室主支,制备心肌梗死兔模型成功率高,三月后示心肌梗死兔射血分数较假手术兔明显减低。磁共振电影可以评价心脏与周围组织粘连。术中置入防粘连膜兔心脏与周围组织粘连程度较轻。心前区捶击对急性心肌梗死兔早期原发性室颤有复律效果。
     结论开胸结扎兔左旋支的左室主支可制备陈旧心肌梗死兔模型,术后3月心功能明显降低。改性壳聚糖防粘连膜可以防止心脏与周围组织粘连。心前区捶击对急性心肌梗死兔早期原发性室颤有复律效果。
     第二部分胺碘酮与抗心律失常肽合用对陈旧心肌梗死兔缝隙连接蛋白Cx43和室性心律失常诱发率的影响
     目的研究胺碘酮与心律失常肽合用是否能增强抗心律失常的疗效。
     方法麻醉后将各组兔子处死,取左室心肌块动脉插管灌流,A组、B组及C组灌流台氏液,D组及E组灌流加入抗心律失常肽(AAP10)500 nmol/L的台氏液,程序刺激起搏心肌,并记录容积心电图、室性心律失常诱发与否及QT、QRS、ERP、Tpe、等电生理参数,计算Tpe/QT。灌流完成后取心肌组织,利用westernblot和免疫荧光技术检测缝隙连接蛋白Cx43。组间计数资料统计分析采用bonferroni方法校正的卡方检验或精确检验,以P<0.005为差异有统计学意义。A组和其他组间计量资料统计分析采用完全随机设计资料的方差分析。B、C、D、E组间计量资料采用析因设计的方差分析,以评价两种药物之间的交互作用,以P<0.05为差异有统计学意义。
     结果A、B、C、D、E组心律失常诱发率分别为0%、62.5%、40%、26.9%、22.2%,E组较B组诱发率减小。B组较A组Tpe/QT增大,E组较B组Tpe/QT减小。B组较A组Cx43表达明显减少。C、E组较B组Cx43表达增加。差异有统计学意义。
     结论陈旧心肌梗死兔离体心肌块模型可用于室性心律失常的研究。胺碘酮慢性应用能上调心肌梗死兔心Cx43,与AAP10合用上调心肌梗死兔Cx43作用加强,并进一步减小Tpe/QT,抗心律失常作用进一步加强。
The death due to arrhythmias is one of the leading causes of death in the world, but current antiarrhythmias were limited by unsatisfactory effect and adverse effects such as proarrhythmias. Reentry mechanism play an important role for persistence of arrhythmias. Only reentry can continue when reentry path-length is longer than cardiac wavelength which equal to product of conduction velocity and effective refractory period. Class 3 drugs prolong effective refractory period with a augmented transmural dispersion of repolarization (TDR), so classⅢdrugs can be proarrhythmic sometimes. Gap junction is very important for the conduction of electrical signals between adjacent myocytes, which provide the electrical coupling channels of low resistance.Gap junction uncoupling associate with proarrhythmic conduction velocity slowing and dispersion of depolarization increasing in many cardiac diseases. Gap junction enhancer antiarrhythmia peptide (AAP10) can improve intercelluar communication and enhances gap junction conductance, so it can augment conduction velocity and diminish TDR. By compensating with each other, gap junction enhancer combined with class 3 drugs may be a promising antiarrhythmic method.
     In the present study, we used healed myocardial infarction rabbit models to study the effect of combination of AAP10 and Amiodarone on the cardiac gap junctions and incidence of ventricular arrhythmias.
     PartⅠPreparation of healed myocardial infarction rabbit models
     Objective To preparation of healed myocardial infarction rabbit models with heart failure.To evaluate the efficacy of a chemically modified chitosan anti-adhesion membrane for preventing postoperative pericardial adhesions in rabbit myocardial infarction model. To determine the effect of precordial thumps on terminating early primary ventricular fibrillation in a rabbit model of acute myocardial infarction.
     Methods 20 Japanese rabbits was performed thoracotomy without coronary artery ligation (A group),180 Japanese rabbits were ligated the middle piece of the left circumflex branch to prepare the myocardial infarction models. Nine weeks after operation,124 survived myocardial infarction rabbitss were divided into four groups:control group 31 (B group), amiodarone group 31 (C group), AAP10 group 31 (D group) and amiodarone combined with AAP10 group 31(E group). The A and B and D groups were treated with saline 2 ml per day at 8 weeks after operation, the C and E groups were treated with saline 2 ml containded with amiodarone 100mg/Kg per day. All rabbits were examined by echocardiogram 12 weeks after operation.
     The rabbit acute myocardial infarction models with primarily ventricular fibrillation on the surgical bench were divided into two groups. One group was given a sharp precordial thump immediately within two minutes after the onset of ventricular fibrillation. Another group was given heart massage or precordial massage. The effect of precordial thump on ventricular fibrillation were recorded. The statistically significant difference was assessed by Fisher's exact test.
     Besides,25 Japanese White Rabbits were randomly selected and devided into anti-adhesion membrane group and control group randomly, After thoracotomy and ligation of the middle piece of the left circumflex branch, The treatment group had a chitosan anti-adhesion membrane placed between the heart and retrosternal injured surfaces while control group received nothing. Then Chest was subsequently closed.11 rabbits survived the operation in each group. After a period of 3 months, The alive animals were examined by Cine magnetic resonance imaging then sacrificed under anesthesia, the formation of pericardial adhesions by magnetic resonance cinema and histological anatomy respectively were graded. Data were analyzed by Wilcoxon's rank test.
     Results
     Echocardiogram showed that in 102 surviving rabbits with healed myocardial infarction, left ventricular internal diastolic diameter (LVIDd) increased significantly,as did left ventricular internal systolic diameter (LVIDs), and the difference between LVIDd and LVIDs. Mean SF decreased, compared with 20 surviving sham operation rabbits. Amiodarone had no effect on heart construction and function.
     Cine magnetic resonance imaging evaluation of adhesion level, anti-membrane group of mild adhesions, moderate adhesions, severe adhesions, were 2,2,4 respectively; control group were 7,2,0 respectively. The difference was statistically significant (P<0.05). Thoracotomy evaluation of adhesion levels, A group of no adhesions, mild adhesions, moderate adhesions, severe adhesions, were 1,1,2,4 respectively; B group were 3,4,2, 0 respectively. The difference was statistically significant (P<0.05).
     There were 15 rabbits developed ventricular fibrillation on the bench after ligation of the middle piece of the left circumflex branch.5 rabbits was successfully defibrillated by a sharp precordial thump in 8 rabbits (62.5%).7 rabbits died after heart massage or precordial massage. The difference was statistically significant.
     Conclusion The healed myocardial infarction rabbit model could be prepared by ligation of the middle piece of the left circumflex branch. Heart function of these models decreased three months after operation. Placement of a chemically modified chitosan anti-adhesion membrane between injured surfaces effectively reduced the formation of postoperative pericardial adhesion in rabbits of myocardial infarction model.Precordial thump was effective on terminating early primary ventricular fibrillation in a rabbit model of acute myocardial infarction.
     Part II Effects of combination of amiodarone and antiarrhythmic peptide on the gap junctions and incidence of ventricular arrhythmias in healed myocardial infarction models
     Objective the aim of this study is to testify the effect of combination amiodarone with antiarrhythmic peptide (AAP10) on the incidence of ventricular arrhythmiams in healed myocardial infarction rabbits.
     Methods All rabbits were anesthetized by sodium barbital, then the left wedge ventricular preparations were cannulated and artery perfused by Tyrode's solution in vitro. The volume electrocardiogram, QT Interval, QRS intervial, effective refractory period (ERP), the T-peak to T-end interval (Tp-e), and ventricular tachycardia episodes induced by programmed stimulation was recorded. The Tp-e/QT ratio was calculated. After perfusion, westernblot and immunofluorescence of gap junctions protein connexin 43(Cx43) were performed. The analysis method was bonferroni corrected chi square test or Fisher's exact test, one-way anova, and factorial design analysis.
     Results The incidence of ventricular tachycardia episodes of E group was less than B group. The Tp-e/QT ratio in B, C, D group were greater than A group, The Tp-e/QT ratio of E group was less than B group. The Cx43 in the heart of B group was downregulated and disorganized compared to A groups. However, The Cx43 in the heart of C, E group was upregulated compared to B group. The Cx43 in the heart of E group was upregulated compared to D group. The Cx43 in the heart of D, E group were well organized than B, C group.
     Conclusions The artery perfused rabbits wedge preparations with healed myocardial infarction which demonstrated high incidence of induced ventricular tachycardia episodes could be a good platform for research on Ventricular arrhythmias. Amiodarone and AAP10 decreased the Tp-e/QT ratio and the incidence of induced ventricular tachycardia episodes. Amiodarone and AAP10 have synergistic effects on Upregulating Cx43 and prevention of ventricular arrhythmias in a rabbit model of healed myocardial infarction.
引文
[1]Masanori Fujita, Yuji Morimoto, Yuji Morimoto. A new rabbit model of myocardial infarction without endotracheal intubation. Journal of Surgical Research,2004, 116:124-128.
    [2]Bayes de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J,1989;117:151-159.
    [3]2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3:Overview of CPR. Circulation, 2005;112;Ⅳ-12-Ⅳ-18.
    [4]Schott E. Uber Ventrikelstillstand (Adams-Stokes'sche Anfalle) nebst Bemerkemgen uber andersartige Arhythmien passagerer. Deutsches Arch Klin Med,1920; 131:211-229.
    [5]Scherf D, Bornemann C. Thumping of the precordium in ventricular standstill. Am J Cardiol,1960;5:30-40.
    [6]Harwood-Nash DCF. Thumping of the precordium in ventricular fibrillation. S Afr MedY,1962;36:280-281.
    [7]Pennington JE, Taylor J, Lown B. Chest thump for reverting ventricular tachycardia. NEngl JMed,1970;283:1192-1195.
    [8]Zoll PM, Belgard AH, Weintraub MJ, et al. External mechanical cardiac stimulation. N Engl J Med,1976; 294:1274-1276.
    [9]Miller J, Tresch D, Horwitz L, et al. The precordial thump. Ann Emerg Med, 1984;13(9Pt2):791-794.
    [10]Caldwell G, Millar G, Quinn E, et al. Simple mechanical methods for cardioversion: defence of the precordial thump and cough version. Br Med J (Clin Res Ed), 1985;291(6496):627-630.
    [11]ALS,Working Party of the ERC. Guidelines for advanced life support. Resuscitation, 1992;24:111-122.
    [12]2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 7.2:Management of Cardiac Arrest. Circulation, 2005;112[SupplⅠ]:Ⅳ-58-66.
    [13]Nolan JP, Deakin CD, Soar J, et al. European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation,67(Suppl.1), S39-S86.
    [14]吴海东,杨鹰,王彤,等.胸前捶击治疗猪试验性室颤研究.中原医刊,2006:33(24): 19-20.
    [15]Amir O, Schliamser JE, Nemer S, et al. Ineffectiveness of Precordial Thump for Cardioversion of Malignant Ventricular Tachyarrhythmias. PACE,2007; 30:153-156.
    [16]Haman L, Parizek P, Vojacek J. Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation,2009;80:14-17.
    [17]Pellis T, Kette F, Lovisa D, et al. Utility of precordial thump for treatment of out of hospital cardiac arrest:a prospective study. Resuscitation,2009;80:18-24.
    [18]Pellis T, Kohl P. Extracorporeal cardiac mechanical stimulation:precordial thump and precordial percussion. Br Med Bull, [Epub ahead of print 2009; 0:1dp045v1-1dp045]
    [19]Maron BJ, Poliac LC, Kaplan JA, et al. Blunt impact to the chest leading to sudden death from cardiac arrest during sports activities. New Engl J Med,1995;333:337-342.
    [20]Osorio J, DosdallDJ, Robichaux RP, Tabereaux PB, Ideker RE. In a swine model, chest compressions cause ventricular capture and, by means of a long-short sequence. ventricular fibrillation. Circul:Arrhythmia Electrophysiol 2008; 1:282-289.
    [21]Leak LV, Ferrans VJ, Cohen SR, Eidbo EE, Jones M. Animal model of acute pericarditis and its progression to pericardial fibrosis and adhesions:ultrastructural studies. Am JAnat,1987,180:373-390.
    [22]Saed GM, Diamond MP. Molecular characterization of postoperative adhesions:the adhesion phenotype. J AmAssoc Gynecol Laparosc,2004,11:307-314.
    [23]Olov Duvernoy, Torsten Malm, Karl-Ake. Thuomas CT and MR Evaluation of Pericardial and Retrosternal Journal of Computer Assisted Tomography,1991, 15:555-560.
    [24]Ichiro Yoshioka, Yoshikatsu Saiki, Azusa Ichinose. Tagged cine magnetic resonance imaging with a finite element model can predict the severity of retrosternal adhesions prior to redo cardiac surgery. J Thorac Cardiovasc Surg,2009,137:957-962.
    [25]Yuji Naito, Toshiharu Shin'oka, Narutoshi Hibino. A novel method to reduce pericardial adhesion:A combination technique with hyaluronic acid biocompatible membrane. J Thorac Cardiovasc Surg,2008,135:850-856.
    [26]徐海涛,袁先厚,马金阳,等.壳聚糖及衍生物与大鼠脑的生物相容性研究.中华实验外科杂志,2005,22:463-464.
    [27]Chou TC, Fu E, Wu CJ, Yeh JH. Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun,2003,302:480-483.
    [28]Ong SY, Wu J, Moochhala SM, Tan MH, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. J.Biomaterials,2008,29:4323-4332.
    [29]Obara K, Ishihara M, Fujita M, et al. Acceleration of wound healing in healing-impaired mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. Wound Repair Regen,2005,13:390-397.
    [30]Okamura Y, Nomura A, Minami S, et al. Effects of chitin/chitosan and their oligomera/monomers on release of type I collagenase from fibroblasts. Biomacromolecules,2005,6:2382-2384.
    [31]张抒,侯春林,曹永成,等.壳聚糖膜预防椎板切除术后硬膜周围粘连的实验研究.中华实验外科杂志,1999,16:464-465.
    [32]Zhou J, Liwski RS, Elson C, Lee TD. Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N,O-carboxymethyl chitosan to block cell adherence. J Thorac Cardiovasc Surg,2008,135:777-783.
    [1]Wang D, Patel C, Cui C, Yan GX. Preclinical assessment of drug-induced proarrhythmias:role of the arterially perfused rabbit left ventricular wedge preparation. Pharmacol Ther.2008;119:141-51.
    [2]McLachlan CS, McGuire MA. Characterization and incidence of inducible monomorphic ventricular tachycardia in a postinfarction rabbit model. J Electrocardiol. 2007;40:89-93.
    [3]Takahara A, Sugiyama A, Ishida Y, Satoh Y, Wang K, Nakamura Y, Long-term bradycardia caused by atrioventricular block can remodel the canine heart to detect the histamine HI blocker terfenadine-induced torsades de pointes arrhythmias. Br J Pharmacol.2006Mar;147(6):634-41.
    [4]Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004;84:431-88
    [5]Roden DM, Viswanathan PC. Genetics of acquired long QT syndrome. J Clin Invest 2005;115:2025-32.
    [6]Kj(?)lbye AL, Holstein-Rathlou NH, Petersen JS. Anti-arrhythmic peptide N-3-(4-hydroxyphenyl)propionyl Pro-Hyp-Gly-Ala-Gly-OH reduces dispersion of action potential duration during ischemia/reperfusion in rabbit hearts. J Cardiovasc Pharmacol.2002;40:770-9.
    [7]Lesh MD, Pring M, Spear JF. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Circ Res
    1989;65:1426-40.
    [8]Conrath CE, Wilders R, Coronel R, et al. Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovasc Res.2004;62:407-14.
    [9]Grover R, Dhein S. Structure-activity relationships of novel peptides related to the antiarrhythmic peptide AAP10 which reduce the dispersion of epicardial action potential duration. Peptides 2001;22:1011-21.
    [10]Antzelevitch C. T peak-Tend interval as an index of transmural dispersion of repolarization. Eur J Clin Invest 2001;31:555-7.
    [11]Gupta P, Patel C, Patel H, et al. Tp-e/QT ratio as an index of arrhythmogenesis. Journal ofElectrocardiology2008,41(6):567-74
    [12]Yamaguchi M, Shimizu M, Ino H et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome:A new index for arrhythmogenicity. Clin Sci (Lond), 2003; 105:671-676.
    13] Anttonen O, V??n?nen H, Junttila J et al. Electrocardiographic transmural dispersion of repolarization in patients with inherited short QT syndrome. Ann Noninvasive Electrocardiol.2008 Jul;13(3):295-300.
    [14]van Rijen HV, de Bakker JM, van Veen TA. Hypoxia, electrical uncoupling, and conduction slowing:Role of conduction reserve. Cardiovasc Res 2005;66:9-11
    [15]De Groot JR and Coronel R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis. Cardiovasc Res.2004;62:323-34.
    [16]Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res.2004;95:717-25.
    [17]Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 1997, 95:988-96.
    [18]Jin H, Lyon AR, Akar FG Arrhythmia Mechanisms in the Failing Heart. Pacing Clin Electrophysiol.2008; 31:1048-56
    [19]Haugan K, Olsen KB, Hartvig L, et al. The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J Cardiovasc Electrophysiol
    2005;16:537-45.
    [20]Xing D, Kj?lbye AL, Nielsen MS, et al. ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 2003;14:510-20.
    [21]Zhong JQ, Laurent G, So PP, Hu X, Herman JK, Dorian P. Effects of Rotigaptide, a Gap Junction Modifier, on Defibrillation Energy and Resuscitation From Cardiac Arrest in Rabbits. J Cardiovasc Pharmacol Ther. 2007; 12:69-77.
    [22]Laurent G, Leong-Poi H, Mangat I, et al. Effects of Chronic Gap Junction Conduction-Enhancing Antiarrhythmic Peptide GAP-134 Administration on Experimental Atrial Fibrillation in Dogs. Circ Arrhythm Electrophysiol 2009;2:171-8
    [23]Hennan JK, Swillo RE, Morgan GA, et al. GAP-134 ([2S,4R]-l-[2-Aminoacetyl] 4-Benzamidopyrrolidine-2-Carboxylic Acid) Prevents Spontaneous Ventricular Arrhythmias and Reduces Infarct Size During Myocardial Ischemia/Reperfusion Injury in Open-Chest Dogs. J Cardiovasc Pharmacol Ther 2009;14:207-14.
    [24]Butera JA, Larsen BD, Hennan JK, et al. Discovery of (2S,4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid hydrochloride (GAP-134) 13, an orally active small molecule gap-junction modifier for the treatment of atrial fibrillation. J Med Chem.2009;52:908-11.
    [25]Easton JA, Petersen JS, Martin PE. The anti-arrhythmic peptide AAP10 remodels Cx43 and Cx40 expression and function. Naunyn Schmiedebergs Arch Pharmacol 2009;80:11-24.
    [26]Stahlhut M, Petersen JS, Hennan JK, Ramirez MT. The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 2006; 13:21-7.
    [27]孙萌,张存泰,贺莉等.缝隙连接开放剂在肥厚心肌心律失常中的作用。临床心血管病杂志,2008,24:165-8
    [28]Lengyel C, Varro A, Tabori K, et al. Combined pharmacological block of I(Kr) and I(Ks) increases short-term QT interval variability and provokes torsades de pointes. Br J Pharmacol.2007;151(7):941-51
    [29]Wen H, Jiang H, Lu Z,et al. Carvedilol Ameliorates the Decreases in Connexin 43 and Ventricular Fibrillation Threshold. Tohoku J Exp Med.2009;218(2):121-7.
    [1]Jin H, Lyon AR, Akar FG. Arrhythmia Mechanisms in the Failing Heart. PACE 2008; 31:1048-1056.
    [2]Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic Ion-Channel Remodeling in the Heart:Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol Rev. 2007;87(2):425-56
    [3]Friedman PL, Fenoglio JJ, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res 36:127-144,1975.
    [4]De Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE, Dingemans KP, van Hemel NM, Hauer RN. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease:electrophysiologic and anatomic correlation. Circulation 77:589-606,1988.
    [5]Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res 63:182-206,1988
    [6]Mehra R, Zeiler RH, Gough WB, El-Sherif N. Reentrant ventricular arrhythmias in the late myocardial infarction period.9. Electrophysiologic-anatomic correlation of reentrant circuits. Circulation 67:11-24,1983.
    [7]Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049-1069,1989.
    [8]Friedman PL, Fenoglio JJ, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res 36:127-144,1975.
    [9]Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 85:1175-1188,1992.
    [10]Dun W, Baba S, Yagi T, Boyden PA. Dynamic remodeling of K+and Ca2+currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol 287:H1046-H1054,2004
    [11]Jiang M, Cabo C, Yao J, Boyden PA, Tseng G. Delayed rectifier K+currents have
    reduced amplitudes and altered kinetics in myocytes from infarcted canine ventricle. Cardiovasc Res 48:34-43,2000.
    [12]Kaprielian R, Sah R, Nguyen T, Wickenden AD, Backx PH. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K+currents, [Ca2+]i transients. Am J Physiol Heart Circ Physiol 283:H1157-H1168,2002.
    [13]Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, el-Sherif N. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res 79: 461-473,1996.
    [14]Liu N, Niu H, Li Y, Zhang C, Zhou Q, Ruan Y, Pu J, Lu Z. The changes of potassium currents in rabbit ventricle with healed myocardial infarction. J Huazhong Univ Sci Technolog Med Sci 24:128-131,2004.
    [15]Rozanski GJ, Xu Z. Glutathione and K+channel remodeling in postinfarction rat heart. Am J Physiol Heart Circ Physiol 282:H2346-H2355,2002.
    [16]Huang B, Qin D, El-Sherif N. Spatial alterations of Kv channels expression and K(+)currents in post-MI remodeled rat heart. Cardiovasc Res 52:246-254,2001.
    [17]Bers DM. Cardiac excitation-contraction coupling. Nature 415:198-205,2002.
    [18]Dun W, Baba S, Yagi T, Boyden PA. Dynamic remodeling of K+and Ca2+currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol 287:H1046-H1054,2004.
    [19]Pinto JM, Yuan F, Wasserlauf BJ, Bassett AL, Myerburg RJ. Regional gradation of L-type calcium currents in the feline heart with a healed myocardial infarct. J Cardiovasc Electrophysiol 8:548-560,1997.
    [20]Aggarwal R, Boyden PA. Diminished Ca2+and Ba2+currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart. Circ Res 77:1180-1191, 1995.
    [21]Dun W, Baba S, Yagi T, Boyden PA. Dynamic remodeling of K+and Ca2+currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol 287:H1046-H1054,2004.
    [22]Boyden PA, Pinto JM. Reduced calcium currents in subendocardial Purkinje myocytes that survive in the 24-and 48-hour infracted heart. Circulation 89:2747-2759,1994
    [23]Licata A, Aggarwal R, Robinson RB, Boyden P. Frequency dependent effects on Cai
    transients and cell shortening in myocytes that survive in the infarcted heart. Cardiovasc Res 33:341-350,1997.
    [24]Kim YK, Kim SJ, Kramer CM, Yatani A, Takagi G, Mankad S, Szigeti GP, Singh D, Bishop SP, Shannon RP, Vatner DE, Vatner SF. Altered excitation-contraction coupling in myocytes from remodeled myocardium after chronic myocardial infarction. J Mol Cell Cardiol 34:63-73,2002.
    [25]Boyden PA, Barbhaiya C, Lee T, ter Keurs HE. Nonuniform Ca2+transients in arrhythmogenic Purkinje cells that survive in the infarcted canine heart. Cardiovasc Res 57:681-693,2003.
    [26]Boyden PA, Dun W, Barbhaiya C, ter Keurs HE.2APB-and JTV519(K201)-sensitive micro Ca2+waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm 1:218-226,2004.
    [27]Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049-1069,1989.
    [28]Pu J, Boyden PA. Alterations of Na+currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. CircRes 81:110-119,1997.
    [29]Baba S, Dun W, Cabo C, Boyden PA. Remodeling in cells from different regions of the reentrant circuit during ventricular tachycardia. Circulation 112:2386-2396,2005.
    [30]Huang B, El-Sherif T, Gidh-Jain M, Qin D, El-Sherif N. Alterations of sodium channel kinetics and gene expression in the postinfarction remodeled myocardium. J Cardiovasc Electrophysiol 12:218-225,2001.
    [31]Fukuda K, Davies SS, Nakajima T, Ong BH, Kupershmidt S, Fessel J, Amarnath V, Anderson ME, Boyden PA, Viswanathan PC, Roberts LJ 2nd, Balser JR. Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ Res 97:1262-1269,2005.
    [32]Nattel S, Pedersen DH, Zipes DP. Alterations in regional myocardial distribution and arrhythmogenic effects of aprindine produced by coronary artery occlusion in the dog. Cardiovasc Res 15:80-85,1981.
    [33]Peters NS. Myocardial gap junction organization in ischemia and infarction. Microsc Res Tech 31:375-386,1995.
    [34]Green CR, Severs NJ. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry 1993;99:105-20
    [35]Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T. Remodeling of cell-cell and cellextracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85:1046-1055,1999
    [36]Yao JA, Hussain W, Patel P, Peters NS, Boyden PA, Wit AL. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts. Circ Res 92:437-443,2003.
    [37]Yao JA, Hussain W, Patel P, Peters NS, Boyden PA, Wit AL. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts. Circ Res.2003 Mar 7;92(4):437-43.
    [38]Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95: 988-996,1997.
    [39]Cabo C, Yao J, Boyden PA. Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct. Cardiovasc Res. 2006Nov1;72(2):241-9
    [40]Wen H, Jiang H, Lu Z, He B, Hu X, Chen J, Zhao D. Carvedilol ameliorates the decreases in connexin 43 and ventricular fibrillation threshold in rats with myocardial infarction. Tohoku J Exp Med.2009;218(2):121-7.
    [41]Lindsey ML, Escobar GP, Mukherjee R, Goshorn DK, Sheats NJ, Bruce JA. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation.2006 Jun 27;113(25):2919-28
    [42]Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A.Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res.2009;104(9):1103-12.
    [43]Kjekshus J. Arrhythmias and mortality in congestive heart failure. Am J Cardiol 1990;65:421-481.
    [44]Ehrlich JR, Nattel S, Hohnloser SH. Atrial fibrillation and congestive heart failure: specific considerations at the intersection of two common and important cardiac disease sets. J Cardiovasc Electrophysiol 13:399-405,2002.
    [45]Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208-217,2004.
    [46]Nattel S, Khairy P, Schram G. Arrhythmogenic ionic remodeling:adaptive responses with maladaptive consequences. Trends Cardiovasc Med 11:295-301,2001.
    [47]Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208-217,2004.
    [48]Nuss HB, Kaab S, Kass DA, Tomaselli GF, Marban E. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol Heart Circ Physiol 277:H80-H91,1999.
    [49]El-Sherif N, Turitto G. The long QT syndrome and torsade de pointes. Pacing Clin Electrophysiol 22:91-110,1999.
    [50]Choy AM, Lang CC, Chomsky DM, Rayos GH, Wilson JR, Roden DM. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation 96: 2149-2154,1997.
    [51]Peters NS. Myocardial gap junction organization in ischemia and infarction. Microsc Res Tech 31:375-386,1995.
    [52]Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48: 300-309,2000.
    [53]Nattel S, Quantz MA. Pharmacological response of quinidine induced early afterdepolarisations in canine cardiac Purkinje fibres:insights into underlying ionic mechanisms. Cardiovasc Res 22:808-817,1988.
    [54]Roden DM. Taking the "idio" out of "idiosyncratic":predicting torsades de pointes. Pacing Clin Electrophysiol 21:1029-1034,1998.
    [55]Tsuji Y, Zicha S, Qi XY, Kodama I, Nattel S. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia:discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation 113: 345-355,2006.
    [56]Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure:roles of sodium-calcium exchange, inward rectifier potassium current, residual beta-adrenergic responsiveness. Circ Res 88: 1159-1167,2001.
    [57]Napolitano C, Rivolta I, Priori SG. Cardiac sodium channel diseases. Clin Chem Lab Med 41:439-444,2003.
    [58]Ouadid H, Albat B, Nargeot J. Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25:282-291,1995
    [59]He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R, Kamp TJ. Reduction in density of transverse tubules and L-type Ca2+channels in canine tachycardia-induced heart failure. Cardiovasc Res 49:298-307,2001.
    [60]Chen X, Piacentino V 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91:517-524,2002.
    [61]Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH, Weil J, Herzig S. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98:969-976,1998.
    [62]Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592-594,2003.
    [63]Gaburjakova M, Gaburjakova J, Reiken S, Huang F, Marx SO, Rosemblit N, Marks AR. FKBP12 binding modulates ryanodine receptor channel gating. J Biol Chem 276: 16931-16935,2001.
    [64]Huang F, Shan J, Reiken S, Wehrens XH, Marks AR. Analysis of calstabin2 (FKBP12.6)-ryanodine receptor interactions:rescue of heart failure by calstabin2 in mice. Proc Natl Acad Sci USA 103:3456-3461,2006.
    [65]Marks AR. Novel therapy for heart failure and exercise-induced ventricular tachycardia based on'fixing'the leak in ryanodine receptors. Novartis Found Symp. 2006;274:132-47; discussion 147-55,272-6.
    [66]Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN. Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am J Physiol Heart Circ Physiol 285:H2373-H2381, 2003.
    [67]Sande JB, Sjaastad I, Hoen IB, Bokenes J, Tonnessen T, Holt E, Lunde PK, Christensen G. Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium:a major contributor to reduced SERCA2 activity. Cardiovasc Res 53:382-391,2002.
    [68]Jiang MT, Lokuta AJ, Farrell EF, Wolff MR, Haworth RA, Valdivia HH. Abnormal Ca2+release, but normal ryanodine receptors,in canine and human heart failure. Circ Res 91:1015-1022,2002.
    [69]Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+leak in heart failure. Circ Res 97:1314-1322,2005.
    [70]O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies. Circ Res 1999; 84:562-570.
    [71]Hobai IA, Maack C, O'Rourke B. Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ Res 95:292-299,2004.
    [72]Vermeulen JT, McGuire MA, Opthof T, Coronel R, de Bakker JM, Klopping C, Janse MJ. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 28:1547-1554,1994.
    [73]De Mello WC. Cell coupling and impulse propagation in the failing heart. J Cardiovasc Electrophysiol 10:1409-1420,1999.
    [74]Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359-371,2001.
    [75]Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, Wang Y. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res 91:640-647,2002.
    [76]Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 2004;62:426-36.
    [77]Gutstein DE, Morley GE, Vaidya D, Liu F, Chen FL, Stuhlmann H, Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation.2001;104(10):1194-9.
    [78]Gutstein DE, Danik SB, Lewitton S, France D, Liu F, Chen FL. Focal gap junction uncoupling and spontaneous ventricular ectopy. Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1091-8.
    [79]Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Tada M, Hori M. Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ Res 85:672-681,1999.
    [80]Ai X, Pogwizd SM. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54-63,2005.
    [81]Spragg DD, Leclercq C, Loghmani M, Faris OP, Tunin RS, DiSilvestre D, McVeigh ER, Tomaselli GF, Kass DA. Regional alterations in protein expression in the dyssynchronous failing heart. Circulation 108:929-932,2003.
    [82]Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M. Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. Cardiovasc Electrophysiol 13:865-870,2002.
    [83]Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359-371,2001.
    [84]Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95:717-725,2004.
    [85]Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287:H1762-H1770,2004.
    [86]Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res.2004 Oct 1;95(7):717-25.
    [87]Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG.et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol.2007;293(2):1223-30
    [88]Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, et al. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 1998;97:651-60.
    [89]van Rijen HV, van Veen TA, Gros D, Wilders R, de Bakker JM. Connexins and cardiac arrhythmias. Adv Cardiol.2006;42:150-60
    [90]van Veen TA, Stein M, Royer A, Le Quang K, Charpentier F, Colledge WH, et al. Impaired impulse propagation in Scn5a-knockout mice combined contribution of excitability, connexin expression, and tissue architecture in relation to aging. Circulation 2005;112:1927-35
    [91]Jansen JA, van Veen AA, Bosch AA, van der Nagel R, Vos MA, de Bakker JM, et al. Arrhythmia vulnerability of aged haploinsufficient Cx43 mice is determined by heterogeneous downregulation of Cx43 combined with increased fibrosis. Circulation 2008;118:S494.
    [92]Sanders P, Kistler PM, Morton JB, Spence S J, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure:reduction in sinus node reserve. Circulation 110:897-903,2004.
    [93]Zicha S, Fernandez-Velasco M, Lonardo G, L'Heureux N, Nattel S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 66:472-481,2005.
    [94]Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55-65,1998.
    [95]Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 2004; 95:717-725.
    [96]Kaab S, Nuss HB, Chiamvimonvat N, O'Rourke B, Pak PH, Kass DA, Marban E, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 1996; 78:262-273.
    [97]Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, Burashnikov A, et al. The M cell:Its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999; 10:1124-1152.
    [98]Akar FG, Rosenbaum DS. Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res2003; 93:638-645.
    [99]Yan GX, Rials SJ, Wu Y, Liu T, Xu X, Marinchak RA, Kowey PR. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. Am J Physiol 2001; 281:H1968-H1975.
    [100]Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol 2004; 287:H1762-H1770.
    [101]Jin H, Lyon AR, Akar FG. Arrhythmia Mechanisms in the Failing Heart. PACE 2008; 31:1048-1056

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700