慢性间歇性低压低氧对发育大鼠心脏钙稳态的作用及其细胞与分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明,慢性间歇性低压低氧(chronic intermittent hypobaric hypoxia, CIHH)对成年动物具有明显的心脏保护作用,可有效对抗急性缺血/再灌注或急性缺氧/复氧对心肌的损伤、减少心肌梗死面积、限制心肌超微结构的损伤,以及抗心律失常。其机制可能涉及心肌抗氧化能力增强、心肌毛细血管密度及冠脉血流量增加、热休克蛋白表达增加、NO产生增加、抗心肌细胞凋亡、稳定线粒体及钙处理功能、延长心肌动作电位时程及有效不应期等。有研究报道,CIHH对成年大鼠的心脏缺血/再灌注损伤作用与抗钙超载、保持钙稳态有关。但有关CIHH对幼年动物发育心脏钙稳态的作用尚未明了。本研究旨在应用功能学、细胞学、分子生物学及电生理学方法探讨CIHH对幼年发育大鼠钙稳态的作用及其细胞和分子机制。
     本研究分为四部分:(1)应用Langendorff灌流技术观察CIHH对发育大鼠心脏功能学及梗死面积的保护作用;(2)应用激光共聚焦显微荧光技术,观察CIHH对发育大鼠的心室肌细胞内游离钙浓度的影响;(3)应用分子生物学技术观察CIHH对钙处理蛋白表达的影响;(4)应用全细胞膜片钳方法观察CIHH对发育大鼠心室肌细胞钙离子通道电流和钠钙交换电流的影响,探讨CIHH对钙稳态作用的离子机制。
     Ⅰ慢性间歇性低压低氧对发育大鼠心脏的保护作用
     目的:应用Langendorff灌流系统观察CIHH对发育大鼠缺血/再灌注损伤的心脏功能学及梗死面积的影响。
     方法:雄性新生SD大鼠按年龄及体重相匹配分成四组:28天间歇性低压低氧组(CIHH28)、42天间歇性低压低氧组(CIHH42)和28天对照组(CON28)、42天对照组(CON42)。间歇性低氧处理动物置于低压氧舱,分别接受28天、42天和56天模拟高原3000米(PB = 525 mmHg, PO2 = 108.8 mmHg, 5小时/天)的减压低氧处理。应用langendorff离体心脏灌流技术描记大鼠离体心脏左室功能,给予30分钟全心缺血和60分钟复灌处理。分别记录大鼠心脏缺血前及复灌后不同时间的左室发展压(LVDP)、左室舒张末压(LVEDP)、最大压力变化速率(±LV dp/dt)等心功能参数和冠脉流量(CF)。实验结束后,测定测定其梗死面积。
     结果:
     1基础状态下,CIHH大鼠冠脉流量较对照大鼠明显增多,其余心功能参数及梗死面积与对照大鼠无差异。缺血/再灌注导致动物心功能受损、心肌梗死面积增大,但CON与CIHH动物间具有明显差异。CIHH大鼠缺血/再灌注后心脏功能的恢复明显好于对照动物,表现为左心室发展压(LVDP)和左心室最大压力变化速率(±LVdp/dtmax)恢复增加(P<0.05),左心室舒张末压(LVEDP)恢复降低(P<0.05),梗死面积减小(P<0.05)。CIHH42大鼠抗心脏缺血/再灌注损伤作用强于CIHH28大鼠。
     2 L型钙通道开放剂,Bay K8644 (0.5μM)和肌浆网内钙释放开放剂,ryanodine (10 nM)可取消CIHH的心脏保护作用(P<0.05)。
     小结: CIHH可增强发育大鼠抗心肌缺血/再灌注损伤的能力,具有明显的心脏保护作用。其保护作用与心肌细胞钙稳态的维持有关,增加外钙内流和内钙释放均可取消其保护作用。
     Ⅱ慢性间歇性低压低氧对发育大鼠心室肌细胞内游离钙的影响
     目的:观察CIHH对发育大鼠心室肌细胞内游离钙的影响并探讨其可能机制。
     方法:雄性新生SD大鼠,根据年龄及体重相匹配分成四组:28天间歇性低压低氧组(CIHH28)、42天间歇性低压低氧组(CIHH42)和28天对照组(CON28)、42天对照组(CON42)。CIHH动物置于低压氧舱,分别接受28天和42天模拟高原3000米(PB = 525 mmHg, PO2 = 108.8 mmHg, 5小时/天)的减压低氧处理。通过酶解法得到单个心室肌细胞,并用Fluo3-AM于37°C负载1小时。在缺血前、模拟缺血以及复灌过程中用激光共聚焦显微镜扫描记录荧光强度及图像。
     结果:
     1正常台氏液中,CON和CIHH组心室肌细胞内游离钙无显著差异(P > 0.05),在5min模拟缺血和10min再灌注后,CON组心室肌细胞内游离钙浓度增加,而在CIHH28和CIHH42组减弱心室肌细胞内游离钙浓度增加幅度减少,与相应CON有显著差异(P<0.05)。
     2 CIHH28和CIHH42的这一效应可被L型钙通道开放剂Bay K8644,肌浆网钙泵抑制剂thapsigargin和PKC抑制剂chelerythrine chloride取消。
     小结: CIHH可抑制发育大鼠心室肌细胞内游离钙浓度的增加,这一效应可被Bay K8644, thapsigargin和chelerythrine chloride取消,提示CIHH的心脏保护效应可能与抗钙超载和PKC激活有关。
     Ⅲ慢性间歇性低压低氧对发育大鼠钙处理蛋白表达的影响
     目的:用Western blot方法研究CIHH对发育大鼠钙处理蛋白表达的影响。
     方法:雄性新生SD大鼠,按年龄及体重相匹配分成四组:28天间歇性低压低氧组(CIHH28)、42天间歇性低压低氧组(CIHH42)和28天对照组(CON28)、42天对照组(CON42)。CIHH动物置于低压氧舱,分别接受28天和42天模拟高原3000米(PB = 525 mmHg, PO2 = 108.8 mmHg, 5小时/天)的减压低氧处理。组织匀浆后提取肌浆网和肌膜蛋白。用Western blot方法检测I/R时钠钙交换体(NCX1),Ryanodine受体(RyR2)和肌浆网钙泵(SERCA2)蛋白的表达。
     结果:基础状态下,各组大鼠心肌NCX1, RyR2和SERCA2蛋白表达无明显差异(P>0.05)。在模拟缺血条件下,CON28和CON42大鼠心肌NCX1, RyR2和SERCA2蛋白表达明显减少(P<0.05),而CIHH28和CIHH42大鼠心肌的NCX1, RyR2和SERCA2蛋白表达无明显变化(P>0.05)。
     小结: CIHH可对抗缺血/再灌注对发育大鼠心肌NCX1、RyR2和SERCA2蛋白表达的抑制,而发挥抗缺血/再灌注钙超载作用。
     IV慢性间歇性低压低氧对发育大鼠L型钙电流及钠钙交换电流的影响
     目的:用全细胞膜片钳技术研究CIHH对发育大鼠L型钙电流(ICaL)及钠钙交换电流(INa/Ca)的影响,探讨CIHH心脏保护及抗钙超载的离子机制。
     方法:雄性新生SD大鼠,按年龄及体重相匹配分成四组:28天间歇性低压低氧组(CIHH28)、42天间歇性低压低氧组(CIHH42)和28天对照组(CON28)、42天对照组(CON42)。CIHH动物置于低压氧舱,分别接受28天和42天模拟高原3000米(PB = 525 mmHg, PO2 = 108.8 mmHg, 5小时/天)的减压低氧处理。通过酶解法得到单个心肌细胞,利用全细胞膜片钳技术记录ICaL及INa/Ca,观察CIHH对大鼠心肌细胞ICaL和INa/Ca的影响。
     结果:
     1 ICaL
     1.1在正常细胞外液中,对照组和间歇性低氧组的ICaL峰值电流和I-V曲线无显著差异(P>0.05)。模拟缺血和再灌注时,CON28和CON42组心肌细胞的ICaL峰值电流明显减少(P<0.05),I-V曲线向上移位,而CIHH28和CIHH42组心肌细胞峰值ICaL电流和I-V曲线无明显变化(P>0.05)。
     1.2各组心肌细胞ICaL的稳态激活、失活后复活曲线在正常细胞外液、模拟缺血和再灌注条件下均无明显变化(P>0.05)。在正常细胞外液中,各组心肌细胞ICaL的稳态失活曲线无明显变化(P>0.05)。模拟缺血和再灌注时,CON组心肌细胞ICaL的稳态失活曲线向左移位(P<0.05),而CIHH组心肌细胞ICaL的稳态失活曲线无显著变化(P>0.05)。
     2 INa/Ca
     2.1正常细胞外液中,各组心肌细胞的INa/Ca无显著差异(P>0.05)。在模拟缺血条件下,CON28和CON42组心肌细胞INa/Ca的内向电流和外向电流部分均减少(P<0.05),内向电流的抑制比外向电流更明显。而CIHH28和CIHH42组心肌细胞INa/Ca无显著变化(P>0.05)。
     2.2模拟缺血条件下,CON28和CON42组心室肌细胞INa/Ca反转电位向负值方向移位(P<0.05),而CIHH28和CIHH42组心室肌细胞INa/Ca反转电位无显著变化(P>0.05)。
     小结: CIHH对基础状态的发育大鼠心室肌细胞ICaL和INa/Ca无影响,但可明显对抗缺血/再灌注对ICaL和INa/Ca的抑制作用。此作用可能是CIHH抗心肌缺血/再灌注损伤、对抗钙超载的离子机制之一。
A lot of researches have demonstrated that chronic intermittent hypobaric hypoxia (CIHH) confers significant cardioprotetive effects on adult heart, such as enchancing the resistance of heart against acute hypoxia/re-oxygen or acute ischemia/reperfusion (I/R) injury, reducing infarct size, limiting cardiac ultrastructure damage and anti-arrhythmia. The candidate mechanisms involved enhancement of antioxidation, increase of myocardium capillary desity and coronary flow, overexpression of heat shock protein, increase of NO production, anti-apoptosis, stabilization of mitochondria and function of handling calcium, prolongation of action potential duration and effective refractory period. It was reported that the cardioprotective effect of CIHH against I/R was related to anti-calcium overload and preservation of calcium homeostasis. However, it was not clear about the role of CIHH on calcium homeostasis and calcium overload in postnatal developing hearts. The objective of the study was to explore the effects of CIHH on calcium homeostasis and underling cellular and molecular mechanisms on postnatal developing rat using functional, cellular, molecular biology and electrophysiological methods.
     Our study consists of four parts: (1) To observe cardioprotective effects of CIHH on cardiac function and infart size using Langendorff perfusion technique. (2) To examine effects of CIHH on intracellular free calcium concentration in developing rat ventricular myocytes using laser confocal microscope system. (3) To investigate the effect of chronic intermittent hypobaric hypoxia on the expression of calcium handling protein in developing rats using molecular biology technique. (4) To examine of effects of CIHH on calcium currents and Na+/Ca2+ exchange currents in ventricular myocytes of developing rat by using whole-cell patch clamp techenique, and to explore the ionic mechanism of CIHH cardiac protection against IR- induced injury and calcium overload.
     I The cardiac protective effect of chronic intermittent hypobaric hypoxia on developing rat hearts
     Objective: to observe the effect of CIHH on cardiac function and infart size during ischemia/reperfusion in developing rat hearts.
     Methods: In this part of experiment, age- and body weight-matched postnatal male rats were divided into four groups: 28-day CIHH group (CIHH28), 42-day CIHH group (CIHH42), 28-day control group (CON28) and 42-day control group (CON42). For CIHH group, neonatal rats with the maternals were exposed to a hypobaric chamber, enduring CIHH mimicking 3000 m altitude (PB = 525 mmHg, PO2 = 108.8 mmHg, 5 hrs/day) for 28days and 42days, respectively. The isolated hearts were perfused in the langendorff apparatus, undergoing 30min global ischemia and 60min reperfusion(I/R). Parameters of cardiac function including left ventricular developing pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal velocity of left ventricular pressure (LVdp/dtmax), coronary flow (CF) were recorded, respectively. The infart size was measured at the end of the experiment.
     Results:
     1 Under the basic condition,the coronary flow (CF) in CIHH rats was significant higher than that in CON rats(P>0.05), while other parameters of cardiac function and infart size were not changed significantly(P<0.05). The recovery of cardiac function from IR in CIHH rats was much better than that in CON rats, including the increase of LVDP and±LVdP/dt, the decrease of LVEDP (P<0.05). Also, the myocardial infart size of was significantly smaller in CIHH rats than that in CON rats(P<0.05).
     2 The cardiac protection of CIHH rats was abolished by Bay K8644 (a L-type calcium channel agonist, 0.5μM) or ryanodine (a SR ryanodine receptor agonist, 10 nM) pretreatment (P<0.05).
     Conclusion: CIHH has significant cardiac protection, enhancing the resistance against ishchemia/reperfusion injury in developing rat heart, which might be related with preservation of calcium hoeostasis of cardiomyocytes during I/R. The cardiac protection could be abolished by increase of calcium influx via L-type calcium channel and release from SR in cardiomyocytes.
     ⅡEffects of chronic intermittent hypobaric hypoxia on intracellular free calcium concentration in developing rat ventricular myocytes
     Objective: To observe the effects of CIHH on intracellular free calcium concentration ([Ca2+]i) in ventricular myocytes of developing rat and the possible mechanisms involved.
     Methods:In this part of experiment, age- and body weight-matched postnatal male rats were divided into four groups: 28-day CIHH group (CIHH28), 42-day CIHH group (CIHH42), 28-day control group (CON28) and 42-day control group (CON42). For CIHH group, neonatal rats with the maternals were exposed to a hypobaric chamber, enduring CIHH mimicking 3000 m altitude (PB = 525 mmHg, PO2 = 108.8 mmHg, 5 hrs/day) for 28days and 42days, respectively. Isolated ventricular myocytes were were obtained from ventricles by enzymatic dissociation method and incubated with Fluo3-AM solution at 37°C for 60 min. Fluorescence intensity was recorded and images were scanned using laser confocal microscope system during pre-ischemia, simulated ischemia and reperfusion.
     Results:
     1 There was no difference of [Ca2+]i of ventricular myocytes under normal Tyrode’s solution between CON and CIHH rats. [Ca2+]i in ventricular myocytes was increased after 5 min simulated ischemia and 10 min reperfusion, but the increasing of [Ca2+]i was blunted in CIHH28 and CIHH42 rats (P<0.05 ).
     2 The effect of CIHH28 and CIHH42 on [Ca2+]i in ventricular myocytes during I/R was abolished by Bay K8644 (a L type calcium channel agonist), thapsigargin (a inhibitor of Ca2+ ATPase in SR), and chelerythrine chloride (a PKC inhibitor) (P<0.05).
     Conclusion: CIHH can inhibite the elevation of [Ca2+]i during I/R in developing rat ventricular myocytes. The the effect of CIHH on [Ca2+]i during I/R can be abolished by Bay K8644, thapsigargin, and chelerythrine chloride, suggesting the cardioprotective effect of CIHH is related with anti-calcium overload effect and PKC activation.
     III Effect of chronic intermittent hypobaric hypoxia on the expression of calcium handling proteins in developing rats
     Objective: To investigate the effect of CIHH on the expression of calcium handling proteins in developing rats using Western blot method.
     Methods:In this part of experiment, age- and body weight-matched postnatal male rats were divided into four groups: 28-day CIHH group (CIHH28), 42-day CIHH group (CIHH42), 28-day control group (CON28) and 42-day control group (CON42). For CIHH group, neonatal rats with the maternals were exposed to a hypobaric chamber, enduring CIHH mimicking 3000 m altitude (PB = 525 mmHg, PO2 = 108.8 mmHg, 5 hrs/day) for 28days and 42days, respectively. The heart tissues were homogenated and SR and cell sarcolemmal membrane protein were extracted. The protein expressions of ryanodine receptors (RyR2), Ca2+ ATPase in the sarcoplasmic reticulum (SERCA2) and Na+/Ca2+ exchanger (NCX1) in the sarcolemmal membrane were assessed during I/R using Western blot method.
     Results:
     The protein expression of NCX1,RyR2, and SERCA2 were decreased markedly at 30 min of ischemia (I30), 5 min (R5) and 60 min (R60) of reperfusion in CON rats (P<0.05), but the inhibition of NCX1, RyR2, and SERCA2 expression during I/R were significantly attenuated in CIHH rats compared with CON rats (P<0.05).
     Conclusion: CIHH can effectively antagonize the depression of the protein expression of NCX1, RyR2 and SERCA2 in myocardium during I/R, suggesting that CIHH may maintain Ca2+ homeostasis and suppress I/R-induced cytosolic Ca2+ overload by reserving the protein expression of NCX1, RyR2 and SERCA2.
     IV Effect of chronic intermittent hypobaric hypoxia on L-type Ca2+ currents and Na+-Ca2+ exchange currents in cardiomyocytes of developing rat
     Objective: To explore the effect of CIHH on L-type Ca2+ currents (ICaL) and Na+-Ca2+ exchange currents (INa/Ca) in ventricular cardiomyocyte of developing rat by using whole-cell patch clamp technique, and the ionic mechanism for CIHH cardioprotection and anti-calcium overload.
     Methods: In this part of experiment, age- and body weight-matched postnatal male rats were divided into four groups: 28-day CIHH group (CIHH28), 42-day CIHH group (CIHH42), 28-day control group (CON28) and 42-day control group (CON42). For CIHH group, neonatal rats with the maternals were put into a hypobaric chamber to get CIHH mimicking 3000-m altitude (PB = 525 mmHg, PO2 = 108.8 mmHg, 5 hrs/day) for 28days and 42days, respectively. Isolated myocytes were obtained from ventricles by enzymatic dissociation method. ICaL and Ni2+ sensitive INa/Ca were recorded before and during simulated ischemia as well as reperfusion in CON and CIHH groups.
     Results:
     1 ICaL
     1.1 There were no significant differences of peak current and current-voltage relationship curve of ICaL between CON and CIHH cardiomyocytes under normal extracullar solution (P>0.05). The peak amplitude of ICaL was decreased and I-V relationship curve was shifted upward during simulated ischemia and reperfusion in CON28 and CON42 cardiomyocytes (P<0.05). However, the peak amplitude and I–V relationship of ICaL in CIHH28 and CIHH42 cardiomyocytes was not changed significantly during simulated ischemia and reperfusion (P>0.05).
     1.2 There were no significant differences of steady-state activation curve and steady-state inactivation curve of ICaL under normal extracullar solution in all cardiomyocytes (P>0.05). The steady-state inactivation curve of ICaL was not changed significantly under normal extracullar solution condition in all cardiomyocytes (P>0.05), but was shifted to the left in CON28 and CON42 (P<0.05), not in CIHH28 and CIHH42 (P>0.05), cardiomyocytes during simulated ischemia and reperfusion.
     2 INa/Ca
     2.1 There was no significant difference of Ni2+ sensitive Na+-Ca2+ exchange current (INa/Ca) between all cardiomyocytes(P>0.05). During simulated ischemia and reperfusion, INa/Ca in CON28 and CON42 cardiomyocytes was decreased(P<0.05), the decreasing of inward current part in INa/Ca was more significant than that of outward current part. But INa/Ca in CIHH28 and CIHH42 cardiomyocytes was not changed signifcantly during simulated ischemia (P>0.05).
     2.2 The reversal potential of INa/Ca in CON28 and CON42 cardiomyocytes was shifted toward negative potential during simulated ischemia (P<0.05), but the reversal potential of INa/Ca in CIHH28 and CIHH42 cardiomyocytes was changed significantly during simulated ischemia(P>0.05).
     Conclusion: CIHH has no effect on ICaL and INa/Ca of ventricular myocytes in developing rat under basic condition, but effectively antagonizes the inhibition of ICaL and INa/Ca in ventricular myocytes during simulated ischemia and reperfusion, which might be one of ionic mechanism of CIHH cardiac protection against I/R injury and anti-calcium overload.
引文
1 Reimer KA, Jennings RB. Myocardial ischemia, hypoxia, and infarction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editors. The heart and cardiovascular system: scientific foundations. 2nd ed. New York7 Raven Press, 1991, 1875~1973
    2 Reimer KA, Ideker RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. Hum Pathol, 1987, 18:462~475
    3 Buja LM. Modulation of the myocardial response to ischemia. Lab Invest, 1998, 78:1345~1373
    4 Buja LM, Hagler HK, Willerson JT. Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic injury. Cell Calcium, 1988, 9:205~217
    5 Thandroyen FT, Bellotto D, Katayama A, et al. Subcellular electrolyte alterations during hypoxia and following reoxygenation in isolated rat ventricular myocytes. Circ Res, 1992, 71:106~119
    6 Buja LM. Lipid abnormalities in myocardial cell injury. Trends Cardiovasc Med, 1991, 1:40~45
    7 Shen AC, Jennings RB. Myocardial calcium and magnesium in acute ischemic injury Am J Pathol, 1972, 67:417~421
    8 Murphy JG, Marsh JD, Smith TW. The role of calcium in ischemic myocardial injury. Circulation, 1987, 75(suppl V): V-15~V-24
    9 Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci, 2004, 75:2587~2603
    10 Chen L, Lu XY, Li J, et al. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injuryinduced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol, 2006, 290:C1221~C1229
    11 Xie Y, Zhu WZ, Zhu Y, et al. Intermittent high altitude hypoxia protectsthe heart against lethal Ca2+ overload injury, Life Sci, 2004, 76:559~572
    12 Zhu WZ, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol, 2006, 40(1):96~106
    13 Xie Y, Zhu Y, Zhu WZ, et al. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 2005, 288(6):H2594~H2602
    14 Silverman HS, Wei S, Haigney MC, et al. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ Res, 1997, 80(5):699~707
    15 Zhang H, Yang CY, Wang YP, et al. Effects of different modes of intermittent hypobaric hypoxia on ischemia/ reperfusion injury in developing rat hearts. Sheng Li Xue Bao, 2007, 59(5):660~666
    16 Bolli R, Becker L, Gross G, et al. NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res, 2004, 95(2):125~134
    17 Osada M, Netticadan T, Tamura K, et al. Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol Heart Circ Physiol, 1998, 274: H2025~H2034
    18 Bassani RA, Bassani JW. Contribution of Ca2+ transporters to relaxation in intact ventricular myocytes from developing rats. Am J Physiol Heart Circ Physiol, 2002, 282(6):H2406~H2413
    19 Faber GM, Silva J, Livshitz L, et al. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J, 2007, 92(5):1522~1543
    20 Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 2000, 87(4):275~81
    21 Zelis R, Moore R. Recent insights into the calcium channels. Circulation,1989, 80(supplⅣ):14~16
    22 Ralenkotter L, Dales C, Delcamp TJ, et al. Cytosolic [Ca2+], [Na+], and pH in guinea pig ventricular myocytes exposed to anoxia and reoxygenation. Am J Physiol, 1997, 272:H2679~H2685
    23 Scholz W, Albus U. Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Basic Res Cardiol, 1993 , 88(5):443~455
    24 Buck E, Zimanyi I, Abramson JJ, et al. Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem, 1992, 267(33): 23560~23567
    1 Marsh JD, Smith TS. Calcium overload and ischemic myocardial injury. Circulation, 1991, 83(2):709~711
    2 Buja LM, Hagler HK, Willerson JT. Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic injury. Cell Calcium, 1988, 9(5-6):205~217
    3 Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci, 2004, 75:2587~2603
    4 Chen L, Lu XY, Li J, et al. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injuryinduced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol, 2006, 290:C1221~C1229
    5 Xie Y, Zhu WZ, Zhu Y, et al. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury, Life Sci, 2004, 76:559~572
    6 Zhu WZ, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol, 2006, 40(1):96~106
    7 Xie Y, Zhu Y, Zhu WZ, et al. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 2005, 288(6):H2594~H2602
    8 Silverman HS, Wei S, Haigney MC, et al. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ Res, 1997, 80(5):699~707
    9 Imahashi K, Pott C, Goldhaber JI, et al. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res, 2005, 97(9):916~921
    10 Koretsune Y, Marban E. Cell calcium in the pathophysiology ofventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation, 1989, 80(2):369~379
    11 Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res, 1991, 68(5):1250~1258
    12 Piper HM, Abdallah Y, Sch?fer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res, 2004, 61(3):365~371
    13 Steenbergen C, Murphy E, Levy L, et al. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res, 1987, 60(5):700~707
    14 Steenbergen C, Murphy E, Watts JA, et al. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res, 1990, 66(1):135~146
    15 Steenbergen C, Perlman ME, London RE, et al. Mechanism of preconditioning. Ionic alterations. Circ Res, 1993, 72(1):112~125
    16 Bers DM. Cardiac excitation-contraction coupling. Nature, 2002, 415: 198~205
    17 Eisner DA, Choi HS, Díaz ME, et al. Integrative analysis of calcium cycling in cardiac muscle. Circ Res, 2000, 87(12):1087~1094
    18 Bassani RA, Bassani JW. Contribution of Ca(2+) transporters to relaxation in intact ventricular myocytes from developing rats. Am J Physiol Heart Circ Physiol, 2002, 282(6):H2406~H2413
    19 Faber GM, Silva J, Livshitz L, et al. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J, 2007, 92(5):1522~1543
    20 Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 2000, 87(4):275~281
    21 Frank KF, B?lck B, Erdmann E, et al. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc Res, 2003, 57(1):20~27
    22 Misquitta CM, Mack DP, Grover AK. Sarco/endoplasmic reticulum Ca2+ (SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium, 1999, 25(4):277~290
    23 Hess ML, Manson NH. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol, 1984, 16(11): 969~985
    24 Krause S, Hess ML. Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res, 1984, 55(2):176~184
    25 Zweier JL. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem, 1988, 263(3):1353~1357
    26 Yeung HM, Kravtsov GM, et al. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol, 2007, 292(6): C2046~C2056
    1 Powell FL, Garcia N. Physiological effects of intermittent hypoxia. High Alt Med Biol, 2000,1(2):125~136
    2 Zhuang J, Zhou Z. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms. Biol Signals Recept, 1999 , 8(4-5): 316~322
    3 Zong P, Setty S, Sun W, et al. Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med (Maywood), 2004, 229(8): 806~12
    4 Rafiee P, Shi Y, Kong X, et al. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation, 2002, 106(2):239~245
    5 Zhang Y, Zhong N, Gia J, et al. Effects of chronic intermittent hypoxia on the hemodynamics of systemic circulation in rats. Jpn J Physiol. 2004, 54(2):171~174
    6 Zhang Y, Zhong N, Zhu HF, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Sheng Li Xue Bao, 2000, 52(2):89~92
    7 Zhang Y, Zhong N, Zhou ZN. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci, 2000, 67(20):2465~2471
    8 Ustinova EE, Saltykova VA, Didenko VV, et al. Effects of adaptation to periodic and continuous hypoxia in disorders of electrical stability of the heart in postinfarction cardiosclerosis. Biull Eksp Biol Med, 1988, 105(5):533~535
    9 Asemu G, Neckár J, Szárszoi O, et al. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res, 2000, 49(5):597~606
    10 Zhong N, Zhang Y, Fang QZ, et al. Intermittent hypoxia exposure-induced heat-shock protein 70 expression increases resistance of rat heart toischemic injury. Acta Pharmacol Sin, 2000, 21(5):467~472
    11 Zhong N, Zhang Y, Zhu HF, et al. Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude hypoxia. Acta Pharmacol Sin, 2002, 23(4):305~310
    12 Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci, 2003, 73(10):1275~1287
    13 Neckár J, Szárszoi O, Koten L, et al. Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res, 2002, 55(3):567~575
    14 Zhu WZ, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol, 2006, 40(1):96~106
    15 Shi Y, Pritchard KA Jr, Holman P, et al. Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3. Free Radic Biol Med, 2000, 29(8):695~703
    16 Ding HL, Zhu HF, Dong JW, et al. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury. Acta Pharmacol Sin, 2005, 26(3):315~322
    17 Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res, 1994, 75(3):586~590
    18 Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci, 2004, 75(21):2587~2603
    19 Zhan G, Fenik P, Pratico D, et al. Inducible nitric oxide synthase in long-term intermittent hypoxia: hypersomnolence and brain injury. Am J Respir Crit Care Med, 2005, 171(12):1414~1420
    20 Powers SK, Murlasits Z, Wu M, et al. Ischemia-reperfusion-induced cardiac injury: a brief review. Med Sci Sports Exerc, 2007, 39(9):1529~36
    21 Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 2000, 87(4):275~281
    22 Said M, Vittone L, Mundina-Weilenmann C, et al. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol, 2003, 285(3):H1198~H1205
    23 Carrozza JP Jr, Bentivegna LA, Williams CP, et al. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res, 1992, 71(6):1334~1340
    24 Piper HM, Meuter K, Sch?fer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg, 2003, 75(2):S644~S648
    25 Chen L, Lu XY, Li J, et al. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol, 2006, 290(4):C1221~C1229
    26 Yeung HM, Kravtsov GM, Ng KM, et al. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol, 2007, 292(6):C2046~C2056
    27 Liu J, Kam KW, Borchert GH, et al. Further study on the role of HSP70 on Ca2+ homeostasis in rat ventricular myocytes subjected to simulated ischemia. Am J Physiol Cell Physiol, 2006, 290(2):C583~C591
    28 Periasamy M, Huke S. SERCA pump level is a critical determinant of Ca(2+)homeostasis and cardiac contractility. J Mol Cell Cardiol, 2001, 33(6):1053~1063
    29 Hampton TG, Wang JF, DeAngelis J, et al. Enhanced gene expression of Na(+)/Ca(2+) exchanger attenuates ischemic and hypoxic contractile dysfunction. Am J Physiol Heart Circ Physiol, 2000, 279(6): H2846~H2854
    30 Moens AL, Claeys MJ, Timmermans JP, et al. Myocardial ischemia/reperfusion-injury, a clinical view on a complexpathophysiological process. Int J Cardiol, 2005, 100(2):179~190
    31 Saini HK, Dhalla NS. Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol, 2005, 288(5):H2260~H2270
    32 Verma S, Fedak PW, Weisel RD, et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation, 2002, 105(20):2332~2336
    33 Talukder MA, Kalyanasundaram A, Zhao X, et al. Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction. Am J Physiol Heart Circ Physiol, 2007, 293(4):H2418~H2428
    34 Fu JD, Yang HT. Developmental regulation of intracellular calcium homeostasis in early cardiac myocytes. Sheng Li Xue Bao, 2006, 58(2):95~103
    1 Murry CE, Jennings RB, and Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74: 1124~1136
    2 Hurtado A. Some clinical aspects of life at high altitudes. Ann Intern Med, 1960, 53: 247~258
    3 Zhu WZ, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cellular Cardiol, 2006, 40: 9~106
    4 Be′guin PC, Belaidi E, Godin-Ribuot D, et al. Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2. J. Mol. Cellular Cardiol, 2007, 42: 343~351
    5 Zhang Y, Yang HT, and Zhou ZN. The cardioprotection of intermittent hypoxia adaptation. Sheng Li Xue Bao, 2007, 59:601~613
    6 Bolli R. The late phase of preconditioning. Circ Res, 2000, 87: 972~983
    7 Zhang Y, Zhong N, Zhu HF, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium (Article in Chinese). Sheng Li Xue Bao, 2000, 52: 89~92
    8 Asemu G, Papousˇek F, Osˇt’a′dal B, and Kola′rˇF. Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias: involvement of mitochondrial KATP channel. J Mol Cell Cardiol, 1999, 31: 1821~1831
    9 Pei JM, Kravtsov GM, Wu S, et al. Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Cell Physiol 2003, 285: C1420~C1428
    10 Xie Y, Zhu WZ, Zhu Y, et al. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury. Life Sci, 2004, 76: 559~572
    11 Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev, 1999, 79:917~1017
    12 Wasson S, Reddy HK, Dohrmann ML. Current perspectives of electrical remodeling and its therapeutic implications. J Cardiovasc Pharmacol Ther, 2004, 9:129~144
    13 Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol, 1972, 67(3):441~452
    14 Parr DR, Wimhurst JM, Harris EJ. Calcium-induced damage of rat heart mitochondria. Cardiovasc Res, 1975, 9(3):366~372
    15 Kishimoto A, Kajikawa N, Shiota M, et al. Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J Biol Chem, 1983, 258(2):1156~1164
    16 Kusuoka H, Porterfield JK, Weisman HF, et al. Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest, 1987, 79(3):950~961
    17 Gao WD, Atar D, Backx PH, et al. Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res, 1995, 76(6):1036~1048
    18 Terracciano CM, MacLeod KT. Effects of acidosis on Na+/Ca2+ exchange and consequences for relaxation in guinea pig cardiac myocytes. Am J Physiol, 1994, 267:H477~487
    19 Lukyanenko V, Viatchenko-Karpinski S, Smirnov A, et al. Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes. Biophys J, 2001, 81(2):785~798
    20 Crespo LM, Grantham CJ, Cannell MB. Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes. Nature, 1990, 345(6276):618~621
    21 Mohabir R, Lee HC, Kurz RW, et al. Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pHi in perfused rabbit hearts. Circ Res, 1991, 69(6):1525~1537
    22 Dixon IM, Eyolfson DA, Dhalla NS. Sarcolemmal Na+-Ca2+ exchange activity in hearts subjected to hypoxia reoxygenation. Am J Physiol, 1987, 253:H1026~H1034
    23 Zhang Y, Zhong N, and Zhou ZN. Effects of intermittent hypoxia on action and contraction of rat papillary muscle. Life Sci, 2000, 67:2465~2471
    24 Dong JW, Zhu HF, Zhu WZ, et al. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res, 2003, 13:385~391.
    25 Zhang Y, Zhong N, Gia J, et al. Effects of chronic intermittent hypoxia on the hemodynamics of systemic circulation in rats. Jpn J Physiol, 2004, 54:171~174
    26 Zhang Y, Zhong N, Zhou Z. Effects of chronic intermittent hypobaric hypoxia on the L-type calcium current in rat ventricular myocytes. High Alt Med Biol, 2010, (1):61~67
    27 La Padula P, Costa LE. Effect of sustained hypobaric hypoxia during maturation and aging on rat myocardium. I. Mechanical activity. J Appl Physiol, 2005, 98(6): 2363~2369
    28 O??áDALOVáI, O??áDAL B, JARKOVSKáD, et al. Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res, 2002, 52(4): 561~567
    29 Li Q, Ma HJ, Zhang H, et al. Electrophysiological effects of anandamide on rat myocardium. Bri J Phar, 2009:158 (8): 2022~2029
    30 Belles B, Malecot CO, Hescheler J, Trautwein W.“Rundown”of the Ca2+ current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflügers Arch, 1998, 411: 353~560
    31 Orchard CH, and Kentish JC. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol, 1990, 258:C967~C981
    32 Du YM, and Nathan RD. Simulated ischemia enhances L-type calcium current in pacemaker cells isolated from the rabbit sino atrial node. Am J Physiol, 2007, 293:H2986~H2994
    33 Aimond F, Alvarez JL, Rauzier JM, et al. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovasc Res, 1999, 42:402~415
    34 Vanheel B, Leybaert L, Leusen HA, et al. Simulated ischemia and intracellular pH in isolated ventricular muscle. Am J Physiol, 1989, 257:C365~C376
    35 Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res, 1991, 68:1250~1258
    36 Fujita M, Asanuma H, Hirata A, et al. Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physio, 2007, 292: H2004~H2008
    37 Li J, Zhang H, Zhu WZ, et al. Preservation of the pHi during ischemia via PKC by intermittent hypoxia. Biochem Biophysic Res Comm, 2007, 356:329~333
    38 Zhong N, Zhang Y, Zhu HF, et al. Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude hypoxia. Acta Pharmacol Sinica, 2002, 23:305~310
    39 Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci, 2003, 73:1275~1287
    40 Lamont C, Eisner DA. The sarcolemmal mechanism involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflügers, 1996, 432:961~969
    41 Matsumoto T, Miura T, Miki T, et al. Blockade of the Na+-Ca2+ exchanger is more efficient than blockade of the Na+-H+ exchanger for protection of the myocardium from lethal reperfusion injury. Cardiovasc Drugs Ther,2002, 16: 295~301
    42 Satoh H, Ginsburg KS, Qing K, et al. KB-R7943 block of Ca2+ influx via Na+/Ca2+ exchange does not alter twitches or glycoside inotropy but prevents Ca2+ overload in rat ventricular myocytes. Circulation, 2000, 101: 1441~1446
    43 Shigematsu S and Arita M. Anoxia depresses sodium-calcium exchange currents in guinea-pig ventricular myocytes. J Mol Cell Cardiol, 1999, 31: 895~906
    44 Collins A, Somlyo AV, Hilgemann DW. The giant cardiac membrane patch method: stimulation of outward Na+-Ca2+ exchange current by MgATP. J Physiol, 1992, 454: 27~57
    45 Doering AE, Lederer WJ. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells. J Physiol, 1993, 466:481~499
    46 Earm YE, Irisawa H. Effects of pH on the Na-Ca exchange current in single ventricular cells of the guinea pig. Jpn Heart J, 1986, 27 Suppl 1:153~158
    47 Haworth RA, Goknur AB. ATP dependence of calcium uptake by the Na-Ca exchanger of adult heart cells. Circ Res, 1992, 71(1):210~217
    48 Philipson KD, Bersohn MM, Nishimoto AY. Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ Res, 1982, 50(2):287~293
    49 Hilgemann DW, Collins A. Mechanism of cardiac Na(+)-Ca2+ exchange current stimulation by MgATP: possible involvement of aminophospholipid translocase. J Physiol, 1992, 454:59~82
    50 Langer GA. Calcium and the heart: exchange at the tissue, cell, and organelle levels. FASEB J, 1992, 6(3):893~902
    51 Lebkova NP, Chizhov AI, Bobkov I. The adaptational intracellular mechanisms regulating energy homeostasis during intermittent normobaric hypoxia. Ross Fiziol Zh Im I M Sechenova, 1999, 85 (3): 403~411
    52 Burtscher M, Pachinger O, Ehrenbourg I, et al. Intermittent hy poxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J cardiol, 2004, 96: 247~254
    1 Wang SQ, Lakatta EG, Cheng H, et al. Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol, 2002, 205(Pt 19):2957~2962
    2 Gomez AM, Guatimosim S, Dilly KW, et al. Heart failure after myocardial infarction: altered excitationcontraction coupling. Circulation, 2001, 104, 688~693
    3 Guatimosim S, Dilly K, Santana LF, et al. Local Ca2+ signaling and EC coupling in heart: Ca2+ sparks and the regulation of the [Ca2+]i transient. J Mol Cell Cardiol, 2002, 34: 941~950
    4 Hajnoczky G, Csordas G, and Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium, 2002, 32: 363~377
    5 Liu J, Kam KW, Borchert GH, et al. Further study on the role of HSP70 on Ca2+ homeostasis in rat ventricular myocytes subjected to simulated ischemia. Am J Physiol Cell Physiol, 2006, 290(2):C583~C591
    6 Bers DM. Cardiac excitation-contraction coupling. Nature, 2002, 415: 198~205
    7 Eisner DA, Choi HS, Diaz ME, et al. Integrative analysis of calcium cycling in cardiac muscle. Circ Res, 2000, 87: 1087~1094
    8 Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. FASEB J, 1995, 9:219~228
    9 Lakatta EG, Guarnieri T. Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol, 1993, 4, 473~489
    10 Kim JS and Southard JH. Alteration in cellular calcium and mitochondrial functions in the rat liver during cold preservation. Transplantation, 1998, 65:369~375
    11 Del Monte F, Lebeche D, Guerrero JL, et al. Abrogation of ventriculararrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA, 2004, 101: 5622~5627
    12 Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res, 2006, 70: 170~173
    13 Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther, 2001, 89: 47~65
    14 Imahashi K, Pott C, Goldhaber JI, et al. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res, 2005, 97: 916~921
    15 Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res, 1991, 68: 1250~1258
    16 Wang Y, Meyer JW, Ashraf M, et al. Mice with a null mutation in the NHE1 Na+-H+ exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res, 2003, 93: 776~782
    17 Dong Z, Saikumar P, Weinberg JM, et al. Calcium in cell injury and death. Annu Rev Pathol, 2006, 1:405~434
    18 Cascio WE, Johnson TA, Gettes LS. Electrophysiologic changes in ischemic ventricular myocardium: I. Influence of ionic, metabolic, and energetic changes. J Card Electrophys, 1995, 6:1039~1062
    19 Clusin WT. Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci, 2003, 40(3):337~375
    20 Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev, 2008, 88(2):581~609
    21 Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol, 2002, 34(8):951~969
    22 Alvarez-Ayuso L, García Gómez-Heras S, Roda JR, et al. Calcium-supplemented University of Wisconsin solution in long-term myocardial preservation. Histol Histopathol, 2008, 23(9):1103~1110
    23 Ostadal B, Kolar F, Pelouch V, et al. Ontogenetic diferencesin cardiopulmonary adaptation to chronic hypoxia. Physiol Res, 1995, 44:45~51
    24 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74:1124~1136
    25 McGrath JJ, Bullard RW. Altered myocardial performance in response to anoxia after high-altitude exposure. J Appl Physiol, 1968, 25:761~764
    26 Steenbergen C, Perlman ME, London RE, et al. Mechanism of preconditioning. Ionic alterations. Circ Res, 1993, 72: 112~125
    27 Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res, 1991, 68: 1250~1258
    28 Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and precon ditioning: an overview of a decade of research. J Mol Cell Cardiol, 2001, 33: 1897~1918
    29 Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol, 2006, 40: 16~23
    30 Sun J, Picht E, Ginsburg KS, et al. Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res, 2006, 98: 403~411
    31 Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res, 1997, 81: 1072~1082
    32 O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res, 2004, 94: 420~432
    33 Murata M, Akao M, O'Rourke B, et al. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res, 2001, 89(10):891~898
    34 Murata M, Akao M, O’Rourke B, et al. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res, 2001, 89: 891~898
    35 Wang L, Cherednichenko G, Hernandez L, et al. Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts: role of KATP channels. Am J Physiol Heart Circ Physiol, 2001, 280:H2321~H2328
    36 Chen L, Lu XY, Li J, et al. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol, 2006, 290(4): C1221~C1229.
    37 Yeung HM, Kravtsov GM, Ng KM, et al. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. Am J Physiol Cell Physiol, 2007, 292(6):C2046~C2056
    38 Zhang Y, Zhong N, Zhou ZN. Effects of chronic intermittent hypobaric hypoxia on the L-type calcium current in rat ventricular myocytes. High Alt Med Biol, 2010, 11(1):61~67
    39 Lamont C, Eisner DA. The sarcolemmal mechanism involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflugers Arch, 1996, 432:961~969
    40 Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev, 1999, 70:917~1017
    41 Gao H, Chen L, Yang HT. Activation of alpha1B-adrenoceptors alleviates ischemia/reperfusion injury by limitation of mitochondrial Ca2+ overload in cardiomyocytes. Cardiovasc Res, 2007, 75(3):584~595
    42 Rhodes SS, Ropella KM, Camara AK, et al. Ischemia-reperfusion injury changes the dynamics of Ca2+-contraction coupling due to inotropic drugs in isolated hearts. J Appl Physiol, 2006, 100(3):940~950
    43 Namekata I, Shimada H, Kawanishi T, et al. Reduction by SEA0400 of myocardial ischemia-i nduced cytoplasmic and mitochondrial Ca2 overload. Eur J Pharmacol, 2006, 543: 108~115
    44 Griffiths EJ, Ocampo CJ, Savage JS, et al. Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res, 1998, 39: 423~433
    45 Miyata H, Lakatta EG, Stern MD, et al. Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res, 1992, 71: 605~613
    46 Murata M, Akao M, O’Rourke B, et al. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res, 2001, 89: 891~898
    47 Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, et al. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res, 2006, 71: 715~724
    48 Griffiths EJ, Ocampo CJ, Savage JS, et al. Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels. Cell Calcium, 2000, 27: 87~95
    49 Spindler M, Meyer K, Str?mer H, et al. Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol Heart Circ Physiol, 2004, 287(3):H1039~H1045
    50 Talukder MA, Kalyanasundaram A, Zhao X, et al. Expression of SERCA isoform with faster Ca2+ transport properties improves postischemiccardiac function and Ca2+ handling and decreases myocardial infarction. Am J Physiol Heart Circ Physiol, 2007, 293(4):H2418~H2428
    51 Hampton TG, Wang JF, DeAngelis J, et al. Enhanced gene expression of Na(+)/Ca(2+) exchanger attenuates ischemic and hypoxic contractile dysfunction. Am J Physiol Heart Circ Physiol, 2000, 279(6): H2846~H2854
    52 Riedel MJ, BaczkóI, Searle GJ, et al. Metabolic regulation of sodium-calcium exchange by intracellular acyl CoAs. EMBO J, 2006, 25(19):4605~4614
    53 O'Neill S. Cardiac Ca(2+) regulation and the tuna fish sandwich. News Physiol Sci, 2002, 17:162~165
    54 Inoue K, Ando S, Gyuan F, et al. A study of the myocardial protective effect of rapid cooling based on intracellular Ca, intracellular pH, and HSP70. Ann Thorac Cardiovasc Surg, 2003, 9(5):301~306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700