基于三维打印技术的植入式给药系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植入式给药系统是直接在病灶部位释药的创新制剂,植入部位药物浓度高,而进入血液的药物浓度很低。三维打印技术依据“逐层打印,层层叠加”的概念来制备具有特殊外型或复杂内部结构的物体,具有传统制造业上从未有过的高度灵活、精确可控、制备工艺自动化高的特点。在本研究中,我们考虑用三维打印技术制备植入式给药系统,分别探讨了三维打印技术用于植入式给药系统的打印液选择、操作工艺参数;设计了合理的植入式给药系统结构,提供可作为骨科病灶内植入给药的缓控体系,并进行了其体外和植入家兔体内释药行为研究。完成的研究工作包括以下几个方面:
     (1)分别对聚乳酸粉末颗粒大小、打印液选择以及打印参数进行了研究。结果表明当聚乳酸粉末颗粒较小时,得到的植入剂比较致密精细,而当聚乳酸粉末颗粒较大时,植入剂就显得松脆。聚乳酸颗粒合适的尺寸应控制在Φ150μm~175μm范围内。三维打印打印液选择方面,以丙酮为主的混合溶剂最佳的成分配比是:丙酮100ml,乙醇20ml,水5ml,甘油0.4ml,SLS 0.2g。对三维打印工艺参数进行了优化,比较合适的参数值分别为:打印液流速1.4g/min,喷头移动速度150cm/s,粉末铺层厚度200μm,线间距100μm。
     (2)对植入式给药系统的传统工艺方法和三维打印方法进行了比较研究,结果表明采用两种方法制备的制剂都有明显分布的空隙,三维打印法制备的植入剂,其整个截面微孔均匀分布;而传统工艺制备的植入剂截面的微孔集聚一起,而且大小不匀,有个别较大的微孔存在。其体外释放行为表明采用两种方法制备的制剂体外释药都有爆发释放量,三维打印技术制备的庆大霉素植入剂的初始爆发释放浓度相对较低,而传统工艺制备的庆大霉素植入剂在2天时获得68μg/ml的爆发释放,使得药物成分在初始阶段出现大量释放。
     (3)利用三维打印技术制备了庆大霉素植入剂,①骨架结构植入剂:聚乳酸相对分子质量越大,释药就越慢;载有大剂量药物的植入剂在初始阶段就易于释放出来;通过PCL或HA与载体聚乳酸共混可以达到调控释放的作用。药物释放是载体材料的降解和药物溶解扩散的综合机制。②三明治结构植入剂:三明治结构能起到降低药物的释放表面积的作用,可以明显抑制爆发释放,相对于传统制备工艺,三维打印技术可以在一定程度上方便控制剂型的空间结构。
     (4)利用三维打印技术制备了左氟沙星植入剂,①滞后释放植入剂:药物成分被包裹在制剂的囊心中,从而导致药物滞后释放;药物释放受囊心外的壳部性质影响较大,要获得比较长时间的滞后释药,包围囊心部分的壳厚度就要越大。②分阶段释放植入剂:左氟沙星释放分三个阶段,第一阶段开始阶段出现一定的爆发释放,然后释放慢慢减缓,第二阶段维持平稳浓度释放,第三阶段出现增大的趋势,最大浓度之后就不断降低。植入剂具有长效缓释和控制释放的特性,出现分阶段的释放行为主要由植入剂的几何结构决定。
     (5)利用三维打印技术制备了含多种药物的植入式给药系统,①简单结构多药物植入剂(左氟沙星和利福平混合药物的骨架结构植入剂A和左氟沙星和利福平分别位于双层结构中一个骨架层的植入剂B)体外释放行为研究表明,左氟沙星更容易释放出来,而利福平释放速度比较慢;左氟沙星从制剂A比B中更易于释放出来;而利福平在制剂B比在A中释放速度稍快些,基本相当。②复杂结构多药物植入剂(左氟沙星位于囊心结构层囊心,利福平位于骨架层的植入剂C和利福平位于囊心结构层囊心,左氟沙星位于骨架层的植入剂D)体外释放行为研究表明,可以实现利福平先释放,20天后左氟沙星开始释放;或左氟沙星先释放,35天左右利福平开始释放,获得两种药物分阶段释放。
     (6)研究了多药物植入式药剂体外抑菌行为,结果表明在整个实验时间(40天)内都可起到一定的抑菌作用,对大肠杆菌的抑菌作用出现双峰现象,而对金黄色葡萄球菌来说,植入剂的抑菌能力就呈现一直缓慢减小的趋势。
     (7)研究了多药物植入式给药系统植入家兔体内的释放行为,结果表明多药物植入式药剂植入兔股骨后,左氟沙星和利福平先后分阶段释放出来,两者的局部骨组织能够达到有效的药物浓度并且持续时间长,而血药浓度也是先后出现,但始终保持较低水平。说明这种植入式给药系统可以实现双药物分阶段控制释放。家兔经植入多药物制剂后的骨组织初步观察研究发现,局部无软组织感染或骨质破坏,无明显死骨形成。植入式给药系统植入切口愈合好,未见分泌物和淤血,由此显示植入式药剂具有良好生物相容性。
Implantable drug delivery system (IDDS) is a novel drug delivery forms by which the drug liberates directly in disease focus. Three-dimensional printing (3DP) is a solid freeform fabrication technique, which employs powder processing in the construction of parts in a layer-wise manner. It is capable of fabricating parts such as special exterior shapes, complex inner structures and so on. In the present study, the 3DP technology was introduced to fabricate the IDDS. The polymer material, the selection of binder and the process for 3DP were investigated, respectively. And the IDDS have special designed and fabricated by 3DP to furnish the desired drug rlease profiles. The IDDS was also implanted in rabbit for in vivo investigation. The resulted IDDS have been evaluated. The main results are as follows:
     (1) The polymer material, the selection of binder and the process for 3DP were investigated, respectively. The optical particles size of biodegradable polymer PLAs for 3DP wasΦ150μm~175μm. The binder was solutions with acetone 100ml,ethanal 20ml,water 5ml,glycerol 0.4ml,SLS 0.2g. The general optimal processes are: powder layer height (200μm), binder line spacing (100μm), binder printed speed (1.4g/min), binder flow rate (150cm/s). The results demonstrated that 3DP had superior preparing flexibility.
     (2) Compared with the IDDS made by conventional process method, 3DP impalnt showed more uniform inner structure. The implant made by conventional compress process appears to have fewer pores while the implant made by 3D printing was more porous and uniform.With gentamicin as a model drug, the implants made by conventional and 3DP process showed the burst release in vitro. However there is some different in which the burst release can be lower concentration from implant by 3DP than that by conventional process, thus will relatively prolong the whole release. The gentamicin gained 68μg/ml at 2nd day, which means that a lot of gentamicin was released at first.
     (3) Study on the single gentamicin IDDS preparation by 3DP and in vitro release was investigated.①Study of the IDDS with matrix structure reveal that the burst release was much smaller for lower loading implant. The burst release was due to the dissolution or diffusion of drug particles attached or near the surface. The mixture of PCL or HA and PLA affected the drug release easily. The mechanism of release was combination with degradation of PLA and drug diffusion.②The IDDS with sandwich structure loading gentamicin could sharply decrease the initial burst release.
     (4) Study on the single levofloxacin (LVFX) IDDS preparation by 3DP and in vitro release was investigated.①IDDS with a delay release time showed that more complicated structure implant with LVFX as drug by 3DP was achived to release with a delay time. To gain longer lag time, a thicker shell of the IDDS was needed.②A sort of implant with multi-phase release was developed: the first was with a burst release; the second at constant concentration; the third with a small increscent release before falling. Since the 3D printing technique can give the implant the desired internal macroscopic architecture, the implants could be created with many regions of the same implant.
     (5) The multi-drug IDDS with different kinds of structure were fabricated by 3DP technology and their in vitro dissolution tests were investigated:①The release characteristics of IDDS with simple structure (marked as IDDS A and IDDS B) illustrated that LVFX could be released easily from IDDS A and B.②The in vitro release characteristics of IDDS with simple structure (marked as C and D) illustrated that two drugs were released from these devices discontinuously. With LVFX and rifampicin (RFP) as model drugs in core structure IDDS, 20 days and 35 days delay time were achieved respectively. The release of core drug had two phases: a lag time delay and then a low speed release period. In a control experiment, the core and mantle were loaded with the opposite type of drug. One was liberated after the other with the delay, which indicated 3D printing having unambiguous advantages over the conventional technology in term of accurate dosage; reproduciblility; easiness and automation of the fabricating process.
     (6) The activity of the antibiotic from multi-durg IDDS showed the implant had kept strong activity in vitro for more than 40 days. It had great and lasting bacteriostasis to common pathogens of orthopaedic infections, such as staphylococcus aureus, colibacillus.
     (7) The implantation of IDDS in rabbit revealed that the drug concentration of bone, musucle near the implantation spot and serum in different time. The results showed that two drugs released from the implant successively and the local drug concentration was arrived at the effecitive content in bone and its near muscle for antibiotic action. But the level in serum was low all the time. In the first day the LVFX released with higher level following a little decrease. Four days later RFP began liberation which met the initial design of drug release one after another. The observation activity of the antibiotic suggested that IDDS had kept strong activity in vitro for more than 6 weeks. There was no obvious bone destroying or other parenchyma changes near the bone implantation spot. According to unaided eye, the operation spot seem better palingenetic and the outer thighbone too, which indicated that the IDDS had the good biocompatibility.
引文
[1]徐辉碧,杨祥良编著.纳米医药[M].北京:清华大学出版社,2004,179.
    [2]陈建海,奚廷裴编著.药用高分子材料与现代药剂[M].北京:科学出版社,2003,158.
    [3]徐铮奎.四大类新型给药技术[J].中国药业,2001,7(10): 29.
    [4] Danck M,张焱.植入控释给药系统[J].国外医药-合成药、生化药、制剂分册,1992,6(13):36-40.
    [5]胡瑜兰,张钧寿.植入剂应用的研究进展[J].国外医药-合成药、生化药、制剂分册,2001,1(22):353-356.
    [6] Lewis D, Chasin M, Langer R. Controlled release of bioactive agents from polymers. Biodegradable Polymers as Drug Delivery Systems [M]. New York: Marcel Dekker, 1990: 1-41.
    [7]毕殿洲主编.药剂学[M].北京:中国医药科技出版社,2001年,207.
    [8]张国,杨纪元,顾忠伟.植入剂的研究进展[J].化学进展, 1999, 12(3): 89-102.
    [9] Danck W,Fassihi A.Applying of a hypodermic implantation type of drug administration apparatus [J]. Drug Dev Ind Pharm, 1991,17:1465.
    [10]陆彬主编.药物新剂型与新技术[M].北京:人民卫卫生出版社,1998,504.
    [11]郑启新,徐逢仁.局部缓释药丸防治开放性骨折感染的实验研究[J].中华创伤杂志,1998,14(4):226-9.
    [12] Jacob I,Evora C.Formulation of calciumphosphates/poly(d,1-1actide blends containing gentamicin for bone implantation [J].J Control Release, 2000,68(1):21-34.
    [13]贺银成,袁月英. 5-Fu控释剂对Walker-256移植性鼠肝癌的治疗效果及临床研究[J].湖北医科大学学报,2000, 1(21): 61-62,64.
    [14]徐子猷. 5-氟尿嘧啶在Caco-2细胞模型中的吸收特性[J].药学学报,1998,3(33):222-225.
    [15]王文俭,蒋雪涛,郭涛等.喃氟啶植入剂的研究[J].中国药学杂志,1998,33(12):729.
    [16]梁寒,孙慧.活性碳吸附丝裂霉素C腹腔化疗的临床实验研究[J].中国肿瘤临床,2000,12(27):897-901.
    [17]许健健,王世亮.植入用缓释氟尿嘧啶释放度检查及体内外相关性研究[J].中国药学杂志,2005,4(40):292-294.
    [18]姚日生,董岸杰,刘永琼等编著.药用高分子材料[M].北京:化学工业出版社, 2003年.
    [19] Buranapanitkit B,Srinilta V,Ingviga N et al. The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system [J].Clin Orthop Relat Res, 2004,(424):244-252.
    [20] Shinto Y,Uchida A,Korkusuz F, et al. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics [J].J Bone Joint Surg Br, 1992,74(4):600-604.
    [21] Soriano I,Evora C.Formulation of calcium phosphates/poly(d,l-1actide) blends containing gentamicin for bone implantation [J].J Control Release, 2000,68(1):121-134.
    [22] Aleha K, Greggrey C. Theraeutic applications of implantable drug delivery systems [J]. J Pharmaco Toxico Methods, 1998, 1(40):1-12.
    [23] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as medical devices [J]. Medical Plastics and Biomaterials, 1998, 5(2):30-39.
    [24] Sershen S, West J. Implantable, polymeric systems for modulated drug delivery [J]. Advanced Drug Delivery Reviews, 2002, 54: 1225-1235.
    [25] Yamkawa M,Nakahigashi Y,Matsuda Y, et al. A novel skeletal drug delivery system using self-setting structure of biological factors on indomethacin release from the cement 1oaded on bevine bone [J].J Pharm Sci, 1994,83(11):1569-1573.
    [26] Li YX, Feng XD. Biodegradable polymeric matrix for long-acting and zero-order release drug delivery system [M]. Makromol Chemie Macromol Symp, 1990, 33:253-259.
    [27] Sarah LT, Tejal AD. Microfabricated drug delivery systems: from particles to pores [J]. Advanced Drug Delivery Reviews, 2003, 55: 315–328.
    [28]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社, 1998, 314.
    [29] Ramchandani M, Robison D. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants [J]. J Control Release, 1998, 54: 167-175.
    [30]朱盛山主编.药物制剂新剂型[M].北京:化学工业出版社, 2003: 239-250.
    [31] Klemm KW.Antibiotic bead chains [J].Clin Ortho,1993,(295):63-76.
    [32] Callaoun JH, Anger DM , Ledhetter BR , et a1 . The llizaro x-atorand polymethylmethacrylate antibiotic beads for the treatmentof infected defomfities [J].Clin Orthop,1993,(295)13-22.
    [33] Garvin KL,Miyano JA,Robinson D,et a1.Polylactide antibioticimplants in the treatment of ostcomyelitis:a canine model [J].Bone Joint Surg,1994,76:1500-1506.
    [34] Peter AW,Ostemlann DS,Stephen LH.Local antibiotic therapy for severe optic [J].fractures.Bone Joim Surg,1995,77(B):93-97.
    [35] Uchida A,Shinto Y,Arab N,et a1.Slow release of anticancerdrugs from porous calcium hydroxyapatite ceramic [J].Orthop Res,1992,10(3):440-445.
    [36]黄文铎,吴波,杨晓彤.含硫酸妥布霉素的磷酸钙骨水泥对外伤性骨髓炎作用的观察[J].创伤外科杂志,2001,3:31-33.
    [37]吴宏斌,郑启新,徐逢仁等.局部缓释药丸防治开放性骨折感染的实验研究[J].中华创伤杂志,1998.14(4):226-229.
    [38]张超,胡蕴玉,孙怡群.抗感染骨移植动物实验[J].第四军医大学学报,1999,20(1):62-63.
    [39]樊亚文,赖西南,王丽丽等.抗菌抗炎药物缓释体在海水浸泡肢体软组织火器伤救治中的应用[J].创伤外科杂志,2001, 3:25-28.
    [40]陶杰,王文伟,丁星.几丁糖万占霉素缓释放系统的制备[J].中国矫形外科杂志,2002,9(7):694-695.
    [41]陈安民,游洪波,孙淑珍.载药骨基质明胶防治人工关节感染和松动的实验研究[J].中华实验外科杂志,2001, 18(3):251-252.
    [42]孙诚,张贵祥,郭庆林.骨水泥中表阿霉素的释放及活性研究[J].实用放射学杂志,1997,13(5):26-262.
    [43]章莹.壳聚糖化疗药物缓释药粒局部治疗骨巨细胞瘤的实验研究[J].中华实验外科杂志,2000, 17(2):132.
    [44]游洪波,陈安民,孙淑珍.阿霉素-多孔磷酸三钙陶瓷缓释体的研制及体内释药试验[J].中国修复重建外科杂志.2001,15(1):12-14.
    [45]俞玮,周勇,范清宇等.阿霉素异体脱钙骨基质骨粒骨水泥缓释体的制备及体外试验[J].中国临床康复,2002,6(6):800-801.
    [46] Peri WH,Schaberg SJ.The effects of antibiotic supplerremed bone allografts on contaminated,partially avulsive fractures of the cineulna [J].Oral Maxillofac Surg,1984,42:699-704.
    [47]任国宝.以盐酸脱钙骨为载体的药物体内外释放的研究[J].组织移植通讯,1995,2(2):67-69.
    [48]栗向东,胡蕴玉.庆大霉素重组合异种骨复合体防治开放性骨折骨缺损感染的实验研究[J].中华骨科杂志,1999, 19(12):730.
    [49]胡蕴玉,孙怡群.庆大霉素重组合异种骨复合体的制备及相关研究[J].中华实验外科杂志,1999, 16(4): 308-310.
    [50]张志荣,何勤.药剂学研究进展[J].中国药学杂志,2001,36(1):10-13.
    [51]袁志,胡蕴玉,马平等.新型植骨材料-复合rhBMP2的异种骨的实验研究[J].现代康复,2000,4(10):1510-1513.
    [52]周强,石国华,杨柳.复合多孔生物材料在股骨头坏死模型中诱导成骨的观察[J].中华外科杂志,2002,40(6):458-461.
    [53]景利,曾杰,唐勇胜.布洛芬人工骨的制备及体外释药试验[J].中国医院药学杂志,1999,19(11):659-661.
    [54]张曙,穆兰.快速原形技术的医学应用[J].机电一体化, 2000, 2: 22-25.
    [55] Wu BM, Borland SW, Giordano RA, et al. Solid free-form fabrication of drug delivery devices [J]. J Control Release, 1996, 40: 77-87.
    [56] Cima LG, Chim MJ. Preparation of medical devices by solid free-form fabrication methods [P]. US Patent NO. 5490962, 1996.
    [57] Rowe CW, Pryce Lewis WE, Cima MJ, et al. Printing of dispensing a suspension such as three-dimensional printing of dosage forms [P]. US Patent NO.0099708, 2003.
    [58] Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs [J]. Biomaterials, 2003, 24: 2363-2378.
    [59] Scahs EM, Haggerty JS, Cima MJ, et al. Three-dimensional printing technique [P]. US Patent NO.5204055, 1993.
    [60] Rowe CW, Katstra WE, Palazzolo RD, et al. Multimechanism oral dosage forms fabricated by three-dimensional printing [J]. J control Release, 2000, (66): 11-17.
    [61] Chua CK, Leong KF, Cha SW. Design and development of drug delivery devices (DDD) using selective laser sinting [J]. J Engineering in Medicine, 2001, 215:191.
    [62] Sachs E, Cima M, Williams P, et al. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model [J]. J Eng Ind, 1992, 114(4): 481-488.
    [63] Anonymity. What is the 3DPTM process? Available at: http://web.mit.edu/tdp/www/whatis3dp.html.
    [64] Wu BJ, Cima MJ. Effects of solvent-particle interaction kinetics on Microstructure formation during three-dimensional printing [J]. Polymer Eng Sci, 1999, 39: 249-260.
    [65] Katsta WE, Palazzolo RD, Rowe CW, et al. Oral dosage forms fabricated by three-dimensional printing [J]. J Control Release, 2000, 66: 1-9.
    [66]李晓燕,张曙.三维打印成形技术在制药工程中的应用[J].中国制造业信息化,2004, 33 (4): 105-107.
    [67]余灯广,杨祥良,徐辉碧等.三维打印技术在药剂学中的应用[J].中国新药杂志, 2005,14 (7): 843-848.
    [68] Zheng QX, Guo XD, Du JY, et al. Biodegradation of absorbable HA/dl-PLA composites in different environment [J]. Joumal of Wuhan University of Technology-Mater Sci Ed, 2002, 17(3):24-29.
    [69] Monkhouse DC, Yao J, Sherwood MJ, et al. Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof [P]. US Patent NO.6280771, 2001.
    [70] Yan YN, Wu RD, Zhang RJ, et al. Biomaterial forming research using RP technology [J]. J Control Release, 2003, 9(3): 142-149.
    [71] Petezold R, Zeilhfer HF, Kalender WA. Rapid prototyping technology in medicine-basics and applications [J]. Computerized Medical Imaging and Graphics, 1999, 23 (5): 277-284.
    [72] Wu BM. Microstructural Control during three-dimensional printing of polymeric medical devices [M]. Massachusetts, America: Massachusetts Institute of Technology, 1998, 215.
    [73]伍咏晖,李爱平,张曙.三维打印技术的新进展[J].机械制造,2005,12(43):62-64.
    [74]胡发宗,赵毅.三维立体打印机的成形技术[J].摸具技术,2004,1:60-63.
    [75]李晓燕,张曙.三维打印快速成形及其试验研究[J].电加工与摸具,2005, 5:22-25.
    [76] Liu Q. Human organ printed by the printer [J]. Family Technology,2003,11:47.
    [77] Vladimir M,Thomas B, Thomas T, et al. Organ printing:computer-aided jet-based 3D tissue engineering [J]. Trends in Biotechnology,2003,4(21):157-159.
    [78] lander R, Pfister A, John H, et al. Biofuntional processing by means of 3D plotting technology and biomaterials design. Second Workshop on Materials Opportunitiesin layered Manufacturing Technologies [M]. Manchester UK, 2001, 6.
    [79] Pfister A, Mulhaupt R. New type of powder material for 3DPTM [M]. 2001 MRS Fall Meeting, Boston US, 2001, 11.
    [80] Broring M, Pfister A, Iig K. Cluster stabilization by an opern-chain tetrapyrrolic ligand: first evidence for NH activation as an initial step in tetrapyrrole metalation processes [J]. Chemical Communications, 2000, 15:1407-1408.
    [81] Lam C, Mo X. Scaffold development using 3D printing with a starch-based polymer [J]. Matereials Science and Engineering, 2002, 20:49-56.
    [82] Csucsa G, Michel R. Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications [J]. Biomaterials, 2003, 24:1713-1720.
    [83]张宁,朱家壁.缓控释制剂技术发展的新动向[J].国外医学药学分册,2000,27(4):239-243.
    [84] Zeltinger J, Sheerwood JK, Graham DM, et al. Effects of pore size and void fraction on celluar adhesion, proliferation, andmatrix deposition [J]. Tisse Eng, 2001, 7: 557-572.
    [85] Lam CXF, Mo XM, Teoh SH, Hutmacher DW. Scoffold development using 3D printing with a starch-based polymer [J]. Mater, Sci Eng C, 2002, 20: 49-56.
    [86] Jill KS, Susan LR, Robert P, et al. A three-dimensional osteochondral composite scaffold forarticular cartilage repair [J]. Biomaterials, 2002, 23: 4739-4751.
    [87] Whang K, Healy KE, Elenz DR, et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture [J]. Tissue Engineering, 1999, 5 (1): 35.
    [88] Landers R, Hubner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermo reversible hydrogels and tailored for applications in tissue engineering [J]. Biomaterials, 2002, 23: 4437.
    [89] Ang TH, Sultana FSA, Hutmacher DW, et al. Fabrication of 3D chitosan hydroxyapatite scaffolds using a robotic dispensing system [J]. Materials Scienceand Engineering C, 2002:35.
    [90] Landers R, Mulhaup R. Desktop manufacturing of complex objects, proto types and biomedical scaffolds by means of computer assisted design combined with computer guided 3D plotting of polymers and reactive oligomers [J]. M acromolecular Material Engineering, 2000, 282: 17.
    [91] Barlow JW, Lee CH, Crawford RH, et al. Method and system for fabricating artificial bone implants [P]. US Patent No.5639402, 1997, 6.
    [92] Barlow JW, Lee CH, Crawford RH, et al. Artificial bone implants [P]. US Patent Appl No 09/765801, 2001, 6.
    [93] Harlan NR, Reyes R, Bourell DL, et al. Titanium castings using laser scanned data and selective laser sintered zirconia molds [J]. Journal of Materials Engineering and Performance, 2001, 10: 410.
    [94] Leray B, Chabot F, Vert M. Bioresobability and biocompatibility of aliphatic polyester [J]. J Mater Sci, 1992, 6(5):432-43.
    [95] Zheng QX, Guo XD, Du JY, et al. Biodegradation of absorbable HA/dl-PLA composites in diferent environment [J]. Joumal of Wuhan University of Technology-Mater Sci Ed, 2002, 17(3):24-29.
    [96] Gabriel TM., David G., Scott J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J]. Biomaterials, 2002, 23:1283-1293.
    [97]李凌冰,谭业帮.药物从多孔骨架聚合物系统中控制释放的动力学模型[J].中国生物医学工程学报,2003,2:4-7.
    [98] Wu BM, Borland SW, Giordano RA, et al. Solid free-form fabrication of drug delivery devices [J]. J Control Release, 1996, 40(1-2): 77-87.
    [99] Petezold R, Zeilhfer HF, Kalender WA. Rapid prototyping technology in medicine-basics and applications [J]. Computerized Medical Imaging and Graphics, 1999, 23(5):277-284.
    [100] Katsta WE, Palazzolo RD, Rowe CW, et al. Oral dosage forms fabricated by three dimensional printing [J]. J control Release, 2000, (66):1-9.
    [101] Pryce Lewis WE, Rowe CW, Cima M J, et al. A system and method for uniaxial compression of an article, such as a three-dimensional printing dosage form [P]. WO patent NO03037607, 2003.
    [102] Rowe CW, Pryce Lewis WE, Cima MJ, et al. Printing or dispensing a suspension such as three-dimensional printing of dosage forms [P]. US patent NO0099708, 2003.
    [103] Monkhouse, Sherwood, Jill K. Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof [P]. US patent NO6514518, 2003.
    [104] Berend J, Paul C, Ulrich S. Injet printing of polymers: state of the art and future developments [J]. Advanced materials, 2004, 3(16):202-206.
    [105] Paul C. Inkjet printing for materials and devices [J]. Chem Mater 2001, 13, 3299-3305.
    [106] Kapur V K, McConnell RD, Carlson D, et al. In Photovoltaics for the 21st century [M]. Proceedings of the ECS, Eds, 1999, (PV): 99-11.
    [107] Milner, A. Time of flight controller and stream position compensation system for the three Dimensional printing process [M]. MIT MS Thesis, 1991.
    [108] Wegner LD, Gibson LJ. The mechanical behaviour of interpenetrating phase composites-II: a case study of a three-dimensionally printed material [J]. International Journal of Mechanical Sciences, 2000, 42:943-964.
    [109] Wegner LD, Gibson LJ. The mechanical behaviour of interpenetrating phase composites-I:modelling [J]. International Journal of Mechanical Sciences, 2000, 42(5):925-942.
    [110] Sachs E, Guo H, Wylonis E, et al. Rapid fabrication of injection-molding tooling with 3-D printing [J]. Rapid Prototyping, 1996,2(4):1-3.
    [111] Wegner LD. Mechanical behavior of cellular solid composites: microsandwichfoams and interpenetrating phase composites [M]. PhD Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    [112] Bredt JF, Clark SL, Uy EF, et al. Compositions for three-dimensional printing of solid objects [P]. WO patent NO0178969, 2001.
    [113] Scans EM, Haggerty JS, Cima MJ, et al. Three-dimensional printing technique [P]. US patent NO5204055, 1993.
    [114] Cima, Linda G. Preparation of medical devices by solid free-form fabrication methods [P]. US patent NO 5490962, 1996.
    [115] Monkhouse, Donald C. Rapid prototyping and manufacturing process [P]. US patent NO6547994, 2003.
    [116] Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs [J]. Biomaterials, 2003, 24(13):2363-2378.
    [117] Monkhouse, Sherwood, Jill K. Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof [P]. US patent NO6514518, 2003.
    [118] Payumo FC, Sherwood JK, Yoo J, et al. Method and form of a drug delivery device, such as encapsulating a toxic core within a non-toxic region in an oral dosage form [P]. US patent NO0015728, 2002.
    [119] Monkhouse DC, Sandee PK, Rowe CW, et al. A complex-aided fabrication process for rapid designing, prototyping and manufacturing [P]. WO Patent NO29202, 2000.
    [120] Rowe CW, Katstra WE, Palazzolo RD, et al. Multimechanism oral dosage forms fabricated by three-dimensional printing [J]. J control Release, 2000(66): 11-17.
    [121] Wang CC, Yoo J, Bornancini E, et al. Diffusion-controlled dosage form and method of fabrication including three-dimensional printing [P]. US Patent NO. 005360, 2004.
    [122] Pryce WE, Rowe CW, Cima MJ, et al. System for manufacturing controlled releasedosage forms, such as a zero-order release profile dosage form manufactured by three-dimensional printing [P]. US Patent NO. 0198677, 2003.
    [123] Rowe CW, Pryce Lewis WE, Cima MJ, et al. Printing of dispensing a suspension such as three-dimensional printing of dosage forms [P]. US Patent NO.0099708, 2003.
    [124] Wu BJ, Cima MJ. Effects of solvent-particle interaction kinetics on Microstructure formation during three-dimensional printing [J]. Polymer Eng Sci, 1999, 39: 249-260.
    [125] Sachs E, Cima M, Williams P, et al. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model [J]. J Eng Ind, 1992, 114(4): 481-488.
    [126] John T, Santini J, Cima MJ, et al. A controlled-release microchip [J]. Nature, 1999, 397(28): 335-338.
    [127] Cima LG, Chim MJ. Preparation of medical devices by solid free-form fabrication methods [P]. US Patent NO. 5490962, 1996.
    [128]张景,陆彬.聚乳酸及其共聚物在药物释放系统中的研究进展[J].国外医药-合成药生化药制剂分册, 2000,21(5):310-313.
    [129]陈际达,崔磊,刘伟等.溶剂浇铸/颗粒沥滤技术制备组织工程支架材料[J].中国生物工程杂志,2003,4(23):32-36.
    [130]闫玉华,周文娟,李世普等.组织工程基质材料研究进展[J].国外医学生物医学工程分册,2001,24(4):149-153.
    [131] Nam YS,Yoon JJ,Park TG.A novel fabrication method of macroporus biodegradable polymer scaffolds using gas foaming salt as a porogen additive [J].J Biomed Mater Res,2000,53:1-7.
    [132] Sampath S,Robinson DH. Comparison of new and existing spectrophommetric methods for the analysis of tobramvin and other aminoglycosides [J]. J Pharm Sci.1990,79(5):428-431.
    [133] Domb AJ.Maniar M. Absorbable biopolymers derived from dimer fatty-fcids [J]. J Polym Sci Polym Chem,1993,31(5):1275-1285.
    [134] Vogelhuber W,Rotunno P,Magni E, et a1.Programmable biodegradable implants [J].Journal of Controlled Release,2001,73:75.
    [135] Meyer JD,Falk RF,Kelly RM, et a1.Preparation and in vitro characterization of gentamycin impregnated biodegradable beads suitable for treatment of osteomyelitis [J].Journal of Pharmaceutical Sciences,1998,87(9):1 149.
    [136]伍镇亿,白秀梅,李珠.国产长效皮下埋植剂和NORPLANT的药物体外释放比较[J].生殖与避孕,1992,12(3):7.
    [137] Stephens D,Li L,Robinson D, et a1.Investigation of the in vitro release of gentamicin from a poly anhydridematrix [J].Journal of Controlled Release,2000,63:305.
    [138] Dash AK,Haney PW,Garavalia MJ.Development of an in vitro dissolution method using microdialysis sampling technique for implantable drug delivery systems [J].Jounal of Pharmaceutical Sciences,1999,88(10):1036.
    [139] Gintp Y,Chidap B,Korkus F, el a1.Calciuln hydroxyapatite ceramic used as a delivery system for antibiotics [J].Otolaryngol Head Neck Surg,2001;116(4):861-867.
    [140] Kelly J,David L,Tim A, el a1.Elution characteristics of tobramycin from polycaprolatone in a rabbit model [J].Clin Orthop,2001;(394):418-426.
    [141] Benoit MA,Mousset B,Delloye C et al.Antibiotic loaded plaster of Paris implantscoated with poly lactid-co-glycolide as a controlled release delivery system for treatment of bone infeetions [J].Int Orthop,1997;2l(6):403-408.
    [142] Huang X, Brazel CS.On the importance and mechanisms of burst release in matrix controlled drug delivery systems [J].Journal of Controlled Release,2001,73:121.
    [143] Brazel CS,Peppas NA.Recent studies and molecular analysis of drug release from swelling controlled devices [J].Pharma Sci,1999,9:473.
    [144] Shively ML,Coonts BA,Renner WD, et a1.Physicochemical characterization of polymeric injectable implant delivery system [J].J Control Release,1995,33:237.
    [145] Vasadev SV.Chandy T,Sharma CP.Development of chitosan/polyethylene vinylacetate comatrix:controlled release of aspirinheparin for preventing cardiovascular thrombosis [J].Biomaterials,1997,18:375.
    [146] Mallapragada SK.Colombo P.Crystal dissolution controlled release systems II: Metronidazole release from micrystalline poly(vinyl alcohol)systems [J].J Biomed Mater Res,1997,36:125.
    [147] Ficek BJ,Peppas NA.Novel preparation of poly(vinyl alcohol)microparticles without crosslinking agent for controlled drug delivery of proteins [J].J Control Release,1993,27:259.
    [148] Chia HH,Chung TS, Yang YY.Effect Of preparation temperature on the characteristics and release profiles of PLGA microsphers fabricated by double emulsionsolvent extraction/evaporation method [J].Proc Int Symp Control Release Bioact Mater,2000, 27:8 137.
    [149] Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs [J]. Biomaterials, 2003, 24 (13): 2363-2378.
    [150]贾伟,高文远.药物控释新剂型[M].北京:化学工业出版社, 2005: 87.
    [151] Kco KH,Yang JW,Cho SH, el a1.Impregnation of vancomycin,gentamicin,and cefotaxime in a cement spacer for two stage cementless reconstruction in infectedtotal hip arthroplasty [J].J Arthroplasty,200l;16(7):882-892.
    [152] Eiff C,Bettin D,Proctor RA.Recovery of small colony variants Of stahlococus following gentamicin bead palacement for osteomyelitis [J].Clin Infect Dis,1997;25(6):1250-1251.
    [153] Kwasny O,Bockhom G,Vecsei V.The use of gentamicin collagen floss in the treatment 0f infections in trauma surgery [J].Orthopedics,1994;17(5):421-425.
    [154] Chandrasekaran SK,Paul DR. Dissolution controlled transport from dispersed matrixes [J].J Pharm Sci,1982, 71(12);1339-1402.
    [155] Macdonald JM, Torriani FJ, Morse LS. Lack of reactivation of CMV retinitis after stopping CMV maintenance therapy in AIDS patients with sustained elevation inCD4 T cells in response to highly active antiretroviral therapy [J]. J Infect. Dis. 1998 (177):1182–1187.
    [156] Murakami H, Kobayashi M, Takeuchi H, et al. Evaluation of poly (DL-Lactido-co-glycolide) nanoparticles as matrix material for direct compression [J]. Advanced Power Technol, 2000, 11(3): 311-322.
    [157] Borchardt JK. Self-rupturing microcapsules for pulsed drug delivery: Biomaterials [J]. Materials Today, 2005, 8(11): 20.
    [158] Miclau T, Dahners LE, Lindsey RW. In vitro pharmacokinetics of antibiotic release from locally implantable materials [J]. Orthop. Res, 1993, 11(5):627-632.
    [159] Abdul S, Poddar SS. A flexible technology for modified release of drug: multi layered tablets [J]. J Control Release, 2004, 97: 393-405.
    [160] Pillai O, Panchagnula R. Polymers in drug delivery [J]. Current opinion in chemical biology, 2001, 5: 447-451.
    [161] Chopra SK, Nangia AK, Lee D, et al. Controlled-release devices [P]. US Patent NO 5342627, 1994.
    [162] Langer R. New methods of drug delivery [J]. Science, 1990, 249: 1527-1533.
    [163] Paolo C, Antonio CC, Giorgio P. Multilayer matrix systems for the controlled-release of active principles [P]. Euro Patent NO. 0598309A2, 1993.
    [164] Zhou T, Lewis H, Forster R, et al. Development of multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy [J]. J Control Release, 1998, 55:281-295.
    [165] Boeree NR. Development of a Degradable composite for orthopedic use: mechanical evaluation of a hydroxyapatite-polyhydroxgutyrate composite material [J]. Biomaterials, 1993, (14): 793-796.
    [166] Martin RB. Bone ingrowth and mechanical properties of coralline hydroxyapatite One year after implantation [J]. Biomaterials, 1993, 14:341-348.
    [167] Vacanti. Selective cell Transplantation uing bioabsorbable artificial polymers as matrices [J]. Arch Surg, 1988, 123: 545-549.
    [168] Achim G. Bioerodible implants with programmable drug release [J]. J Control Release, 1997, 44: 271-281.
    [169] Low KH, Leong KF, Chua CK, et al. Characterization of SLS parts for drug delivery devices [J]. Rapid Prototyping J, 2001, 7 (5): 262-267.
    [170] Petezold R, Zeilhfer HF, Kalender WA. Rapid prototyping technology in medicine-basics and applications [J]. Computerized Medical Imaging and Graphics, 1999, 23(5): 277-284.
    [171] Rowe CW, Katstra WE, Palazzolo R D, et al. Multimechanism oral dosage forms fabricated by three dimensional printing [J]. J. Control. Release, 2000(66):11-17.
    [172] Lam C, Mo X. Scaffold development using 3D printing with a starch-based polymer [J]. Matereials Science and Engineering, 2002, 20:49-56.
    [173] Roeder B,Van Gils CC,Maling S.Antibiotic beads in the treatment of diabetic pedal osteomyelitis [J].J Foot Ankle Surg,2000,39(2):124-130.
    [174]张朝,杨增华,陈瑞等.庆大霉素珠链治疗慢性骨髓炎疗效分析[J].四川医学,2000;21(3):232-233.
    [175] Kelly J, David L, Tim A, et al. Elution characteristics of tobrarnycin from polycaprolatone in a rabbit model [J].Clin Orthop,2001, (394) :418-426.
    [176]王文波,陈中伟,陈统一等.羟基磷灰石水泥的体外生物学安全性实验[J].上海生物医学工程,1996, 17:8.
    [177] Fraser RK, Cole WG. Osteolysis after biodegradable pin fixation of fractures in children [J]. J Bone Surg (Br), 1992, 74:929-30.
    [178] Arm DM,Tencer AF. Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrouth [J].Biomaterials,1996,17:703-709.
    [179]仇家农,沈莉莉.骨科感染性疾病的抗生素应用[J].首都医药,1999,6(4):38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700