周期导波结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了周期导波结构中的电磁特性、仿真技术及工程应用。首先总结了当前周期导波结构的研究现状和趋势,然后通过对仿真技术的研究分析了周期加载介质平行板波导的电磁特性。在工程应用研究方面主要对当前的一个研究热点——电磁带隙结构进行了研究。
     第一部分总结了当前在周期导波结构研究方面已经取得的成果和存在的问题,分别从周期导波结构的电磁特性、仿真技术及工程应用研究三个方面进行了介绍和比较。
     第二部分主要通过对仿真技术的研究来分析周期导波结构的电磁特性。首先给出了导波结构频域的模式场本征值问题方程,然后通过两种压缩后的Yee网格方法,对特征值问题方程进行了离散化。仿真算例采用了周期加载不同介质的平行板波导,结果表明方法具有很好的准确性。在这一部分还讨论了观察到的复数模对现象。
     第三部分主要对一种地板层型周期结构单元——开槽地板结构进行了研究。首先提出了一种基于微带的开槽地板带阻谐振器,具有结构紧凑、能抑制杂散响应等特点。和传统的哑铃型、H型和改进的哑铃型带阻滤波器相比,所提出的结构在尺寸上被极大地减小了。另外,变容二极管可以加载于地板上的开槽,这样谐振器可实现可调。其次,提出了一种基于开槽地板结构的双通带宽频带通滤波器。这种滤波器具有小尺寸、宽带宽、低插入损耗及通带频率设计灵活的特点。通过对两种特殊结构形式单元之间的相互嵌套,形成了一种新的双通带滤波器,它的两个通带可以分别被独立控制。最后,通过采用步进阻抗模型分析了开槽地板结构单元,填补了最近十年来开槽地板结构理论分析上的空白,理论分析结果和仿真结果之间误差只有10%左右。
     第四部分对高速电路中的电源/地板结构进行了研究,分析了地弹噪声形成的原因,从而提出了一种新颖的π型的光子带隙电源/地板结构,它可以抑制300MHz-6GHz超宽带范围内的地弹噪声,几乎实现了整个噪声频段的噪声抑制。另外,一种改进型的电源/地板结构被提出并进一步提高了低频端的抑制范围。
     第五部分对全文进行了总结,并对下一步的工作进行了展望。
In this Dissertation, electromagnetic characteristics, simulation techniques and engineering applications of periodic guided wave structures are mainly investigated. The current research status and trends of periodic guided wave structures are summarized firstly. Then, by the research of simulation techniques, the electromagnetic characteristics of parallel plate waveguides loaded with periodic substrates are investigated. In engineering applications, electromagnetic bandgap structures, a current research hot spot, are researched.
     In the first part, the current achievements and existent problems in the periodic guided wave structures are summarized, and the researches in electromagnetic characteristics, simulation techniques and engineering applications are introduced and compared, respectively.
     In the second part, the electromagnetic characteristics are investigated by the research of simulation techniques. Eigen equations of mode fields in guided wave structures are given in frequency domain firstly. Then, these equations are discritized by two condensed Yee's cell methods. The simulation examples are the parallel plate waveguides loaded with different periodic substrates. From the simulated results, it can be shown that these methods have good accuracy. In this part, the observed complex mode pairs are discussed.
     In the third part, a ground plane type periodic cell, slotted ground structure, is investigated. First, a microstrip bandstop resonator with slotted ground structure is proposed featuring compactness and suppression of spurious response. Compared with the traditional dumbbell-, H-, and modified dumbbell-shaped slotted ground structures, the size of the proposed structure is reduced greatly. Additionally, the varactor could be embedded in the slot of the ground, so the last resonator would be tunable. Second, a dualband wideband bandpass filter based on slotted ground structure is proposed featuring compactness, broadband, low insertion loss and flexibility to the passbands. By embedding the two special cells each other, a new dualband bandpass filter is gotten. The two passbands could be selected independently. Finally, the slotted ground structure is analyzed by using stepped impedance model. It supplies a gap in the analysis of slotted ground structures in theory. And there are only about 10% relative errors between the theoretic and simulated results.
     In the forth part, the power/ground structures in high speed circuits are investigated. By analyzing the existence reasons of ground bounce noise, a novelπ-bridged power/ground structure with photonic bandgap is proposed. The ground bounce noise could be suppressed in an ultra wideband from 300MHz to 6GHz, almost the whole noise frequency band. And an improved power/ground structure is proposed to improvethe performance in the lower frequency band further.
     In the fifth part, we summarize the whole content and propose the future work.
引文
[1]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics.Physical Review Letters,1987,58(20):2059-2062
    [2]S.John.Strong localization of photons in certain disordered dielectric superlattices.Physical Review Letters,1987,58(20):2486-2489
    [3]L.Brillouin.Wave Propagation in Periodic Structures.2nd ed.,Dover Publications,1953,1-76
    [4]R.E.Collin.Field Theory of Guided Waves.2nd ed.,IEEE Press,1990,173-245
    [5]温熙森.光子/声子晶体理论与技术.北京:科学出版社,2006,1-11
    [6]D.A.Watkins.Topics in Electromagnetic Theory.New York:John Wiley & Sons,1958,15-26
    [7]J.D.Shumert.Modeling of Periodic Dielectric Structures(Electromagnetic Crystals).Ph.D.dissertation,University of Michigan,2001,10-69
    [8]P.Baccarelli,C.D.Nallo,S.Paulotto,et al.A full-wave numerical approach for modal analysis of 1-D periodic microstrip structures.IEEE Trans.Microwave Theory Tech.,2006,54(4):1350-1362
    [9]M.Celuch-Marcysiak and W.K.Gwarek.Spatially looped algorithms for time-domain analysis of periodic structures.IEEE Trans.Microwave Theory Tech.,1995,43(4):860-865
    [10]A.C.Cangellaris,M.Gribbons,and G.Sohos.A hybrid spectral/FDTD method for the electromagnetic analysis of guided waves in periodic structures.IEEE Microwave Guided Wave Lett.,1993,3(10):375-377
    [11]H.Lee and J.Kim.Modified Yee's cell for finite-difference time-domain modeling of periodic boundary guiding structure.IEEE MTT-S,2001,889-892
    [12]F.Xu and K.Wu.Guided-wave and leakage characteristics of substrate integrated waveguide.IEEE Trans.Microwave Theory Tech.,2005,53(1):66-73
    [13]A.aminian and Y.Rahmat-Samii.Spectral FDTD:a novel technique for the analysis of oblique incident plane wave on periodic structures.IEEE Trans.Antenna and Propagation,2006,54(6):1818-1825
    [14]S.Wang,J.Chen,and P.Ruchhoeft.An ADI-FDTD method for periodic structures. IEEE Trans.Antenna and Propagation,2005,53(7):2343-2346
    [15]L.E.R.Petersson and J.M.Jin.A two-dimensional time-domain finite element formulation for periodic structures.IEEE Trans.Antenna and Propagation,2005,53(4):1480-1488
    [16]Y.Cai and C.Mias.Fast finite dement time domain-Floquet modal absorbing boundary condition modeling of periodic structures using recursive convolution.IEEE Trans.Antenna and Propagation,2007,55(9):2550-2558
    [17]R.A.Kipp and C.H.Chan.A numerically efficient technique for the method of moments solution for planar periodic structures in layered media.IEEE Trans.Microwave Theory Tech.,1994,53(1):635-643
    [18]Y.Horii and M.Tsutsumi.Harmonic control by photonie bandgap on microstrip patch antenna.IEEE Microwave Guided Wave Lett.,1999,9(1):13-15
    [19]H.Liu,Z.Li,X.Sun,et al.Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna.IEEE Microwave Wireless Component Lett.,2005,15(2):55-56
    [20]P.S.Hui and A.Alphones.Microstrip patch antenna with annular ring PBG.Microwave Conference,2000 Asia-Pacific,1347-1351
    [21]Y.Qian,D.Sievenpiper,V.Radisie,et al.A novel approach for gain and bandwidth enhancement of patch antennas.RAWCON98 Proceedings,1998,221-224
    [22]D.Pavlickovski and R.B.Waterhouse.Shorted microstdp antenna on a photonic bandgap substrate.IEEE Trans.Antenna and Propagation,2003,51(9):2472-2475
    [23]A.S.Andrenko,Y.Ikeda,and O.Ishida.Application ofpbg microstrip circuits for enhancing the performance of high-density substrate patch antennas.Microwave and Optical Technology Lett.,2002,32(5):340-344
    [24]F.Yang,and Y.Rahrnat-Samii.Microstrip antennas integrated with electromagnetic band-gap(ebg) structures:a low mutual coupling design for array applications.IEEE Trans.Antenna and Propagation,2003,51(10):2936-2946
    [25]Z.Iluz,R.Shavit,and R.Bauer.Microstrip antenna phased array with electromagnetic bandgap substrate.IEEE Trans.Antenna and Propagation,2004,52(6):1446-1453
    [26]V.Radisic,Y.Qian,R.Coccioli,et al.Novel 2-d photonic bandgap structure for microstrip lines.IEEE Microwave Guided Wave Lett.,1998,8(2):69-71
    [27]C.S.Kim,J.S.Park,D.Ahn,et al.A novel 1-D periodic defected ground structure for planar circuits.IEEE Microwave Guided Wave Lett.,2000,10(4):131-133
    [28]F.R.Yang,K.P.Ma,Y.Qian,et al.A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits.IEEE Trans.Microwave Theory Tech.,1999,47(8):1509-1514
    [29]F.R.Yang,K.P.Ma,Y.Qian,et al.A novel TEM waveguide using uniplanar compact photonic-bandgap(UC-PBG) structure.IEEE Trans.Microwave Theory Tech.,1999,47(11):2092-2098
    [30]P.Meissner and M.Kitlinski.A 3-db multilayer coupler with UC-PBG structure.IEEE Microwave Wireless Component Lett.,2005,15(2):52-54
    [31]C.Y.Hang,V.Radisic,Y.Qian,et al.High efficiency power amplifier with novel PBG ground plane for harmonic tuning.IEEE MTT-S Diges,1999,807-810
    [32]V.Radisic,Y.Qian,and T.Itoh.Broad-band power amplifier using dielectric photonic bandgap structure.IEEE Microwave Guided Wave Lett.,1998,8(1):13-14
    [33]D.Sievenpiper,L.Zhang,R.F.J.Broas,et al.High-impedance electromagnetic surfaces with a forbidden frequency band.IEEE Trans.Microwave Theory Tech.,1999,47(11):2059-2074
    [34]T.L.Wu,Y.H.Lin,and S.T.Chen.A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures.IEEE Microwave Wireless Component Lett.,2004,14(7):337-339
    [35]T.L.Wu,C.C.Wang,Y.H.Lin,et al.A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits.IEEE Microwave Wireless Comp.Lett.,2005,15(3):174-176
    [36]T.L.Wu and S.T.Chen.An electromagnetic crystal power substrate with efficient suppression of power/ground plane noise on high-speed circuits.IEEE Microwave Wireless Component Lett.,2006,16(7):413-415
    [37]S.Shahparnia and O.M.Ramahi.Electromagnetic interference(EMI) reduction from printed circuit boards(PCB) using electromagnetic bandgap structures.IEEE Trans.Electromagn.Compat.,2004,46(4):580-586
    [38]I.Rumsey,M.Piket-May,and P.K.Kelly.Photonic bandgap structures used as filters in microstrip circuits.IEEE Microwave Guided Wave Lett.,1998, 8(10):336-338
    [39]T.Kim and C.Seo.A novel photonic bandgap structure for low-pass filter of wide stopband.IEEE Microwave Guided Wave Lett.,2000,10(1):13-15
    [40]F.Martín,F.Falcone,J.Bonache,et al.Dual electromagnetic bandgap CPW structures for filter applications.IEEE Microwave Wireless Component Lett.,2003,13(9):393-395
    [41]A.Griol,D.Mira,A.Martinez,et al.Multiple-frequency photonie bandgap microstrip structures based on defects insertion.Microwave and Optical Technology Lett.,2003,36(6):479-481
    [42]H.W.Liu,Z.F.Li,X.W.Sun,et al.An improved 1-d periodic defected ground structure for microstrip line.IEEE Microwave Wireless Component Lett.,2004,14(4):180-182
    [43]S.Y.Huang and Y.H.Lee.Compact U-shaped dual planar EBG microstrip low-pass filter.IEEE Trans.Microwave Theory Tech.,2005,53(12):3799-3805
    [44]C.C.Chiau,X.Chen,and C.Parini.Multiperiod EBG structure for wide stopband circuits.IEE Proc.Microwave Antennas Propagation,2003,150(6):489-492
    [45]F.Frezza,L.Pajewski,and G.Schettini.Fractal two-dimensional electromagnetic band-gap structures.Microwave Symposium Digest,2003 IEEE MTT-S,825-828
    [46]J.B.Pendry and D.R.Smith.Reversing light:negative refraction.Physical Today,http://www.physicstoday.org,Dec.2003
    [47]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001,382-405
    [48]J.Y.Kim and H.Y.Lee.Wideband and compact bandstop filter structure using double-plane superposition.IEEE Microwave and Wireless Components Letters,2003,13:279-280
    [49]R.Ian,P.M.Melinda,and P.K.Kelly.Photonic bandgap structures used as filters in microstrip circuits,IEEE Microwave Guided Wave Lett.,1998,8:336-228
    [50]T.Kim and C.Seo.A novel photonic bandgap structure for low-pass filter of wide stopband.IEEE Microwave Guided Wave Lett.,2000,10:13-15
    [51]X.H.Wang,B.Z.Wang,Y.H.Bi,et al.A novel uniplanar compact photonic bandgap power plane with ultra-broadband suppression of ground bounce noise.IEEE Microwave and Wireless Components Lett.,2006,16(5):267-268
    [52]D.H.Choi and W.J.R.Hoefer.The finite-difference-time-domain method and its applications to eigenvalue problems.IEEE Trans.Microwave Theory Tech.,1986,34:1464-1470
    [53]S.Xiao,R.Vahldieck,and H.Jin.Full-wave analysis of guided wave structures using a novel 2-D FDTD.IEEE Microwave Guided Wave Lett.,1992,2:165-167
    [54]I.P.Hong and H.K.Park.Dispersion characteristics of a unilateral fin-line using 2D FDTD.Electron.Lett.,1996,32:1992-1994
    [55]W.J.Tsay and D.M.Pozar.Application of the FDTD technique to periodic problems in scattering and radiation.IEEE Microwave Guided Wave Lett.,1993,3:250-252
    [56]J.N.Hwang and J.-T.Kuo.FDTD analysis of periodically nonuniform coupled microstrip lines.IEEE AP-S Int.Sym.,2003,1:741-744
    [57]M.Celuch-Marcysiak and W.K.Gwarek.Spatially looped algorithms for time-domain analysis of periodic structures.IEEE Trans.Microwave Theory Tech.,1995,43:860-865
    [58]A.C.Cangellaris,M.Gribbons,and G.Sohos.A hybrid spectral/FDTD method for the electromagnetic analysis of guided waves in periodic structures.IEEE Microwave Guided Wave Lett.,1993,3:375-377
    [59]H.Lee and J.Kim.Modified Yee's cell for finite-difference time-domain modeling of periodic boundary guiding structure.IEEE MTT-S,2001,889-892
    [60]Y.J.Zhao,K.L.Wu,and K.K.M.Cheng.A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures.IEEE Trans.Microwave Theory Tech.,2002,50:1844-1848
    [61]B.Z.Wang,X.Wang,and W.Shao.2-D full-wave finite-difference frequency-domain method for lossy metal waveguide.Microwave and Optical Technology Lett.,2004,42:158-161
    [62]L.Y.Li and J.F.Mao.An improved compact 2-D finite-difference frequency-domain method for guided wave structures.IEEE Microwave Wireless Component Lett.,2003,13:520-522
    [63]F.Xu,Y.Zhang,W.Hong,et al.Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide.IEEE Trans.Microwave Theory Tech.,2003,51:2221-2227
    [64]J.N.Hwang.A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer.IEEE Trans.Microwave Theory Tech.,2005,53(2):653-659
    [65]W.X.Huang and T.Itoh.Complex modes in lossless shielded microstrip lines.IEEE Trans.Microwave Theory Tech.,1988,36(1):163-165
    [66]C.K.C.Tzuang and J.M.Lin.On the mode-coupling formation of complex modes in a nonreciprocal finline.IEEE Trans.Microwave Theory Tech.,1993,41(8):1400-1408
    [67]K.F.Fuh and C.K.C.Tzuang.The effects of covering on complex wave propagation in gyromagnetic slotlinos.IEEE Trans.Microwave Theory Tech.,1995,43(5):1100-1105
    [68]Y.C.Chen,C.K.C.Tzuang,T.Itoh,et al.Modal characteristics of planar transmission lines with periodical pcrturbations:their behaviors in bound,stopband,and radiation regions.IEEE Trans.Antenna and Propagation,2005,53(1):47-58
    [69]M.M.Afande,K.Wu,M.Giroux,et al.A finite-difference frequency-domain method that introduces condensed nodes and image principle.IEEE Trans.Microwave Theory Tech.,1995,43(4):838-846
    [70]D.Ahn,J.S.Park,C.S.Kim,et al.A design of the low-pass filter using the novel microstrip defected ground structure.IEEE Trans.Microwave Theory Tech.,2001,49(1):86-93
    [71]C.Caloz,H.Okabe,T.Iwai,et al.A simple and accurate model for microstrip structures with slotted ground plane.IEEE Microwave Wireless Component Lett.,2004,14(4):133-135
    [72]J.S.Lim,H.S.Kim,J.S.Park,et al.A power amplifier with efficiency improved using defected ground structure.IEEE Microwave Wireless Component Lett.,2001,11(4):170-172
    [73]J.S.Lim,C.S.Kim,J.S.Park,et al.Design of 10dB 90 branch line coupler using microstrip line with defected ground structure.Electron.Lett.,2000,36(21):1784-1785
    [74]J.S.Lim,S.W.Lee,C.S.Kim,et al.A 4:1 unequal wilkinson power divider.IEEE Microwave Wireless Component Lett.,2001,11(3):124-126
    [75]Y.J.Sung and Y.S.Kim.An improved design of microstrip patch antennas using photonic bandgap structure.IEEE Trans.Antenna and Propagation,2005,53(5):1799-1804
    [76]Y.Chung,S.S.Jeon,S.Kim,et al.Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application.IEEE Trans.Microwave Theory Tech.,2004,52(5):1425-1432
    [77]J.S.Lim,C.S.Kim,Y.T.Lee,et al.A spiral-shaped defected ground structure for coplanar waveguide.IEEE Microwave Wireless Component Lett.,2002,12(9):330-332
    [78]J.S.Park,J.S.Yun,and D.Ahn.A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance.IEEE Trans.Microwave Theory Tech.,2002,50(9):2037-2043
    [79]H.J.Chen,T.H.Huang,C.S.Chang,et al.A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters.IEEE Microwave Wireless Component Lett.,2006,16(5):252-254
    [80]M.K.Mandal and S.Sanyal.A novel defected ground structure for planar circuits.IEEE Microwave Wireless Component Lett.,2006,16(2):93-95
    [81]J.S.Hong and B.M Karyamapudi.A general circuit model for defected ground structures in planar transmission lines.IEEE Microwave Wireless Component Lett.,2005,15(10):706-708
    [82]A.M.E.Safwat,F.Podevin,P.Ferrari,et al.Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide.IEEE Trans.Microwave Theory Tech.,2006,54(9):3559-3564
    [83]C.C.Wong and C.E.Free.DGS pattern with enhanced effective capacitance.IEE Electron.Lett.,2006,42(8):470-471
    [84]D.J.Woo,T.K.Lee,J.W.Lee,et al.Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor.IEEE Trans.Microwave Theory Tech.,2006,54(6):2840-2847
    [85]M.Makimoto and S.Yamashita.Microwave Resonators and Filters for Wireless Communications-Theory and Design.Berlin,Germany:Springer-Verlag,2001,11-18
    [86]J.T.Kuo,T.H.Yeh,and C.C.Yeh.Design of microstrip bandpass filters with a dual-passband response.IEEE Trans.Microwave Theory Tech.,2005, 53(4):1331-1336
    [87]M.H.Weng,H.W.Wu,and Y.K.Su.Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs.IEEE Microwave Wireless Component Lett.,2007,17(3):187-189
    [88]X.Guan,Z.Ma,P.Cai,et al.Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions.IEEE Microwave Wireless Component Lett.,2006,16(3):110-112
    [89]H.M.Lee and C.M.Tsai.Dual-band filter design with flexible passband frequency and bandwidth selections.IEEE Trans.Microwave Theory Tech.,2007,55(5):1002-1009
    [90]J.T.Kuo and H.S.Cheng.Design of quasi-elliptic function filters with a dual-passband response.IEEE Microwave Wireless Component Lett.,2004,14(10):472-474
    [91]J.S.Park,J.S.Yun,and C.S.Park.DGS resonator with interdigital capacitor and application to bandpass filter design.IEE Electron.Lett.,2004,40(7):433-434
    [92]A.Abdel-Rahman,A.K.Verma,A.Boutejdar,et al.Compact stub type microstrip bandpass filter using defected ground plane.IEEE Microwave Wireless Component Lett.,2004,14(4):136-138
    [93]A.Abedel-Rahman,A.R.Ali,S.Amari,et al.Compact bandpass filters using defected ground structure(DGS) coupled resonators.IEEE MTT-S Int.Dig.,2005,1479-1482
    [94]P.Mondal,M.K.Mandal,and A.Chakrabarty.Compact ultra-wideband bandpass filter with improved upper stopband.IEEE Microwave Wireless Component Lett.,2007,17(9):643-645
    [95]N.Thomson and J.S.Hong.Compact ultra-wideband microstrip/coplanar waveguide bandpass filter.IEEE Microwave Wireless Component Lett.,2007,17(3):184-186
    [96]M.Sagawa,M.Makimoto,and S.Yamashita.A design method of bandpass filters using dielectric-filled coaxial resonators.IEEE Trans.Microwave Theory Tech.,1985,33(2):152-157
    [97]M.Sagawa,K.Takahashi,and M.Makimoto.Miniaturized hairpin resonator filters and their application to receiver front-end MIC's.IEEE Trans.Microwave Theory Tech.,1989,37(12):1991-1996
    [98]M.Makimoto and S.Yamashita.Bandpass filters using parallel coupled stripline stepped impedance resonators.IEEE Trans.Microwave Theory Tech.,1980,28(12):1413-1417
    [99]M.Sagawa,M.Makimoto,and S.Yamashita.Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators.IEEE Trans.Microwave Theory Teeh.,1997,45(7):1078-1085
    [100]Y.M.Chen,S.F.Chang,C.C.Chang,et al.Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range.IEEE Trans.Microwave Theory Tech.,2007,55(10):2191-2199
    [101]C.H.Wu,C.H.Wang,and C.H.Chen.Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension.IEEE Trans.Microwave Theory Tech.,2007,55(8):1756-1763
    [102]J.T.Kuo,C.L.Hsu,and E.Shih.Compact planar quasi-elliptic function filter with inline stepped-impedance resonators.IEEE Trans.Microwave Theory Tech.,2007,55(8):1747-1755
    [103]S.Van den Berghe,F.Olyslager,D.De Zutter,et al.Study of the ground bounce caused by power plane resonances.IEEE Trans.Electromagn.Compat.,1998,40(2):111-119
    [104]G.T.Lei,R.W.Techentin,and B.K.Gilbert.High frequency characterization of power/ground-plane structures.IEEE Trans.Microwave Theory Tech.,1999,47(5):562-569
    [105]T.L.Wu,S.T.Chen,J.N.Huang,and Y.H.Lin.Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB.IEEE Trans.Electromagn.Compat.,2004,46(1):33-45
    [106]R.Abhari and G.V.Eleftheriades.Suppression of the parallel-plate noise in high-speed circuits using a metallic electromagnetic band-gap structure.2002 IEEE MTT-S,493-496
    [107]R.Abhari and G.V.Eleftheriades.Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits.IEEE Trans.Microwave Theory Tech.,2003,51(6):1629-1639
    [108]T.Kamgaing and O.M.Ramahi.A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface.IEEE Microwave Wireless Component Lett.,2003,13(1):21-23
    [109]S.Shahparnia and O.M.Ramahi.Simultaneous switching noise mitigation in PCB using cascaded high-impedance surfaces.Electron.Lett.,2004,40(2):98-100
    [110]S.H.Joo,D.Y.Kim,H.Y.Lee.A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise.IEEE Microwave Wireless Component Lett.,2007,17(10):709-711
    [111]K.H.Kim and J.E.Schutt-Ainé.Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications.IEEE Trans.Microwave Theory Tech.,2008,56(1):178-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700