新型铝、锌、铬金属配合物的合成、表征及催化性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪族聚酯尤其是聚ε-己内酯(PCL)、聚乙交酯(PGA)、聚丙交酯(PLA)以及它们之间的共聚物,由于具有良好的生物降解性、生物适应性和可渗透性等特点,在药物控释、骨胳内固定材料、外科缝合线等方面得到广泛的应用,是公认的优良的可生物降解高分子材料。
     本论文首次合成了四个系列十七个未见报道的新型铝、锌、铬金属配合物,并得到七个金属配合物的晶体结构,并通过元素分析、核磁共振和X-射线单晶衍射等测试手段对所合成的配合物进行了结构表征。对其中铝、锌十四个金属配合物进行了催化己内酯、丙交酯开环聚合的性质研究和测定,研究了他们的聚合机理,初步研究了三个铬配合物的催化乙烯聚合条件。
     利用N, N-二甲基苯胺为原料合成了一系列二齿胺铝配合物ortho-(ArNCH_2) C_6H_4NMe_2AlMe_2(Ar=2,6-iPr2C_6H_3,3a; 2,6-Et2C_6H_3, 3b; 2,6-Me_2C_6H_3, 3c; 4-MeC_6H_4, 3d; Ph, 3e), ortho-(ArNCH_2) C_6H_4NMe_2Al2Me5 (Ar=4-MeC_6H_4, 4d; Ph, 4e)。并对3c、3e和4e进行了单晶结构分析。利用所合成的单核铝金属配合物作为催化剂在苄醇存在下催化己内酯开环聚合,反应活性很高,且配合物3a-3e具有活性聚合的特点。所有配体和配合物均经元素分析和核磁进行了表征。分离和表征了活性物种5并研究了聚合的机理.
     利用N, N-二甲基苯胺为原料合成了一系列二齿NO铝、锌金属配合物AlMe_2OCPh2-2-NMe_2C_6H_4 (2a), AlMe_2OCHPh-2-NMe_2C_6H_4 (2b), AlMe_2O-CH(2-F- Ph)-2-NMe_2C_6H_4 (2c), ZnEtOCHPh-2-NMe_2C_6H_4 (3b), AlMe_2O-CH(2-F-Ph)-2- NMe_2C_6H_4 (3c)以及双核配合物Al2Me5OCHPh-2-NMe_2C_6H_4 (4b), Al2Me5O- CH(2-F- Ph)-2-NMe_2C_6H_4 (4c)。并对2a、3b, 4b和4c进行了单晶结构分析。利用以上单核铝配合物作为催化剂在苄醇存在下催化己内酯开环聚合,反应活性很高且配合物2a– 2c具有活性聚合的特点。利用以上锌配合物3b-3c作为催化剂在苄醇存在下催化丙交酯开环聚合,反应活性很高,且配合物具有活性聚合的特点。利用二齿NO配体合成了相应的Cr(III)配合物(L~1)_2CrCl, (L~2)_2CrCl, (L~3)_2CrCl。并对配合物(L~1)_2CrCl进行了单晶结构分析。在三乙基铝作为助催化剂的条件下,用Cr(III)配合物对乙烯聚合做了初步研究。
In this work 18 metal complexes such as Al, Zn, Cr were synthesized and characterized by 1H and 13C NMR spectroscopy and elemental analyses, as well as X-ray diffraction analysis. The ring opening polymerization of caprolactone initiated by Al, Zn complexes was investigated. The ethylene polymerization initiated by Cr complexes was studied.
     N, N ligands [ortho-C_6H_4(NMe_2)CH_2NHAr (Ar = 2,6-iPr2C_6H_3, 2a; Ar = 2,6-Et2C_6H_3, 2b; Ar = 2,6-Me_2C_6H_3, 2c; Ar = 4-MeC_6H_4, 2d; Ar = Ph, 2e)] were synthesized from the starting material N,N-dimethylaniline. Treatment of the ligands 2a–e with 1 equiv. of AlMe3 yields Al complexes ortho-(ArNCH_2) C_6H_4NMe_2AlMe_2 (Ar = 2,6-iPr2C_6H_3, 3a; 2,6-Et2C_6H_3, 3b; 2,6-Me_2C_6H_3, 3c; 4-MeC_6H_4, 3d; Ph, 3e) in toluene by alkane elimination reaction. Reaction of ligands 2d, 2e with two equiv. of AlMe3 gets the binuclear Al complexes (Me3Al)[ortho-C_6H_4(NMe_2)- CH_2ArN-μ2]AlMe_2 (Ar = 4-MeC_6H_4, 4d, Ar = Ph, 4e). The new complexes were characterized by 1H and 13C NMR spectroscopy and elemental analyses, and the molecular structures of 3c, 3e and 4e were determined by X-ray diffraction analysis. The Al complexes are efficient catalysts for ring-opening polymerization ofε-caprolactone in the presence of benzyl alcohol in a living fashion yielding polymers with narrow polydispersity values. In order to study the mechanism of polymerization, the active site complex 5 was separated and characterized.
     N, O ligands (2-dimethylaminophenyl)alcohols [1-HOCPh2-2-NMe_2 C_6H_4 (1a), 1-HOCHPh-2-NMe_2C_6H_4(1b), 1-HOCH(2-F-Ph)-2-NMe_2C_6H_4 (1c)] were synthesized from the starting material N, N-dimethylaniline. Treatment of the ligands 1a–1c with 1 equiv. of AlMe3 yields Al complexes [AlMe_2OCPh2-2-NMe_2C_6H_4 (2a), AlMe_2OCHPh-2- NMe_2C_6H_4 (2b), AlMe_2O-CH(2-F-Ph)-2- NMe_2C_6H_4 (2c)] in toluene by alkane elimination reaction. Reaction of ligands 1b, 1c with two equiv. of AlMe3 gets the binuclear Al complexes (Me_3Al)AlMe_2OCHPh-2-NMe_2C_6H_4 4b), (Me3Al) AlMe_2OCH-(2-F-Ph)-2- NMe_2C_6H_4 4c)]. 1b-1c react with ZnEt2 in toluene to get the Zn complexes [ZnEtOCHPh-2-NMe_2C_6H_4 (3b), ZnEtOCH(2-F-Ph)-2-NMe_2C_6H_4 (3c)]. The new complexes were characterized by 1H and 13C NMR spectroscopy and elemental analyses, and the molecular structures of 2a, 4b, 4c and 3b were determined by X-ray diffraction analysis. The Al complexes are efficient catalysts for ring-opening polymerization ofε-caprolactone in the presence of benzyl alcohol in a living fashion yielding polymers with narrow polydispersity values. The Zn complexes 3b-3c are efficient catalysts for ring-opening polymerization of LA in the presence of benzyl alcohol in a controlled manner.
     Reaction of the lithium salt of 1a-1c with CrCl3(THF)3 in THF gives the four-coordinated Cr(III) complexes (L1)2CrCl, (L2)2CrCl, (L3)2CrCl. Molecular structure of the (L1)2CrCl complex was determined by X-ray crystallography. Upon activation with AlMe3 as cocatalysts, the ethylene polymerization intiated by the Cr(III) complex was investigated.
引文
[1] Chen, H. Y.; Huang, B. H.; Lin, C. C. A highly efficient initiator for the ring-opening polymerization of lactides andε-caprolactone: a kinetic study. Macromolecules, 2005, 38, 5400-5405.
    [2] Cannizaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric systems forcontrolled drug release. Chem Rev, 1999, 99, 3183-3198.
    [3] Rachel, H. P.; Linda, M. H.; Charlotte, K. W. Biocompatible initiators for lactide polymerization. Polymer Reviews, 4811–63, 2008.
    [4] Staudinge, H.; Meyer, J. Helv. Chim.Acta, 1919, 2, 635.
    [5] Johnson, A. W. Ylides and Imines of Phosphorus, Wiley, NewYork, 1993.
    [6] (a) Maurer, A.; Fenske, D.; Beek, J.; Hiller, W.; Strahle, J.; Bohm, E.; Dehnieke, K. Z.; Naturforsch. B.1988, 43, 5; (b) Miekiseh, T.; Mai, H. J.; Meyer, Zu.; Koeke, R.; Dehnieke, K.; Magull, J.; Goesmann, H. Z.; Anorg. Allg Chem, 1996, 622, 583; (c) Fenske, D.; Bohm, E.; Dehnieke, K.; Strshle, J. Z.; Naturfrosch. B, 1988, 43, 1; (d) Krieger, M.; Harms, K.; Magull, J.; Dehnieke, K. Z. Naturforsch B, 1995, 50, 1215; (e) Sehmidbaur, H.; Wolfsberger, W. Chem Ber, 1967, 100, 1000.
    [7] Meeerreyes, D.; Jerome, R.; Dubois, P. A. Adv Polym Sci, 1999, 147, 1.
    [8] Meeerreyes, D.; Jerome, R. Macromol Chem Phys, 1999, 200, 2581.
    [9] (a) Cherdron, H.; Ohse, H.; Korte, F. Macromol. Chem, 1962, 56, 179; (b) Hofman, A.; SZymansk, R.; Slomkowski, S.; Penezek, S. Macromol Chem, 1984, 185, 655; (c) Ludvig, E. B.; Belenkava, B. G.; J Macromol Sci Chem, 1974, A8, 819; (d) Hofman, A.; Slomkowski, S. Macromol Chem, 1987, 188, 2027.
    [10] (a) Dubois, P.; Jacobs, C.; Jér?me, R.; Teyssié, P.“Macromolecular engineering of polylactones and polylactides Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide”, Macromolecules 1991, 24, 2266–2270; (b) Kowalski, A.; Duda, A.; Penczek, S.“Polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer”, Macromolecules 1998, 31, 2114–2122; (c) Ropson, N.; Dubois, P.; Jér?me, R.; Teyssié, P.“Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent and initiator on the ring-opening polymerization as initiated with aluminum alkoxides”, Macromolecules 1995, 28, 7589–7598; (d) Dubois, P.; Jér?me, R.; Teeyssié, P.“Macromolecular engineering of polylactones and polylactides Selective end-functionalisation of poly(D,L)-lactide”, J. Polym. Sci., Polym. Chem. 1993, 31,505–514.
    [11] (a) Trofrimoff, T.; Aida, T.; Inoue, S. Chem. Lett, 1987, 991; (b) Shomasaki, A.; Aida, T.; Inoue, S. Maromolecules 1987, 20, 3076.
    [12] Cameron, P.A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Solan, G. A.; White, A. J, P.; Williams, D. J, DaltonTrans 2001, 1472.
    [13] Nomur, N.; Aoyama, T.; Ishi, R.; Kondo, T. Macromolecules 2005,38, 5363.
    [14] Chakraborty D, Chen E.“Neutral, three-coordinate, chelating diamide aluminum complexes: catalysts/initiators for synthesis of telechelic oligomers and high polymers”, Organometallies, 2002, 21, 1438-1442
    [15] Yu, R.; Hung, C. H.; Huang, J. H. et al.“Four- and five-coordinate aluminum ketiminate complexes: synthesis, characterization, and ring-opening polymerization:, Inorg Chem, 2002, 41, 6450-6455.
    [16] Huan, C. H.; Wang, F. C.; Ko, B. T.; etal. Ring-opening ofε-caprolactone and L-Lactide using aluminum thiolates as initiator. Macromolecules, 2001, 34: 356-361.
    [17]Chen, T.; Huang, C. A.; Huang, B. H.“Aluminium metal complex supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization ofε-caprolactone”, Dalton Trans, 2003, 3799-3803.
    [18] Aleazar-Roman, L. M. O.; Keefe, B. J.; Hillmyer, M. A, etal.“Electronic influence of ligand substituents on the rate of polymerization ofε-caprolactone by single-site aluminum alkoxide catalysts”. Dalton Trans, 2003, 3082-3087.
    [19] Amgoune, A.; Lavanant, L.; Thomas, C. M. etal.“An aluminum complex supported Fluorous diamino-dialkoxide ligand for the highly productive ring-opening Polymerization ofε-caprolaetone”. Organometallies, 2005, 24, 6279-6282
    [20] (a) Le Borgne, A.; Vincens, V.; Jouglard, M.; Spassky, N.“Ring-opening oligomerization reactions using aluminum complexes of schiff-bases as initiators”, Makromol. Chem., Macromol. Symp. 1993, 73, 37–46; (b) Montaudo, G.; Montaudo, M. S.; Puglisi, C.; Samperi, F.; Spassky, N.; Le Borgne, A.; Wisniewski, M.“Evidence for ester-exchange reactions and cyclic oligomer formation in the ring-openingpolymerization of lactide with aluminum complex initiators”, Macromolecules 1996, 29, 6461–6465; (c) Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A.“Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff’s base/aluminum alkoxide initiator”, Macromol. Chem. Phys. 1996, 197, 2627–2637; (d) Bhaw-Luximon, A.; Jhurry, D.; Spassky, N.“Controlled polymerization of DL-lactide using a Schiff’s base al-alkoxide initiator derived from 2-hydroxyacetophenone”, Polymer Bull. 2000, 44, 31–38; (e) Jhurry, D.; Bhaw-Luximon, A.; Spassky, N. “Synthesis of polylactides by new aluminum schoff’s base complexes”, Macromol. Symp. 2001, 175, 67–79.
    [21] (a) Ovitt, T. M.; Coates, G. W.“Stereoselective ring-opening polymerization of meso-lactide; Synthesis of syndiotactic polyl(lactic acid)”, J. Am. Chem. Soc 1999, 121, 4072–4073. (b) Zhiyuan Zhong, Pieter J. Dijkstra, and Jan Feijen “[(salen)Al]-Mediated, Controlled and Stereoselective Ring-Opening Polymerization of Lactide in Solution and without Solvent: Synthesis of Highly Isotactic Polylactide Stereocopolymers from Racemic d,l-Lactide”Angew. Chem. Int. Ed. 2002, 41, No. 23
    [22] (a) Cameron, P. A.; Jhurry, D.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Williams, S.“Controlled polymerization of lactides at ambient temperature using [5-Cl-salen]AlOMe”, Macromol. Rapid Commun. 1999, 20, 616–618; (b) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K.“Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism”, J. Am. Chem. Soc 2002, 124, 5938–5939; (c) Tang, Z. H.; Chen, X. S.; Pang, X.; Yang, Y. K.; Zhang, Z. F.; Jing, X. B.“Stereoselective polymerization of rac-lactide using a monoethylaluminium Schiff base complex”, Biomacromolecules 2004, 5, 965–970; (d) Tang, Z. H.; Chen, X. S.; Yang, Y. K.; Pang, X.; Sun, J. R.; Zhang, X. F.; Jing, X. B.“Stereoselective polymerization of rac-lactide with a bulky aluminum/Schiff base complex”, J. Polym. Sci., Polym. Chem. 2004, 42, 5974–5982; (e) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; Pugh, R. I.; White, A. J. P.“Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerizationusing aluminum salen-type initiators”, PNAS 2006, 103, 15343–15348; (f) Du, H.; Pang, X.; Yu, H. Y.; Zhuang, X. L.; Chen, X. S.; Cui, D. M.; Wang, X. H.; Jing, X. B.“Polymerization of rac-lactide using schiff base aluminum catalysts: structure, activity, and stereoselectivity”, Macromolecules 2007, 40, 1904–1913; (g) Tang, Z.; Yang, Y.; Pang, X.; Hu, J.; Chen, X.; Hu, N.; Jing, X.“Controlled and stereospecific polymerization of rac-lactide with a single site ethyl aluminum and alcohol initiating system”, J. App. Polym. Sci. 2005, 98, 102–108.
    [23] (a) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W.“Single-Site catalysts for ring-opening polymerization: synthesis of heterotaetic poly(lactic acid) from rac-Lactide”. J Am Chem Soc, 1999, 121:11583-11584; (b) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B, etal.“single-siteβ-diiminate zinc catalysts for the ring-opening polymerization ofβ-butyrolactone andβ-valerolactone to poly(3-hydroxyalkanoates)”. J. Am. Chem Soc, 2002, 124, 15239-15248; (c). Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W.“Polymerization of lactide with zinc and magnesium beta-diiminate complexes: Stereocontrol and mechanism”, J. Am. Chem. Soc. 2001, 123, 3229–3238; (d) Cheng, M.; Moore, D. R.; Recaek, J. J, et al.“single-siteβ-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity”. J. Am .Chem Soc, 2001, 123, 8738-8749
    [24] Chen, H. Y.; Huang, B. H.; Lin, C. C.“A highly efficient initiator for the ring-opening polymerization of lactides andε-caprolactone: a kinetic study”. Macromolecules, 2005, 38: 5400-5405
    [25] Shueh, M. L.; Wang, Y. S.; Huang, B. H, et al.“Reactions of 2,2’-methylenebis (4-chloro-6-isopropyl-3-methylphenol) and 2,2’-ethylidenebis (4,6-di-tert-butyl- phenol) with MgnBu2: efficient catalysts for ring-opening polymerization ofε-caprolactone and L-lactide”. Macromolecules, 2004, 37: 5155-5162
    [26] Chisholm, M. H.; Lin, C. C.; Gallucci, J. C, et al.“Binolate complexes of lithium, zinc, aluminium, and titanium: preparations, structure, and study of lactidepolymerization”. Dalton Trans, 2003, 406-412
    [27] (a) Majoumo-Mbe, F.; Smolensky, E.; Lǒnneeke, P, etal.“Polymerizations ofε-caprolactone And p-butyrolactone with Zn-, AI- and Mg-based organometallic complexes”. J Mol Catal A : Chem, 2005, 240, 91-98; (b) Majoumo-Mbe, F.; Lǒnneeke, P.; Hey-Hawkins, E.“Zwitterionic and bis-amido zinc complexes with buiky bis(phosphanylamino)benzene ligands: synthesis, reactivity, and molecular struetures of [ZnCl2(1,2-{N(PHMes2)}2C6H4-K2N,N’)], [ZnPr{l-N(PMes2)-2- N(PHMes2)C6H4-K2N,N’}] and [Zn{l-N(PMes2)-2-N (i-PMes2) C6H4-K3 N,N’, P }]”. Organometallies, 2005, 24, 5287- 5293.
    [28] Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam,w.; Young,V. G..; Hillmyer,M. A.; Tolman,W. B. J Am. Chem. Soc. 2003, 25, 1350.
    [29] Wu, J. C.; Huang, B. H.; Lin, C. C, et al.“Ring-opening Polymerization of lactide initiated by Magnesium and zinc alkoxides”. Polymer, 2005, 46, 9784-9792
    [30] Hung, W. C.; Lin, C. C.“Preparation, Characterization, and Catalytic Studies of Magnesium Complexes Supported by NNO-Tridentate Schiff-Base Ligands”. Inorg. Chem. 2009, 48, 728-734
    [31] Dove, A. P.; Gibson, V. C.; Marshall, E. L, etal.“A well defined tin(Ⅱ) initiator for the living polymerization of lactide”. Chem Commun, 2001, 283-284.
    [32] Aubreeht, K. B.; Hillmyer, M. A.; Tolman, W. B.“Polymerization of lactide by monomeric Sn(Ⅱ) alkoxide complexes”. Macromolecules, 2002, 35: 644-650
    [33] Nimitsiriwat, N.; Gibson, V. C, etal.“The Reversible Amination of Tin(II)- Ligated Imines: Latent Initiators for the Polymerization of rac-Lactide”. Inorg. Chem., 2008, 47 (12), 5417-5424.
    [34] Matsuo, Y.; Mashima, K.; Tani, K.“Seleetive formation of homoleptic and heteroleptic 2,5-bis(N-aryliminomethyl)pyrrolyl yttrium complexes and their performance as initiators ofε-caprolaetone polymerization”. Organometallies, 2001, 20, 3510-3518.
    [35] Martin, E.; Dubois, P.; Jerome, R.“Controlled ring-opening polymerization ofε-eaprolactone promoted by“in situ”formed yttrium alkoxides”. Macromolecules, 2000, 33, 1530-1535
    [36] Yao, Y.; Zhang, Z.; Peng, H, etal.“Synthesis and truetural charaeterization ofβ-diketiminate-lanthanidea mides and their catalytic activity for thepolymerization of Methyl methacrylate andε-caprolaetone”. Inorg. Chem 2006, 45, 2175-2183.
    [37] Evans, W. J.; Katsumata, H.“Polymerization ofε-caprolaetone by divalent samarium complexes”. Macromolecules, 1994, 27, 2330-2332.
    [38] Nishiura, M.; Hou, Z.; Koizumi, T, et al.“Ring-opening polymerization and copolymerization of lactones by samarium(II) aryloxide complexes”. Macromolecules, 1999, 32, 8245-51.
    [39] Sehuetz, S. A.; Silvernail, C.; Incarvito, C. D, et al.“Mononuelear, five- coordinate lanthanide amido and aryloxide complexes bearing tetradentate (N2O2) schiffbases”. Inorg Chem, 2004, 43, 6203-6214.
    [40] Kerton, F. M.; Whitwood, A. C.; Willans, C. E.“A high-throughput approach to lanthanide complexes and their rapid screening in the ring opening polymerization of Caprolactone”. Dalton Trans, 2004, 2237-2244
    [41] Stevels, W. M. Ankone, M. J. K.; Dijkstra, P. J, et al.“Kinetics and mechanism ofε-caprolaetone polymerization using yttrium alkoxides as initiators”. Macromolecules, 1996, 29, 8296-8303.
    [42] Wang, Y.; Onozawa, S.; Kunioka, M.“Ring-opening polymerization ofε-caprolaetone with yttrium triflate”. Green Chem, 2003, 571-574.
    [43] Westmoreland, I.; Arnold, J.“Phenoxytriamine complexes of yttrium: synthesis, structure and use in the polymerization of lactide andε-caprolaetone”. DaltonTrans, 2006, 4155-4163.
    [1]王葆仁有机合成反应科学出版社1982年。
    [2] Sheldrick, W. S.; Knorr, R.; Polzer, H. Acta Crystalogr. B. 1979, 35, 739.
    [3] (a )North, A.C.T.; Phillips, D. C.; Mathews. F. S. Acta Crystallogr.1968, Sect. A, 24. p351.(b ) Sheldrick, G. M.“Program for crystal structure solution”. Unive rsity ofGóttingen.1997.
    [1] (a) E. Chiellini, R. Solaro, Adv. Mater., 1996, 8, 305-313; (b) M. Okada, Prog. Polym. Sci., 2002, 27, 87-133; c) T. Hayashi, Prog. Polym. Sci., 1994, 19, 663-702.
    [2] (a) B. J. O’Keefe, M. A. Hillmyer, W. B. Tolman, J. Chem. Soc., Dalton Trans., 2001, 2215-2224; (b) A. C. Albertsson, I. K. Varma, Biomacromolecules, 2003, 4, 1466-1486; (c) J. Wu, T. L. Yu, C. T. Chen, C. C. Lin, Coord. Chem. Rev., 2006, 250, 602-626.
    [3] (a) T. L. Yu, C. C. Wu, C. C. Chen, B. H. Huang, J. C. Wu, C. C. Lin, Polymer, 2005, 46, 5909-5917; (b) W. Y. Lee, H. H. Hsieh, C. C. Hsieh, H. M. Lee, G. H. Lee, J. H. Huang, T. C. Wu, S. H. Chuang, J. Organomet. Chem., 2007, 692, 1131-1137; (c) M. L. Shueh, Y. S. Wang, B. H. Huang, C. Y. Kuo, C. C. Lin, Macromolecules, 2004, 37, 5155-5162; (d) L. F. Sánchez-Barba, D. L. Hughes, S. M. Humphrey, M. Bochmann, Organometallics, 2006, 25, 1012-1020; (e) L. E. Breyfogle, C. K. Williams, V. G. Young, M. A. Hillmyer, W. B. Tolman, Dalton Trans., 2006, 928-936.
    [4] (a) Z. Y. Zhong, S. Schneiderbauer, P. J. Dijkstra and J. Feijen, Polym. Bull. (Berlin), 2003, 51, 175-182.
    [5] (a) R. C. Yu, C. H. Hung, J. H. Huang, H. Y. Lee and J. T. Chen, Inorg. Chem.,2002, 41, 6450-6455; (b) C. H. Huang, F. C. Wang, B. T. Ko, T. L. Yu, C. C. Lin, Macromolecules, 2001, 34, 356-361; (c) C. T. Chen, C. A. Huang, B. H. Huang, Macromolecules, 2004, 37, 7968-7973; (d) L. M. Alcazar-Roman, B. J. O’Keefe, M. A. Hillmyer, W. B. Tolman Dalton Trans., 2003, 3082-3087; (e) M. L. Hsueh, B. H. Huang, C. C. Lin, Macromolecules, 2002, 35, 5763-5768; (f) C. T. Chen, C. A. Hung, B. H. Huang, Dalton Trans., 2003, 3799-3803; (g) H. L. Chen, B. T. Ko, B. H. Huang, C. C. Lin, Organometallics, 2001, 20, 5076-5083; (h) S. G. Gong, H. Y. Ma, Dalton Trans., 2008, 3345-3357; (i) S. Milione, F. Grisi, R. Centore, A.Tuzi, Organometallics, 2006, 25, 266-274; (j) A. Amgoune, L. Lavanant, C. M. Thomas, Y. Chi, R. Welter, S. Dagorne, J. F. Carpentier, Organometallics, 2005, 24, 6279-6282; (k) D. Chakraborty, E. Y. X. Chen, Organometallics, 2003, 22, 769-774; (l) S. Dagorne, F. L. Bideau, R. Welter, S. Bellemin-Laponnaz, A. Maisse-Fran?ois, Chem. Eur. J. , 2007, 13, 3202-3217; (m) J. Y. Liu, N. Iwasa, K. Nomura, Dalton Trans., 2008, 3978-3988; (n) I.Taden, H. C. Kang, W. Massa, T. P. Spaniol, J. Okuda, Eur. J. Inorg. Chem. 2000, 441-445.
    [6] (a) A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, Dalton Trans., 2006, 887-889; (b) J. Cayuela, V. Bounor-Legaté, P. Cassagnau, A. Michel, Macromolecules, 2006, 39, 1338-1346; (c) M. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, Inorg. Chem., 2006, 45, 2282-2287; (d) A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P. Khunkamchoo, S. L. Roberts, S. S. F. Wong, Macromolecules, 2006, 39, 7250-7257; (e) H. Wang, H. S. Chan, J. Okuda, Z. W. Xie, Organometallics, 2005, 24, 3118-3124; (f) F. Gornshtein, M. Kapon, M. Botoshansky, M. S. Eisen, Organometallics, 2007, 26, 497-507; (g) L. I. Strunkina, M. K. Minacheva, K. A. Lyssenko, V. V. Burlakov, W. Baumann, P. Atndt, B. N. Strunin, V. B. Shur, J. Organomet. Chem., 2006, 691, 557-565.
    [7] (a) B. J. O’Keefe, L. E. Breyfogle, M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 4384-4393; (b) M. Z. Chen, H. M. Sun, W. F. Li, Z. G. Wang, Q. Shen, Y. Zhang, J. Organomet. Chem., 2006, 691, 2489-2494.
    [8] (a) D. A. Walker, T. J. Woodman, M. Schormann, D. L. Hughes, M. Bochmann, Organometallics, 2003, 22, 797-803; (b) H. Y. Chen, B. H. Huang, C. C. Lin, Macromolecules, 2005, 38, 5400-5405; (c) Z. Y. Chai, C. Zhang, Z. X. Wang, Organometallics, 2008, 27, 1626-1633; (d) Y. Sarazin, M. Schormann, M. Bochmann, Organometallics, 2004, 23, 3296-3302; (e) Z. X. Wang, C. Y. Qi, Organometallics, 2007, 26, 2243-2251; (f) B. H. Huang, C. N. Lin, M. L. Hsueh, T. Athar, C. C. Lin, Polymer, 2006, 47, 6622-6629; (g) F. Majoumo-Mbe, E.Smolensky, P. L?nnecke, D. Shpasser, M. S. Eisen, E. Hey-Hawkins, J. Mol. Catal. A: Chem., 2005, 48, 91-98; (h) Y. Sarazin, R. H. Howard, H. L. Hughes, S. M. Humphrey, M. Bochmann, Dalton Trans., 2006, 340-350; (i) Y. D. M. Champouret, W. J. Nodes, J. A. Scrimshire, K. Singh, G. A. Solan, I. Young, Dalton Trans., 2007, 4565-4575; (j) C. M. Silvernail, L. J. Yao, L. M. R. Hill, M. A. Hillmyer, W. B. Tolman, Inorg. Chem., 2007, 46, 6565-6574; k) C. Zhang, Z. X. Wang, J. Organomet. Chem., 2008, 693, 3151-3158.
    [9] (a) P. Lecomte, F. Stassin, R. Jérǒme, Macrol. Symp., 2004, 215, 325-338; b) G. Deshayes, FAG. Mercier, P. Degée, I. Verbruggen, M. Biesemans, R. Willem, P. Dubois, Chem. Eur. J., 2003, 9, 434-43526; (c) M. Mōller, R. Kange, J. L. Hedrick, J. Polym. Sci. Part. A: Polym. Chem., 2000, 38, 2067-2074; d) C. Y. Qi, Z. X. Wang, J. Polym. Sci. Part. A: Polym. Chem., 2006, 44, 4621-4631; (e) A. Kowalski, A. Duda and S. Penczek, Macromolecules, 2000, 33, 689-695.
    [10] (a) W. M. Stevels, M. J. K. Ankoné, P. J. Dijkstra, J. Feijen, Macromolecules, 1996, 29, 3332-3333; (b) A. Otero, J. Fernández-Baeza, A. Anti?olo, A. Lara-Sánchez, E. Martínez-Caballero, J. Tejeda, F. L. Sánchez-Barba, C. Alonso-Moreno, I. Isabel López-Solera, Organometallics, 2008, 27, 976-983; (c) W. Gao, D. M. Cui, X. M. Liu, Y. Zhang, Y. Mu, Organometallics, 2008, 27, 5889–5893; (d) M. Wiecko, P. W. Roesky, V. V. Burlakov, A Spannenberg Eur. J. Inorg. Chem. 2007, 876–881; (e) D. M. Lyubov, A. M. Bubnov, G. K. Fukin, F. M. Dolgushin, M. Yu. Antipin, O. Pelcé, M. Schappacher, S. M. Guillaume, A. A. Trifonov, Eur. J. Inorg. Chem. 2008, 2090–2098; (f) Y. j. Luo, Y. M. Yao, Q. Shen, K. B. Yu, L. H. Weng, Eur. J. Inorg. Chem. 2003, 318–323.
    [1] K. Izod, Coord. Chem. Rev., 227 (2002) 153-173.
    [2] D. J. Linton, P. Schooler, A. E. H. Wheatley, Coord. Chem. Rev., 223 (2001) 53–115.
    [3] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104 (12), 6147-6176.
    [4] R. H. Platel, L. M. Hodgson, C. K. Williams, Poly. Rev., 2008, 48, 11-63.
    [5] B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, J. Chem. Soc., Dalton Trans.,2001, 2215.
    [6] (a) E. Chiellini andR. Solaro, Adv. Mater., 1996, 8, 305; (b) M. Okada, Prog. Polym. Sci., 2002, 27, 87; (c) T. Hayashi, Prog. Polym. Sci., 1994, 19, 663.
    [7] D. A. Atwood, M. J. Harvey, Chem. Rev., 2001, 101 (1), 37-52
    [8] J. Wu, T. L. Yu, C. T. Chen and C. C. Lin, Coord. Chem. Rev., 2006, 250, 602
    [9] (a) M. H. Chisholm, J. Gallucci, K. Phomphrai, Inorg. Chem. 2002, 41, 2785-2794; (b) M. H. Chisholm, J. C. Huffman, K. Phomphrai, J. Chem. Soc., Dalton Trans. 2001, 222-224. (c) A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, D. J. Williams, Chem. Commun. 2001, 283-284. (d) M. Cheng, D. R. Moore, J. J. Reczek, B. M. Chamberlain, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 8738-8749; (e) M. Cheng, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 1998, 120, 11018-11019.
    [10] D. Moore, M. Cheng, E.B. Lobovsky, G.W. Coates, J. Am. Chem. Soc. 2003, 125, 11911-11924.
    [11] (a) N. Nomura, T. Aoyama, R. Ishii, T. Kondo, Macromolecules 2005, 38, 5363-5366; (b) J. Y. Liu, N. Iwasa, K. Nomura, Dalton Trans., 2008, 3978.
    [12] H. T. Al-Masri, J. Sieler, P. Lo1nnecke, P. C. Junk, E. Hey-Hawkins, Inorg. Chem., 2004, 43, 7162-7169.
    [13] C. Zhang, Z. X. Wang, J. Organ. Chem. 693, 2008, 3151–3158.
    [1] (a) G. J. P. Britovsek, V. C. Gibson,D. F. Wass, Angew. Chem. Int. Ed. 1999, 38, 428-447; (b) J. P. Hogan, R. L. Banks, US-A2825721, 1958 [Chem. Abstr, 1958, 52, 8621h]; (c) J. R. Briggs, J. Chem. Soc. Chem. Commun, 1989, 674-675; (d) M. E. lashier, EPO780353,1995 [Chem, Abstr, 1997, 127, P50277g].
    [2] T.Q. Xu, Y. Mu, W. Gao, J. G. Ni, L. Ye, Y. C. Tao, J. Am. Chem. Soc. 2007, 129, 2236-2237.
    [3] V. C. Gibson, S. Mastroianni, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans., 2000, 1969–1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700