白菜春化相关基因BcFLC的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芸薹属(Brassica)蔬菜是我国栽培面积最大、总产量最高的一类蔬菜作物。其中白菜(Brassicacampestris L.ssp.chinensis Makino,syn.B.rapa ssp.chinensis)类蔬菜绝大部分属于冬性一年生蔬菜作物,需要经历一个低温阶段(春化作用)才能顺利完成阶段发育转变。感温先期抽薹是影响普通白菜(Brassica campestris ssp.chinensis vat.communis)产量的一个重要因素,也是生产上迫切需要解决的问题。因而研究普通白菜的开花习性进而培育晚抽薹品种是解决这一问题的根本途径。菜心(B.campestris ssp.chinensis var.parachinensis)是白菜的一个变种,它对低温要求不严格,在华南地区可以周年生产。是代表极端早抽薹的—类白菜类作物。普通白菜和菜心具有相似的遗传背景,对春化需求却表现出巨大的差异,这为我们在白菜类蔬菜中研究春化作用提供了良好的材料。随着分子生物学理论和技术的发展,对同为十字花科的模式植物拟南芥(Arabidopsis thaliana)春化作用的研究已经十分深入,这也为我们的研究提供了便利。本实验室在前一阶段实验中利用同源基因克隆法和RACE技术,从普通白菜和菜心中克隆到了拟南芥春化核心基因FLC的同源基因BcFLC-1和BcFLC-2,以及它们的内含子1序列。为进一步了解BcFLC基因的功能以及普通白菜与菜心对春化需求不同的原因,我们进而克隆了BcFLC的启动子序列,并构建了BcFLC基因的正义和反义载体,通过农杆菌介导的方法分别转入菜心和普通白菜中,得到了230株转化植株。分别对它们的开花时间进行观察。取得结果如下:
     (1)应用生物信息学软件对BcFLC-1与BcFLC-2基因编码区的核苷酸序列进行分析,发现两者编码序列的一致性高达99.34%,氨基酸序列包含与开花密切相关的MADS-盒结构域和K-盒结构域,仅在保守区域外存在1个氨基酸的差异。两者的内含子1序列的相似性达91.67%,启动子序列的相似性达97.1%,表明BcFLC-1和BcFLC-2并不存在实质性的差异。
     (2)分别构建了正义BcFLC基因以及反义BcFLC基因的组成型启动子CaMV35S的表达载体pBI35S-BcFLC1和pBI35S-BcFLC2。检测鉴定后分别将它们导入农杆菌LBA4404菌株中。
     (3)根据余小林等(2002)构建的菜心和普通白菜遗传转化体系,共获得48个芽系的230株抗卡那霉索抗性苗。其中转正义载体的菜心20个芽系,转化效率为3.608%,转空载体对照的菜心2个芽系.转化效率为1.831%,转反义载体的普通白菜18个芽系,转化效率为2.272%,转空载体对照的普通白菜2个芽系,转化效率为1.210%。以芽系为单位提取DNA,经PCR检测、Southern印迹杂交,所得到的再生植株中84.78%为阳性转基因植株。
     (4)观察转基因菜心和普通白菜的开花时间发现,转入正义BcFLC基因表达载体的菜心平均在分化后54 d、长出10片真叶时现蕾,而对照转空载体的菜心平均在分化后的第45 d、8片真叶时现蕾。转入反义BcFLC基因表达载体的普通白菜与对照转空载体的普通白菜的开花时间差异明显,转基因普通白菜在无需春化的情况下,平均在分化后78 d、10片真叶时现蕾,继而抽薹开花,蕾期自交授粉后可正常结实。而对照植株不经春化作用,一直保持营养生长状态。
Plants in Brassica genus are a kind of vegetable crops with the highest yield and are widely cultivated throughout China. One of the major kinds of Brassica is Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), most of which own a winter annual flowering habit. It is a habit that plants needs a period of cold (vernalization) to transfer from vegetative growth to reproductive growth, and to complete the life cycle. In practice, premature bolting is a serious problem not only causes a great of loss in production, but also reduces the commercial value. Anti-bolting breeding is the ultimate approach to solve this problem, which calls for the understanding of these species' flowering habits. Flowering Chinese cabbage (B. campestris ssp. chinensis var. parachinensis) is a unique variety, which does not need vernalization to induce flowering, the so called summer annual flowering habit. It represents of an extreme early-bolting species, which can be produced all over the year in southern parts of China. Common Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis var. communis) has a similar genetic background with flowering Chinese cabbage, but it greatly differs from the latter in the requirement of vernalization. They provide us excellent materials in the study of vernalization in Brassica crops. Along with the development of molecular biological theories and technologies, the molecular mechanism of vernalization in Arabidopsis thaliana, which also belongs to Cruciferae, has been studied in-depth by many researchers. We could use the above resources for reference in our studies.
     By homologous cloning and rapid amplification of cDNA ends (RACE), vernalization-related gene BcFLC-1 and BcFLC-2 and their intron 1 sequences were already isolated from B. campestris ssp. chinensis var. communis cv. Shanghai-qing and B. campestris ssp. chinensis var. parachinensis cv. Sijiu, respectively. In order to fully understand the function of BcFLC and the causation of different requirement of vernalization between common Chinese cabbage-pak-choi and flowering Chinese cabbage, we cloned the promoter of BcFLC, and constructed plant expressing plasmid vectors of anti-sense RNA and over-expression vectors using fragments of BcFLC. By infecting common Chinese cabbage-pak-choi and flowering Chinese cabbage through Agrobacterium-medmted transformation, respectively. the transgenic plants of common Chinese cabbage-pak-choi and flowering Chinese cabbage were obtained consequently. And the flowering habits of the transgenic plants were observed subsequently. The results provided available information on exploring the function of BcFLC and the mechanism of vernalization in Brassica crops. The results are as follows:
     (1) The nucleotide sequences of the coding areas of BcFLC-1 and BcFLC-2 were analyzed by bioinformatics software, the results of which showed a conformity of 99.34%. MADS-box and K-box, which were closely related to flowering in Arabidopsis, existed in the same location of the both amino acids sequences. Only one amino acid difference was found outside the conservative regions. The two intron 1 sequences showed a similarity of 91.67%, while the two promoter sequences got a 97.1% consistency All these indicated that BcFLC-1 and BcFLC-2 had no substantial difference.
     (2) The over-expression and anti-sense RNA expressing plasmid vectors with CaMV 35S promoter, pBI35S-BcFLC1 and pBI35S-BcFLC2 were constructed using fragments of BcFLC. Molecular identification showed that both of the vectors along with the pBI35S (negative control) were introduced into Agrobacterium tumefaciens strain LBA4404.
     (3) 230 Kan~R plantlets of 48 regenerated lines were obtained on the efficient genetic transformation system based on Yu XL et al (2002). There were 20 regenerated lines of pBI35S-BcFLC1 plantlets with an efficiency of 3.608% and 2 regenerated lines of pB1121 plantlets with an efficiency of 1.831% in flowering Chinese cabbage. Similar situation happened in common Chinese cabbage-pak, while there were 18 regenerated lines of pB135S-BcFLC2 plantlets with an efficiency of 2.272% and 2 regenerated linos of pB1121 plantlets with an efficiency of 1.210%. The frequency of positive Kan~R seedlings is 84 78% examined by PCR and Southern blot.
     (4) Flower buds in transgenic flowering Chinese cabbage showed 54 days after differentiating culture or when the 10~(th) leaf came out, while the control showed flower buds 45 days after differentiating culture or when the 8~(th) leaf came out. Transgenic common Chinese cabbage-pak-choi displayed great difference with the control, by showing flower buds without vernalization on an average of 78 days after differentiating culture of when the 10~(th) leaf came out.
引文
曹家树,曹寿椿.缪颖.中国白菜各类群的分支分析和演化关系研究.园艺学报,1997,24(1):35-42
    曹家树,曹寿椿.中国白菜起源、演化和分类的研究进展与评述.浙江大学学报(自然科学版).1994.增刊:67-75
    黄细松.白菜开花时间相关基因的分子标记及春化相关基因的克隆和表达分析.浙江大学硕士学位论文.2006
    王凌健,倪迪安.王光远,夏镇澳,许政皑.青菜组织培养和转化系统的初步建成.实验生物学报,1999,32(1):93-99
    杨广东,朱祯,李燕娥,朱祝军.几种抗生索对大白菜种子发芽及离体子叶再生的影响.华北农业学报,2002,17(1):55-59
    余小林,曹家树,徐淑英.改良菜心离体培养植株再生体系的研究.实验生物学报,2001,34(2):157-161
    余小林.白菜雄性不育相关基因CYP86MF的功能验证及其人工不育系的创建.浙江大学博士学位论文,2002
    Bastow R,Dean C.Deciding when to flower.Science.2003,302:1695-1696
    Bastow R,Mylne JS,Lister C,Lippman Z,Martienssen RA,Dean C.Vernalization requires epigenetic silencing of FLC by histone methylation.Nature.2004,427:164-167
    Blazquez MA,Weigel D.Integration of floral inductive signals in Arabidopsis.Nature.2000,404:889-892
    Boss PK,Bastow RM,Mylne JS,Dean C.Multiple pathways in the decision to flower:Enabling,Promoting,and Resetting.The Plant Cell,Supplement.2004,16:S18-S31
    Bottehe I,Zoglauer K,Coring H.Induction and reversion of vitfication of plants cultured in vitro.Plant Physiology,1988,72:560-564
    Bradley D,Ratcliffe O,Vincent C,Carpenter R,Coen E.Inflorescence commitment and architecture in Arabidopsis.Science.1997,275:80-83
    Donald GJ,Deborah CH,Elizabeth AT,David JK,Katharine RT.Inhibition of Plasmodium falciparum clag9 gene function by antisense RNA.Mol Biochem Parasitol,2000,110:33-41
    Ferreira ME,Satagopan J,Yandlell BS,Williams PH,Osborn TC.Mapping loci controlling vernalization requirement and flowering time in Brassica napus.Theoretical and Applied Genetics.1995,90:770-776
    Finnegan EJ,Genger RK,Kovac K,Peacock W J,Dennis ES.DNA methylation and the promotion of flowering by vernalization.Proe.Natl.Acad.Sci.USA.1998,95:5824-5829
    Fischle W,Wang Y,Allis CD.Binary switches and modification cassettes in histone biology and beyond.Nature.2003,425:475-479
    Gazzani S,Gendall AR,Lister C,Dean C.Analysis of the molecular basis of flowering time variation in Arabidopsis accessions.Plant Physiology.2003,132:1107-1114
    Gendall AR,Levy YY,Wilson A,Dean C.The VERNALIZATION2 gene mediates the epigenetic regulation of vernalization in Arabidopsis.Cell,2001,107:525-535
    Halliday KJ,Salter MG,Thingnaes E,Whitelam GC.Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT.Plant Journal.2003,33:875-885
    He Y,Amasino RM.Role of chromatin modification in flowering-time control.TRENDS in Plant Science.2005,10:30-35
    He Y,Doyle MR,Amasino RM.PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis.Genes & Development.2004,18:2774-2784
    He Y,Michaels SD,Amasino RM.Regulation of flowering time by histone acetylation in Arabidopsis.Science.2003,302:1751-1754
    Henderson IR,Dean C.Control of Arabidopsis flowering:the chill before the bloom.Development.2004,131:3829-3838
    Hepworth SR,Valverde F,Ravenscroft D,Mouradov A,Coupland G Antagonistic regulation of flowering-time gene SOCI by CONSTANS and FLC via separate promoter motifs.The EMBO Journal.2002.21:4327-4337
    Iizuka M,Smith MM.Functional consequences of histone modifications.Current Opinion in Genetics & Development.2003,13(2):154-60
    Johanson U,West J,Lister C,Michaels S,Amasino R,Dean C.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time.Science.2000,290:344-347
    Jun SI,Kwon SY,Pack KY.Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage(Brassica campestris ssp.pekinensis cv.'spring flavor').Plant Cell Report,1995,14:620-625
    Kernodle DS,Voladri RKR,Menzies BE,Hager CC,Edwards KM.Expression of an antisense hlo fragment in Staphylococcus aureus reduces alpha-toxin production in vitro and attenuates lethal activity in a murine model.Infect Immun,1997,65:179-184
    Kim SY,Park BS,Kwon SJ,Kim J,Lim MH,Park YD,Kim DY,Sub SC,Jin YM,Ahn JH,Lee YH.Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C(FLC)homologs isolated from Chinese cabbage(Brassica rapa L.ssp.pekinensis).Plant Cell Report.2007,26(3):327-336
    Kinzel B,Hall J,Natt F,Weiler J,Cohen D.Downregulation of Husl by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin.Cancer,2002,94(6):1808-1814
    Kole C,Quijada P,Michaels SD,Amasino RM,Osborn TC.Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana.Theoretical and Applied Genetics.2001,102:425-430
    Koornneef M,Hanhan CJ,Van der Veen JH.A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.Molecular Genetics and Genomics.1991,229:57-66
    Levy YY,Dean C.The transition to flowering.The Plant Cell.1998,10:1973-1989
    Levy YY,Mesnage S,Mylne JS,Gendall AR,Dean C.Multiple roles of Arabidopsis VRNI in vernalization and flowering time control.Science.2002,297:243-246
    Li ZG,Zhao LX,Cui CS,Kai GY,Zhang LD,Sun XF,Tang KX.Molecular cloning and characterization of an anti-bolting related gene(BrpFLC)from Brassica rapa ssp.Pekinensis.Plant Science.2005,168:407-413
    Lira HT,You YS,Park EJ,Song YN.High plant regeneration,genetic stability of regeneration,and genetic transformation of herbicide resistant gene(bar)in Chinese cabbage(Brassica campestris ssp.pekinensis).Proceeding of the International Symposium on Brassica,1997,199-208
    Lin SI,Wang JG,Poon SY,Su CL,Wang SS,Chiou TJ.Differential regulation of FLOWERING LOCUS C expression by vernalization in Cabbage and Arabidopsis.Plant Physiology.2005,137:1037-1048
    Liu J,He Y,Amasino R,Chen X.siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis.Genes & Development.2004,18(23):2873-2878
    Liu YG,Whittier RF.Thermal Asymmetric Interlaced PCR:Automatable Amplificationand Sequencing of Insert End Fragments from PI and YAC Clones for Chromosome Walking.Genomics,1995,25:674-681
    Macknight R,Duroux M,Laurie R,Dijkwel P,Simpson G,Dean C.Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA.The Plant Cell.2002,14:877-888
    Michaels SD,Amasino RM,FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.The Plant Cell.1999,11:949-956
    Michaels SD,Amasino RM.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization.The Plant Cell.2001,13:935-941
    Michaels SD,Amasino RM.Memories of winter:vernalization and the competence to flower.Plant,Cell and Environment.2000,23:1145-1153
    Michaels SD,Bezerra IC,Amasino RM.FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis.Proc.Natl.Acad.Sci.USA.2004,101:3281-3285
    Michaels SD,He Y,Scortecci KC,Amasino RaM.Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of a summer-annual flowering behavior in Arabidopsis.Proe.Natl.Acad.Sci.USA.2003,100:10102-10107
    Moon J,Suh SS,Lee H,Choi KR,Hong CB,Paek NC,Kim SG,Lee I.The SOCI MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.Plant Journal.2003,35:613-623
    Mouradov A,Cremer F,Coupland G Control of flowering time:interacting pathways as a basis for diversity.Plant Cell,Supplement.2002:S111-S130
    Muller J,Hart CM,Francis NJ,Vargas ML,Sengupta A,Wild B,Miller EL,O'Connor MB,Kingston RE,Simon JA.Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.Cell.2002,111:197-208
    Nob YS,Amasino RM.PIEI,an ISWI family gene,is required for FLC activation and floral repression in,Arabidopsis.The Plant Cell.2003,15:1671-1682
    Okazaki K,Sakamoto K,Kikuchi R,Saito A,Togashi E,Kuginuki Y,Matsumoto S,Hirai M.Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea.Theoretical and Applied Genetics.2007,114(4):595-608
    Orlando V.Polycomb,epigenomes,and control of cell identity.Cell.2003,112:599-606
    Osborn TC,Kole C,Parkin IAP,Sharpe AG,Kuiper M.Comparison of flowering time genes in Brassica rapa,B.napus and Arabidopsis thaliana.Genetics.1997,146:1123-1129
    Pagues M.Vitrification and micropropagation cause remedies and prospects.Act Horti,1991,298:283-290
    Parish T,Stocker NG.Development and use of a conditional antisense mutagenesis strategy in mycobacteria,FEMS Microbiol Letter,1997,154:151-157
    Poduska B,Humphrey T,Redweik A,Grbic V.The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE I underlies a novel morphology in Arabidopsis.Genetics.2003,163:1457-1465
    Ratcliffe OJ,Riechmann JL.Arabidopsis transition factors and the regulation of flowering time:A genomic perspective.Current Issues in Molecular Biology.2002,4:77-91
    Reeves PH,Murtas G,Dash S,Coupland G early in short days 4,a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC.Development.2002,129:5349-5361
    Santos-Rosa H,Schneider R,Bannister AJ,Sherriff J,Bernstein BE,Emre NC,Schreiber SL,Mellor J,Kouzarides T.Active genes are tri-methylated at K4 of histone H3.Nature.2002,419:407-411
    Schranz ME,Quijada P,Sung SB,Lukens L,Amasino R,Osborn TC.Characterization and effects of the replicated flowering time gene FLC in Brassica ropa.Genetics.2002,162:1457-1468
    Sheldon CC,Burn JE,Perez PP,Metzger J,Edwards JA,Peacock WJ,Dennis ES.The FLF MADS box gene:A repressor of flowering in Arabidopsis regulated by vernalization and methylation.Plant Cell.1999,11:445-458
    Sheldon CC,Conn AB,Dennis ES,Peacock WJ.Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression.Plant Cell.2002,14:2527-2537
    Sheldon CC,Rouse DT,Finnegan EJ,Peacock WJ,Dennis ES.The molecular basis of vernalization:the central role of FLOWERING LOCUS C(FLC).Proc.Natl.Acad.Sci.USA.2000,97:3753-3758
    Simpson GG,Dean C.Arabidopsis,the Rosetta stone of flowering time? Science.2002,296:285-289
    Squazzo SL,Costa PJ,Lindstrom DL,Kumer KE,Simic R,Jennings JL,Link AJ,Arndt KM,Hartzog GA.The Pafl complex physically and functionally associates with transcription elongation factors in vivo.EMBO.2002,21:1764-1774
    Sung S,Amasino RM.Vernalization in Arobidopsis thaliana is mediated by the PHD finger protein VIN3.Nature.2004,427:159-164
    Tadeg M,Sheldon CC,Helliwell CA,Stoutjesdijk P,Dennis ES,Peacock WJ.Control of flowering time by FLC orthologues in Brassica napus.Plant Journal.2001,28(5):545-553
    Ying ZT,Yu D,Davis MJ.New method for obtaining transgenic papaya plants by Agrobacterium mediated transformation of somatic Embryos.Proc Fla State Hort Soc,1999,112:201-205
    Zhang H,Ransom C,Ludwig P,van Nocker S.Genetic analysis of early flowering mutants in,Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch FLOWERING LOCUS C.Genetics.2003,164:347-358
    Ziv M,Meir G,Harlevy A.Factors influencing the production of hardened glaucous Carnation plantlets in vitro.Plant Cell,Tissue and organ culture,1982,2:55-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700