城市轨道交通网络化运营的组织方法及实施技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市轨道交通系统在发展过程中,由单一线路逐步形成经纬交错、线路之间联系密切的网络形态,其适用的线路运营组织理论与方法、技术也更加复杂。
     目前,国内外相关研究领域的学者已经对多线换乘、共线运营、多交路运营、快慢车结合、可变编组、共用车辆段、票务清算等网络化运营的相关组织方法与实施技术进行了不同程度的探讨,然而总体上缺乏从微观(车站、线路层面)到宏观(线网层面)、从单一实施技术到综合运用的研究,以及综合运用多种方法与技术产生的通过能力、运营效益等方面的不同效果研究。
     有鉴于此,本文研究了城市轨道交通线网不同的几何形态对线网换乘能力的贡献差异,将单线路的客流特征分析综合拓展到线网覆盖的整个市域范围;在系统阐述各种网络化运营的相关方法与技术的基础上,提出了网络化运营环境下的票款清分算法及实施方案流程;研究了共线运营结合多交路的两线通过能力损失计算方法,并提出了实现该运营环境下多交路线路通过能力最大化的判定条件和行车组织方法;研究了乘客总体时间效益最大化的快车跨站选择模型并给出了相应的算法。
     主要的研究工作及结论包括:
     (1)提出并分析了以两两线路之间的换乘结点数定义的线网换乘便捷性矩阵。针对线网形态中的网格平行线、放射线和环线和换乘车站中的两线换乘、三线换乘,分别探讨了其换乘便捷性的差异。计算结果表明,轨道交通线网中,增加不同线形的线路对线网换乘便捷性的边际贡献不同。以线网规模相近的东京营团地铁和北京城市轨道交通为对比案例,计算结果后者的换乘便捷性仅为前者的40%。分析表明造成这一差距的线网形态原因在于前者以网格型形态为基础,缺乏弧线与对角线线路,同时换乘结点以两线换乘为主。
     (2)从长大线路的不同方向的客流空间分布特征出发,研究了线网的总体客流空间分布特征。研究了连接郊区的长大线路的客流特征,其全线客流空间分布不均衡;通勤客流对早晚高峰的影响尤为突出;各区段之间(特别是市区客流与郊区客流之间)的客流交换量明显不均衡。在此基础上,连接各线路的最高流量客流断面,形成围绕城市中心区的一个闭合环线或大弧度曲线。
     (3)研究了共线运营环境和换乘环境下的票款清分算法,分析了线路与经营核算实体的对应关系,对换乘环境下的票款清分算法进行了改进。在构造算法的过程中,提出了共线运营区间“虚拟路径”的概念,对应相同OD的不同经营核算实体。从而利用多路径选择概率模型或者随机用户平衡模型,确定客流分配,实现共线运营环境下的票款清分。设计算例验证了本文改进的票款清分算法的有效性。
     (4)以长短交路嵌套的多交路线路为研究对象,给出了各区间通过能力损失的计算模型;提出了通过延长长交路折返时间达到线路通过能力最大化的方法;推导了采用这一方法的充分条件。算例表明,通过延长折返时间110s,线路单双交路区间单位小时通过能力分别提高了0.4列和1.2列,验证了最大化方法的有效性。
     (5)以郊区线采用过轨运输结合多交路的市区线共线运营为研究对象,给出了各区间的通过能力损失计算式;提出了市区线利用郊区线的过轨交路达到全线线路通过能力最大化的方法;推导出了采用这一方法的充分条件。此时,市区线全线通过能力损失降低为零;郊区线的通过能力损失增大,但增值低于市区线的降值。算例表明,在损失郊区线通过能力0.3列/h的条件下,提高了市区线原单交路区间通过能力13.3列/h,验证了最大化方法的有效性。
     (6)从整条线路全体乘客的角度,构建了实现旅客总体时间效益最大化的快车跨站选择模型。利用多目标规划问题的特点,采用将其转化为一个单目标问题的方法设计算法。跨站模型同时还可用于判定线路是否适用快慢车结合方法。设计算例,确定快车跨站方案并仿真铺画运行图,验证了本文模型及算法的有效性。
In the construction process of urban rail transit system, a network with strong relevance among lines gradually comes into being from only a few lines having poor relation, and the applicable organization modes, implementation methods and technologies of network operations become more complex.
     The organization modes and implementation technologies of urban rail transit network operation, such as multi-line transfer, joint operation, multi-routing operation, express/slow train operation, train reformation, depot sharing, income assignment, have been discussed in varying degrees, some of which have been deeply studied. However, there are few studies on the comprehensive application of these methods and the corresponding effects like carrying capacity and operating efficiency. Therefore, contributions of several network geometric forms to transfer capacity as well as the passenger flow characteristics of urban rail transit network expanding to suburb were discussed firstly. Secondly, income assignment algorithm and its implementation plan process under the network operating environment were put forward according to the methods and technologies of network operation. Thirdly, the carrying capacity loss calculation method of two lines with joint operation combined with multi-routing operation was studied, and the approach to achieve the maximum carrying capacity and its conditions were brought forward. Finally, a model of express train stop station selection to minimize total travel time and corresponding algorithm were also studied.
     The main studies and conclusions are as follow.
     (1) Defined network accessibility matrix by transfer nodes between each two lines. The different accessibilities of parallel, radiation and ring lines in network, as well as two-line transfer and three-wire transfer in transfer station were explored. The results show the different marginal contributions of varying lines to accessibility in rail transit network. Take Tokyo Metro and Beijing urban rail transit networks for example. These two networks have similar sizes, while by comparison, the result shows that the accessibility of the latter is only 40% that of the former. The reason for this difference was analyzed, and relevant recommendations were put forward.
     (2) The Passenger Flow Distribution (PFD) characteristic of network is comprehensive manifestation of PED of lines in different directions. The study on PED of long lines expanding to suburb shows that the PED of whole line is unbalanced, commuter flow has special impact on the peak flow in the morning and evening, and passenger exchange volumes are obviously uneven among different sections, especially between the urban and suburban sections.
     (3) According to the essential difference of income assignment under the transfer environment and joint operation environment, an improved income assignment algorithm was proposed. In the course of algorithm construction, a "virtual path" concept was brought forward, corresponding to different operation accounting entities of the same OD. Thus passenger flow distribution could be determined by multi-path selection probability model or stochastic user equilibrium model to achieve income assignment under joint operation environment. Case study shows the validity of the improved algorithm.
     (4) The carrying capacity of multi-routing line was studied, and the calculation formulas of carrying capacity loss both in single routing interval and double routing interval were put forward. After that, a method to achieve the maximum carrying capacity by extension of back-turning time of long routing was brought forward and its sufficient conditions were deduced. Case study result shows that by extending back-turning time to 110s, carrying capacity loss of single routing interval and double routing interval is reduced by 0.4 trains per hour and 1.2 trains per hour respectively, which verify the validity of the method.
     (5) Suburban rail transit joint operated with urban rail transit of multi-routing was studied and the calculation formula of carrying capacity loss in each interval was put forward. Then, a method to achieve the maximum carrying capacity by over-rail routing of suburban rail transit line was brought forward, and its sufficient conditions were deduced. Thus carrying capacity loss of urban rail transit line was decreased to zero while that of suburban rail transit line was increased, however, the increased value was lower than the decreased one. Case study result shows that the carrying capacity loss of single routing interval of urban rail transit line is reduced by 13.3 trains per hour by increasing 0.3 trains per hour of carrying capacity loss of suburban rail transit line, which verify the validity of the method.
     (6) Travel time of the travelers all over a rail line was studied and a model of express train station selection to minimize total travel time was built. This model about multi-objective programming problem was transformed into a single-objective one to design algorithm. This model can also be used to determine whether express/slow train operation is applicable for an urban rail transit line. Case study verifies the validity of the model and algorithm.
引文
[1]Abramovic B., Petrovic M., Blaksovic Z.J. Use of railways for urban passenger transport[J]. WIT Transactions on the Built Environment,2008,101:243-251.
    [2]Assis W. O. Milani B. E. A. Generation of optimal schedules for metro lines using model predictive control[J]. Automatica,2004(40):1397-1404.
    [3]Bahn Munich. MVV urban rail network 2009 [EB/OL]. http://www.mvv-muenchen.de/en/ home/mw_network/transportnetworkmaps/urbanrailnetwork/index.html,2010.
    [4]Bai Y., Liu J., Sun Z., Mao B. Analysis on route choice behavior in seamless transfer urban rail transit network[C].2008 International Workshop on Modelling, Simulation and Optimization, WMSO 2008,2009:264-267.
    [5]Barbehell, Michael. Note on the Com-Plexity of Dijkstra's Algorithm for Graphs with weighted Vertices[J]. IEEE Transactionson ComPuterers,1998,47(2):263-266.
    [6]Bates E. G A Study of Passenger Transfer Facilities [J]. TRR.662.1978.
    [7]Bell D. Dylan Funding methods for urban railroad construction and improvements in Japan[J].Transportation Research Record,1993,1402:9-16,1993
    [8]Bottoms G, Graeub W. Campbell. Light Rail Transit Development in the United States[J].TR News,1984,113:17-22.
    [9]Brand D., Kiefer M.R., Parody T.E., Mehndiratta S.R. Application of benefit-cost analysis to the proposed California high-speed rail system [J].Transportation Research Record, 2001(1742):9-16.
    [10]Castelli L., Pesenti R., Ukovich W. Scheduling multimodal transportation systems [J]. European Journal of Operational Research,2004(155):603-615.
    [11]Chapleau R., Allard B., Trepanier M. Transit path calculation supported by special geographic information system-transit information system[J].1996(1521):98-107.
    [12]Chein I. J. Optimization of coordinated intermodal transit networks[M]. Maryland:University of Maryland College Park.1995
    [13]Cismaru C. D., Nicola D. A., Manolea G, Drighiciu M. A., Bulucea C. A. Mathematical models of high-speed trains movement[J].WSEAS Transactions on Circuits and Systems, 2008,7(2):67-74.
    [14]Csikos D., Currie G Investigating consistency in transit passenger arrivals:Insights from longitudinal automated fare collection data[J]. Transportation Research Record,2008(2042): 12-19.
    [15]David E. Finding the k shortest paths[J]. SIAM Journal on Computing,1998,28(2):652-673.
    [16]Department for Transport. The Future of Rail[EB/OL]. http://www. dft. gov. uk/about/strategy /whitepapers/rail,2004-07-15.
    [17]Drechsler G Light railway on conventional railway tracks in Karlsruhe, Germany[J]. Proceedings of the Institution of Civil Engineers:Transport,1996,117(2):81-87.
    [18]Falco F., Accattatis F., Castro G. Minimum Interval Between Trains on a Metropolitan Railway[J].Ingegneria Ferroviaria,1979,34(6):413-428.
    [19]Fernandez A., Cucala A.P., Sanz J.I. An integrated information model for traffic planning, operation and management of railway lines[J]. Advances in Transport,2004,15:743-752.
    [20]Francois Batisse.国外利用铁路发展轻轨交通[J].国外铁道车辆.2005,42(1):10-14.
    [21]Garzon N. J., Sanz B. J. D. D., Gmez R. J., Cano N. J. A new tool for railway planning and line management[J]. WIT Transactions on the Built Environment,2008,103:263-271.
    [22]He J., Liu R., Chen Y. LOS theory and evaluate method to urban comprehensive passenger transport hub[C]. Proceedings of the 2nd International Conference on Transportation Engineering,2009:4043-4048.
    [23]Horaires a partir du 15. Fiche horaire-Direction:Robinson. Antony. St-Remy-ies-Chevreuse [R]. Horaires a partir du 15,2008.12.
    [24]Huang R., Mao B., Yang Y. Company Organization Mode for City Group Railway Resource Integration [C]. The Dynamics of Urban Agglomeration in China,2009,116-119.
    [25]Huang R., Jiang Y, Liu Z., Yang Y, JIANG W. Algorithm and Implementation of Urban Rail Transit Network Based on Joint Operation [J]. Journal of Transportation Systems Engineering and Information Technology,2010,10(2):130-135.
    [26]Ian S. J. Dickins. Park and Ride Facilities on Light Rail Transit systems. TransPortation 18: 23-36,1991.
    [27]Jaeger, Heribert. Passenger requirements on regional rail transport [J]. Public Transport International,1990:38-40.
    [28]Jiang F., Han B. Design and planning of high capacity Urban Rail Systems[C]. Proceedings of the Conference on Traffic and Transportation Studies, ICTTS,1998:149-156
    [29]K.I-O斯卡洛夫.城市交通枢纽的发展[M].中国建筑工业出版社,1982.
    [30]Kavicka A., Klima V., Simulation support for railway infrastructure design and planning processes[J]. Advances in Transport,2000,7:447-456.
    [31]Ken Y.N. Japan's busiest railway lines[EB/OL].http://whatjapanthinks.com/2008/09/07/ japans-busiest-railway-lines.
    [32]Ku B. Y, Jang J.S.R., Ho S.L. Modulized train performance simulator for rapid transit DC analysis[C]. Proceedings of the IEEE/ASME Joint Railroad Conference,2000:213-219.
    [33]Liu J., Ahuja R. K, Sahin G. Optimal network configuration and capacity expansion of railroads [J]. Journal of the Operational Research Society,2008,59(7):911-920.
    [34]Liu Z., He J. Operation management of transfer hub in urban rail transit Service[c]. Operations and Logistics, and Informatics,2008,2:1571-1575.
    [35]Livingstone K. The Mayor's Transport Strategy[EB/OL]. http://www.London.gov.uk/mayor/ strategies/transport/trans_strat. jsp.2001-07.
    [36]Luo Q., Zheng L.J., Xu, R.H. Fare distribution method based on travel choice for urban rail transit[C]. International Conference on Transportation Engineering 2007, ICTE 2007,2007: 3482-3487.
    [37]Makoto A. Railway operators in Japan 4:Central Tokyo[J]. Railway Operator,2002,30(3): 42-53.
    [38]Meyer R. J., Kain F. J. The Urban Transportation Problem[J]. Cambridge (mass) Harvard University Press.1965.
    [39]Michael D. M., Eric J. M. Urban Transportation Planning[M]. New York:M c Graw Hill, 2001.
    [40]Michael G. H. B., Chris C. Reliability of Transport Networks[M]. Hertfordshire:Research Studies Press,2000.
    [41]Mignone A., Accadia G. Operations research models for programming support of cadenced timetables[J]. Ingegneria Ferroviariav,2010,65(1):9-29.
    [42]Moore E. F. The shortest path through a maze[J]. Paper presented at the International Symposium on the Theory of Switching at Harvard University,1957.
    [43]Nation Master. The Tozai Line (Kyoto) [EB/OL]. http://www.statemaster.com/encyclopedia/ Tozai-Line-(Kyoto)/2009/10.
    [44]Network Rail. London Connections [EB/OL]. http://www. nationalrail.co.uk/system/galleries/ download/print_maps/LondonConnections. pdf.
    [45]Network Rail. National Rail Passenger Operators [EB/OL]. http://www. nationalrail. co. uk/ system/galleries/download/print_maps/Nat_rail_passenger_operators_2008. pdf.
    [46]Peric K., Boile M. Combined model for intermodal networks with variable transit frequencies[J]. Transportation Research Record,2006(1964):136-145.
    [47]Phraner S. D., Roberts R. T., Korach K. A. Joint Operation of Light Rail Transit or Diesel Multiple Unit Vehicles with Railroads[M]. National Research Council, Washington, D. C,1999.
    [48]Raicu S., Dragu V., Popa M., Burciu S. Urban Transport XV:Urban Transport and the Environment in the 21st Century[J]. WIT Transactions on the Built Environment,2009,107: 41-50.
    [49]Renfrew R.M. Technology Selection and Development for an Intermediate Capacity Transit System[C].Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), 1977:939-945.
    [50]Sartajsahni. Data Structure, Algorithms and Application sin C++[M].北京:机械工业出版社, 2001.
    [51]Sigurd Grava. Urban Transportation Systems[M]. New York:IBT global.2003.
    [52]Stella F., Vigano V, Bogni D., Benzoni M. An integrated forecasting and regularization framework for light rail transit systems[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations,2006,10(2):59-73.
    [53]Taplin M. Light Rail in Europe[M]. Middlesex:Capital Transport Publishing,1995.
    [54]Tokyo Convention & Visitors Bureau(TCVB). Transportation of Tokyo Metro[R].Tokyo Educational Map,2008:18-25.
    [55]Transport for London. London Underground organizational chart[EB/OL]. http://www. tfl. gov. uk/corporate/modesoftransport/londonunderground/management/1578. aspx.
    [56]Verma A., Dhingra S.L., Optimal urban rail transit corridor identification within integrated framework using geographical information system[J]. Journal of Urban Planning and Development,2005,131(2):98-111.
    [57]Vuaillat P. The challenges of new information technologies applied to public transport and rail operations[J].WIT Transactions on the Built Environment,2006,89:713-721.
    [58]Wikipedia. London Underground[EB/OL]. http://en.wikipedia.org/wiki/London_Underground. 2009.
    [59]Wikipedia. Paris Underground[EB/OL]. http://en.wikipedia.org/wiki/Paris_Underground. 2010.
    [60]Wikipedia. Tokyo Metro_Shinjuku[EB/OL]. http://en.wikipedia.org/wiki/Tokyo Metro_Shinjuku.2008.
    [61]Wikipedia. Transport in London[EB/OL]. http://en.Wikipedia.org/wiki/Transport_in_London. 2009.
    [62]Zhang M., Du S. Transfer coordination optimization for network operation of urban rail transit based on hierarchical preference[J]. Tiedao Xuebao/Journal of the China Railway Society,2009, 31(6):9-14.
    [63]加藤晃,竹内传史.城市交通和城市规划[M].南昌:江西省城市规划研究所译,1998.
    [64]天野光三.都市の公共交通[M].东京:技报堂出版株式会社,1988.
    [65]运输省运输政策局情报管理部统计课.地下铁の駅别乘降车人员(平成19年度)(统)[R].运输及び通信,2008:247-251.
    [66]中里幸圣.地下铁事业体的运营概况[R].东京:经营战略研究所,2008.
    [67]佐藤滋,城下町都市研究体.図说城下町都市[M].束京:鹿岛出版会,2002.4.
    [68]巴黎市域地铁RER B线运营[EB/OL].http://www.ditiezu.com/thread-1639-1-1.html.
    [69]白雁,韩宝明,干宇雷.城市轨道交通换乘站布局综合评价方法研究[J].都市快轨交通,2006,19(3):30-33.
    [70]北京地铁运营公司设计研究所.轨道交通网络规划与网络化运营技术关系研究[R].北京地铁运营公司设计研究所,2009.
    [71]北京交通发展研究中心.北京地铁六号线客流预测专题报告[R].北京交通发展研究中心,2009.
    [72]曹守华,袁振洲,赵丹.城市轨道交通乘客上车时间特性分析及建模[J].铁道学报,2009,31(3):89-93.
    [73]陈帅,孙有望.大都市市域通勤轨道交通网规划方案评价[J].同济大学学报(自然科学版),2008,36(3):344-349.
    [74]单连龙.国外大城市交通发展的经验及思考[J].综合运输,2004,(3):66-69.
    [75]单宁,宋键.重庆市轨道交通三号线运输能力及行车交路研究[J].地下工程与隧道.2003(2):8-13.
    [76]方蕾,庞志显.城市轨道交通客流与行车组织分析[J].城市轨道交通研究.2004:42-44.
    [77]方蕾.都市圈快速轨道交通行车组织分析[D].东南大学,2004.
    [78]郭丽丽.环放结构城市轨道交通运输组织相关问题研究[D].西南交通大学,2007.
    [79]郭孜政,张殿业,姜梅,付雷,唐优华.城市轨道交通主干线网规划方法研究[J].铁道学报,2008,30(5):12-19.
    [80]何静.城市轨道交通运营管理[M].北京:中国铁道出版社.2007.
    [81]何宗华,汪松滋,何其光.城市轨道交通运营组织[M].北京:中国建筑工业出版社.2003.
    [82]洪玲,陈菁菁,徐瑞华.市域快速轨道交通线行车间隔优化问题研究[J].城市轨道交通研究,2006(3):35-37.
    [83]胡凯山,裘红玫,梁伟聪.双层岛式同站台换乘车站[J].铁道建筑,2005(9):47-49.
    [84]黄红选,韩继业.数学规划[M].北京:清华大学出版社,2006.
    [85]黄平.最优化理论与方法[M].北京:清华大学出版社,2009.
    [86]黄荣,毛保华,刘智丽,杨远舟.市郊铁路参与都市圈轨道交通的企业组织模式分析[J]. 物流技术,2010,29(7):32-36.
    [87]季令,张国宝.城市轨道交通运营组织[M].北京:中国铁道出版社,1998.
    [88]蒋永康.城市轨道交通换乘方式探讨[J].城市轨道交通研究,2000,3:45-48.
    [89]蒋玉琨.通往郊区的轨道交通线路客流预测方法[J].都市快轨交通,2009,22(6):44-48.
    [90]孔宪娟.基于元胞自动机的交通流建模及其特性分析研究[D].北京交通大学,2007.
    [91]雷磊,罗霞.城市轨道交通环线的功能定位研究[J].道运输与经济,2009,31(8):62-64.
    [92]李凤玲.城市轨道交通枢纽换乘方案的优选[J].城市轨道交通研究,2007,10(1):14-17.
    [93]李世雄.上海轨道交通线网的换乘[J].城市轨道交通研究,2004,7(3):66-69.
    [94]李夏苗,曾明华,黄桂章.基于交通系统与城市空间结构互馈机制的城际轨道交通走廊客流预测[J].中国铁道科学,2009,30(4):118-123.
    [95]李引珍,郭耀煌.网络最短路径定界搜索算法[J].西南交通大学学报,2004,39(5):561-564.
    [96]李引珍,郭耀煌.运输网络最短路径关键点问题研究[J].铁道学报,2004,26(6):106-111.
    [97]梁广深.同站台换乘车站方案研究[J].城市轨道交通研究,2005,8(5):11-14.
    [98]林震,杨浩.直达轨道交通的拥挤瓶颈模型[J].铁道学报.2003,25(4):14-18.
    [99]刘承平.数学建模方法[M].北京:高等教育出版社,2002
    [100]刘剑锋,丁勇,刘海冬,程文毅,毛保华,何天健.城市轨道交通多列车运行模拟系统研究[J].交通运输系统工程与信息,2005(1):31-37.
    [101]刘丽波,叶霞飞,顾保南.东京私铁快慢车组合运营模式对上海市域轨道交通线的启示[J].城市轨道交通研究.2006,(11):38-41.
    [102]刘丽波,叶霞飞,顾保南.上海市域快速轨道交通的线路运行模式[J].城市轨道交通研究.2007,35,(10):1358-1362.
    [103]刘迁.城市快速轨道交通线网规划发展和存在问题[J].城市规划,2002,6(11):71-75.
    [104]刘迁.国内城市快速轨道交通项目前期研究的发展[J].地铁与轻轨,2003(2):1-5.
    [105]刘思宁,伍勇.基于节能和面向旅客服务的列车编组方案研究[J].学术专论.2004(6):27-31.
    [106]龙建兵.城市轨道交通换乘方式的探讨[J].铁道勘测与设计,2004,1:54-58.
    [107]陆化普,王建伟,陈明.城际快速轨道交通客流预测方法研究[J].土木工程学报,2003,36(1):41-45.
    [108]陆锡明,王祥.城市轨道交通系统规划相关问题研究[J].城市轨道交通研究,2002,5(3):24-30.
    [109]马超群,王玉萍.轨道交通网络与城市形态在分形上的一致性分析[J].铁道运输与经济,2009,31(3):46-50.
    [110]马嘉琪,白雁,齐茂利.基于微观仿真的同站台换乘站客流疏散研究[J].中国安全科学学报,2009,19(11):172-176.
    [111]马沂文.对地铁车辆段用地情况的分析[J].都市快轨交通,2004,17(1):42-47.
    [112]毛保华王保山徐彬刘海东陈建华杜鹏.我国铁路列车运行计划集成编制方法研究[J].交通运输系统工程与信息,2009,9(2):44-51.
    [113]毛保华,何天健,袁振洲,刘海东,赵立宁,陈志英.通用列车运行模拟软件系统研究[J].铁道学报,2000,(01):44-51.
    [114]毛保华,李夏苗,王明生.城市轨道交通系统规划设计[M].北京:人民交通出版社,2006a.
    [115]毛保华,李夏苗,王明生.城市轨道交通系统运营管理[M].北京:人民交通出版社,2006b.
    [116]毛保华,四兵锋,刘智丽.城市轨道交通网络管理及收入分配理论与方法[M].北京:科学出版社.2007.
    [117]毛保华.北京市城市轨道交通运营模式研究报告[R].北京交通大学.2006.
    [118]毛保华.城市轨道交通[M].北京:科学出版社,2001.
    [119]毛保华.列车运行计算与设计[M].北京:人民交通出版社,2008.
    [120]明瑞利,叶霞飞.东京地铁与郊区铁路直通运营的相关问题研究[J].城市轨道交通,2009,11(1):21-25.
    [121]聂英杰.城市轨道交通的客流特性分析[J].地下工程与隧道,2003(4):20-22.
    [122]牛新奇.在城市轨道交通换乘票务清分模型的研究[D]华东师范大学,2004.
    [123]彭其渊,王慈光.铁路行车组织[J].北京:中国铁道出版社,2007.
    [124]蒲之艳.高速铁路跨线中速列车的成本及过轨清算的研究[D].西南交通大学,1999.
    [125]秦应兵,杜文.城市轨道交通对城市结构的影响因素分析[J].西南交通大学学报,2000,35(3):284-287.
    [126]邱志明,周晓勤,朱军,王长裕.城市轨道交通系统规划与建设[M].北京:北京交通大学出版社,2006.
    [127]全永燊,李凤军,黄伟,刘迁,王有为.关于城市交通和城市用地相互关系的讨论[J].城市交通,2006,4(4):32-34.
    [128]全永燊.地铁线网规划中几个值得商榷的问题[J].中国工程科学,2000,2(4):75-82.
    [129]沙滨.城市轨道交通换乘方式对比分析[J].城市交通,2006,4(2):11-15.
    [130]邵伟中,刘瑶,陈光华,徐瑞华.巴黎市域轨道交通线路及车站布置特点分析[J].城市轨道交通研究,2006(1):62-64.
    [131]沈景炎.城市轨道交通车站配线的研究[J].城市轨道交通研究,2006(9):1-5.
    [132]沈景炎.关于车辆定员与拥挤度的探析[J].都市快轨交通,2007,20(5):14-17.
    [133]史峰,周文梁,陈彦,邓连波.基于弹性需求的旅客列车开行方案优化研究[J].铁道学报,2008,30(3):1-6.
    [134]宋健,马成功.上海市轨道交通车辆选择及列车编组若干问题的探讨[J].城市轨道交通研究,2003(1):46-50.
    [135]宋键,徐瑞华,缪和平.市域快速轨道交通线开行快慢车问题的研究[J].城市轨道交通研究.2006:23-27.
    [136]孙林祥.地铁运行发车间隔和旅行速度指标下降的分析[J].都市快轨交通,2007(2):6-9.
    [137]孙焰,施其洲,赵源,孔庆瑜.城市轨道交通列车开行方案的确定[J].同济大学学报(自然科学版),2004,32(8):1005-1014.
    [138]孙有望,荆新轩,李磊.上海城市轨道交通的超常规发展及其保障体系[J].城市轨道交通研究,2004,7(2):28-30.
    [139]孙壮志.城市交通网络形态特征分形计量研究[J].交通运输系统工程与信息,2007,7(1):29-38.
    [140]谭云江,董守清,闫海峰.两种速度地铁动车组混合开行的影响分析[J].城市轨道交通,2005(6):37-39.
    [141]陶志祥.区域城际铁路与城市轨道交通跨线运行的兼容性分析[J].城市轨道交通研究,2008(1):6-8.
    [142]汪波,杨浩,牛丰,王保华.周期运行图编制模型与算法研究[J].铁道学报.2007,29(5):1-6.
    [143]王波,安栓庄,李晓霞.城市轨道交通换乘设施的评价方法[J].都市快轨交通,2007,20(4):40-43.
    [144]王慈光.车站停时指标组成分析法的研究[J].铁道运输与经济,2008,30(5):80-82.
    [145]王国光.自动售检票系统及关键技术研究[D].铁道部科学研究院,2005.
    [146]王海丹,李映红.高峰期城市轨道交通线路通过能力的研究[J].上海铁道科技,2005(3):39-40.
    [147]王明中.城市轨道交通一票(卡)通换乘票务清分系统的研究与实现[D].上海交通大学,2004.
    [148]王修志,宋建业.断面客流不均衡条件下的地铁行车组织方法[J].铁道运营技术,2009,15(1):16-19.
    [149]王印富,雷志厚.城市轨道交通行车组织方法的探讨[J].铁道工程学报.2001,(4):59-63.
    [150]王振海.欧洲城市轨道交通及对中国的借鉴意义[J].地铁与轻轨,2003(5):57-62.
    [151]肖巍.基于元胞自动机的轨道交通模型及交通流特性分析[D].北京交通大学,2008.
    [152]徐锦帆,梁广深.地铁列车编组分期实施的合理性及扩编的可行性[J].都市快轨交通,2007,20(2):94-99.
    [153]徐瑞华,陈菁菁,杜世敏.城轨交通多种列车交路模式下的通过能力和车底运用研究[J].铁道学报.2005a:6-10.
    [154]徐瑞华,杜世敏.市域轨道交通线路特点分析[J].城市轨道交通研究.2005b:10-12.
    [155]徐瑞华,李侠,陈菁菁.市域快速轨道交通线路列车运行交路研究[J].城市轨道交通研究.2006:36-39.
    [156]徐瑞华,罗钦,高鹏.基于多路径的城市轨道交通网络客流分布模型及算法研究[J].铁道学报,2009,31(2):110-114.
    [157]徐瑞华,徐浩,宋键.城市交通列车共线运营的通过能力和延误[J].同济大学学报(自然科学版),2005,33(3):301-305.
    [158]徐行方,程赞奇.城际列车开行方案评价模型的适用性分析[J].同济大学学报,2000,34(1):52-56.
    [159]徐行方,向劲松.区域性城际列车开行方案的研究[J].同济大学学报,2008,36(5):620-624.
    [160]杨东援,韩皓.世界四大都市轨道交通与交通结构剖析[J].城市轨道交通研究,2000,3(4):10-15.
    [161]杨浩.运输组织学[M].北京:中国铁道出版社,2004.3.
    [162]杨浩.铁路运输组织学[M].北京:中国铁道出版社,2006;
    [163]杨京帅.城市轨道交通线网合理规模与布局方法研究[D].成都:西南交通大学,2006
    [164]叶霞飞,李君,霍建平.国内外城市轨道交通车辆段对比研究[J].城市轨道交通研究,2003(1):71-77.
    [165]易婷,陈小鸿,张勇平,吴叶.上海市地铁站点客流换乘特征分析[J].忻州师范学院学报,2004,20(2):108-112.
    [166]袁博晖,王英涛.针对断面客流量差异的行车组织适应性探讨[J].城市轨道交通研究,2004,7(5):32-33.
    [167]张朝峰,张秀媛.地铁末端周边区域通勤客流分布和出行方式选择[J].都市快轨交通 2009 22(4)26-29
    [168]张春民,李引珍,杨涛.多目标模糊优选动态规划在方案优选中的应用[J].兰州交通大学学报,2007,26(1):108-111.
    [169]张国宝,傅嘉,刘明姝.城轨列车非站站停车及派生的越行问题研究[J].都市快轨交通,2005a,18(5):18-22.
    [170]张国宝,刘明姝,徐瑞华.城市轨道列车在中间站折返时的通过能力适应性分析[J].城市轨道交通研究,2005b,8(6):31-35.
    [171]张国宝,于涛.关于城轨列车折返能力计算与加强的研究[J].都市快轨交通,2006,19(4):55-58.
    [172]张国宝.城市轨道交通运输组织[M].北京:中国铁道出版社,2000.
    [173]张红亮,杨浩.客运专线通过能力研究[J].铁道运输与经济.2006,28(5):74-76
    [174]张铱莹,彭其渊.综合运输旅客换乘网络优化模型[J].西南交通大学学报,2009,44(4):517-522.
    [175]张蓁.城市轨道交通转换点的内部换乘和外部衔接[D].上海:同济大学,2007.
    [176]赵峰,张星臣,刘智丽.城市轨道交通系统运费清分方法研究[J].交通运输系统工程与信息,2007,7(6):85-90.
    [177]赵钢,彭其渊.城际铁路列车开行方案优化分析[J].交通科技与经济,2008,10(6):103-105.
    [178]郑丽娟.基于城市轨道交通网络运营的客流分布预测研究[D].同济大学,2008.
    [179]周建军,顾保南.国外市域轨道交通共线运营方式的发展和启示[J].城市轨道交通研究,2004,7(6):75-77.
    [180]周立新,李英,缪和平.城市轨道交通系统的换乘研究[J].城市轨道交通研究,2001,4(4):35-38.
    [181]周立新.铁路旅客列车开行方案决策模型[J].上海交通大学学报,2000,34(6):11-13.
    [182]朱顺应,郭志勇.城市轨道交通规划与管理[M].南京:东南大学出版社,2008.
    [183]祝晓波.市域轨道交通快速线开行方案研究[D].西南交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700