低碳钢浪花飞溅区腐蚀和防腐带保护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浪花飞溅区受到干湿交替、海水飞沫、阳光、大气中腐蚀性成分和氧气等一系列外部因素的作用,同时还有钢铁材料本身的因素,使其成为海洋环境中腐蚀最严重的区带。浪花飞溅区的防腐是防腐蚀技术的难题,解决该部位的腐蚀控制问题将会大大延长钢结构设施的服役寿命。
     本文通过失重实验法和电连接实验技术研究了变形(受力)试样在浪花飞溅区的腐蚀发展规律。
     通过选择缓蚀剂、填料和胶粘油脂等,研制了防蚀膏。通过试验选择了防腐带内层和外层所用的材料,然后制成防腐带。使用防腐带对钢样进行保护,用失重法和现场照相的方法对防腐带的防腐效果进行评价。在模拟环境(浪花飞溅区)和实海环境下进行失重试验发现施加防腐带保护后钢样的腐蚀速率比未加保护钢样的腐蚀速率降低了2~3个数量级,说明其具有优异的耐海洋环境腐蚀能力,可以对海洋环境,尤其是浪花飞溅区钢铁结构物进行保护。
     牺牲阳极保护法是一种传统的海洋环境中钢铁材料的防腐蚀方法,有广泛的应用,但一般是用在海水全浸区。这其中的主要原因是牺牲阳极保护法需要有稳定的电解质溶液(海水就是一种电解质溶液)。对于浪花飞溅区来说,受到风吹日晒、海水飞溅等条件影响,经常处于干湿交替状态,因此没有稳定的电解质溶液。本文对牺牲阳极保护法在浪花飞溅区能否使用进行了研究,先将钢铁材料表面用牺牲阳极保护起来置于浪花飞溅区,然后设法将海水引入钢铁材料表面,通过观察其腐蚀情况来确定是否可行。模拟环境(浪花飞溅区)和实海环境下的试验表明牺牲阳极对浪花飞溅区的钢棒具有保护作用,用引入电解质(海水)的方法使牺牲阳极在浪花飞溅区发生作用是完全可行的,也是十分有效的。
The splash zone is the most corrosive area in the marine environment due toalternation of wetting and drying, seawater spray, sunshine, corrosive component inatmosphere, oxygen and steel material in itself. The materials exposed in splash zonewould suffer from serious corrosion and it was difficult to protect the materialsexposed in this region. If appropriate protection methods were applied, it wouldgreatly prolong the service lifetime of the whole steel structures exposed in this area.
     The corrosion law of deformed sample in splash zone was studied usingweight-loss method and electric connection experiment technology.
     Corrosion inhibitors, filler and adhesive grease were chosen and anti-corrosionpaste was produced. The material of inner and outer layer of anti-corrosive bandswere chosen through test and anti-corrosive bands were produced. The corrosion ofthe rods was assessed by weight-loss method and by examination of photographs.With the protection of anti-corrosive bands, the corrosion rate of steels exposed insimulated splash zone environment and splash zone was reduced2~3orders ofmagnitude. That is to say, using the anti-corrosive band could provide long termcorrosion protection for the steel structure exposed in splash zone.
     The method of using sacrificial anodes to protect mild steel is a conventional oneand has been extensively studied and widely used in marine structures. But,continuous electrolyte is necessary for a sacrificial anode to have protection effect.The splash zone has no stable electrolyte because it is perennially in a cycle ofwet-dry alternation condition. In this paper a method was fabricated that can retain astable supply of electrolyte (seawater) fixed in the splash zone and thus allows a sacrificial anode to function in the splash zone. The method of using sacrificial anodeto protect mild steel in the splash zone via retained electrolyte is valid.
引文
[1]侯保荣.海洋腐蚀与防护[M].第一版.北京:科学出版社.1997,3-6.
    [2]侯保荣.海洋腐蚀环境理论及其应用[M].第一版.北京:科学出版社.1999,1-12.
    [3]侯保荣.腐蚀研究与防护技术[M].第一版.北京:科学出版社.1998,1-6.
    [4] Laque F.L. Marine corrosion: causes and prevention[M].Corrosion monographseries. United States: John Wiley and Sons, Inc.,New York.1975,340.
    [5] Corvo F. Perez T.,Dzib L.R.,et al. Outdoor-indoor corrosion of metals in tropicalcoastal atmospheres[J]. Corrosion Science,2008,50(1):220-230.
    [6] Syed S. Atmospheric corrosion of hot and cold rolled carbon steel under fieldexposure in Saudi Arabia[J]. Corrosion Science,2008,50(6):1779-1784.
    [7] Rivero S., Chico B., De la Fuente D., et al. Atmospheric corrosion of low carbonsteel in a polar marine environment. Study of the effect of wind regime[J].Revista De Metalurgia,2007,43(5):3700-383.
    [8] Mikhailov A., Strekalov P., Panchenko Y. Atmospheric corrosion of metals inregions of cold and extremely cold climate(a review)[J]. Protection of Metals,2008,44(7):644-659.
    [9] Voevodin N., Jeffcoate C., Simon L., et al. Characterization of pitting corrosion inbare and sol-gel coated aluminum2024-T3alloy[J]. Surface and CoatingsTechnology,2001,140(1):29-34.
    [10] Kamimura T., Nasu S., Segi T., et al. Corrosion behavior of steel under wet anddry cycles containing Cr3+ion [J]. Corrosion Science,2003,45(8):1863-1879.
    [11] Fajardo G., Valdez P., Pacheco J. Corrosion of steel rebar embedded in naturalpozzolan based mortars exposed to chlorides[J]. Construction and BuildingMaterials,2009,23(2):768-774.
    [12] Jeffrey R., Melchers R.E. Corrosion of vertical mild steel strips in seawater [J].Corrosion Science,2009,51(10):2291-2297.
    [13] J nsson M., Persson D., Thierry D. Corrosion product formation during NaClinduced atmospheric corrosion of magnesium alloy AZ91D[J].Corrosion Science,2007,49(3):1540-1558.
    [14] Kuroda T., Takai R., Kobayasb Y., et al. Corrosion rate of shipwreck structuralsteels under the sea. International Conference OCEANS2008and MTS/IEEEKobe Techno-Ocean08.2008. Kobe, JAPAN: Ieee.
    [15] Bruun P. North sea offshore structures[J]. Ocean Engineering,1976,3(5):361-368.
    [16] Nunez L., Reguera E., Corvo F., et al. Corrosion of copper in seawater and itsaerosols in a tropical island[J].Corrosion Science,2005,47(2):461-484.
    [17] Brouillette C.V., Hanna A.E. Corrosion survey of steel sheet piling: DefenseTechnical Information Center,1960,12-27,74.
    [18]柯伟.中国工业与自然环境腐蚀调查的进展[J].腐蚀与防护,2004,25(1):1-8.
    [19]李言涛,侯保荣.钢在不同海底沉积物中的腐蚀研究[J].海洋与湖沼,1997,28(2):179-184.
    [20] Watts F.S. Splash zone corrosion of a piled structure in a marine environmentevaluated by a statistical method [J]. Anti-Corrosion Methods and Materials,1974,21(3):5-10.
    [21]黄桂桥,郁春娟.金属材料在海洋飞溅区的腐蚀[J].腐蚀研究,1999,32(2):28-30.
    [22] Lye R.E. Splash zone protection on offshore platforms-A Norwegian operator’sexperience [J]. Materials Performance,2001,40(4):40-45.
    [23]朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨[J].腐蚀科学与防护技术,1995,7(3):246-248.
    [24]朱相荣,王相润,黄桂桥.钢在海洋飞溅带的腐蚀与防护[J].海洋科学,1995,(3):23-26
    [25] Zhu X.R., Huang G.Q., Ling C.F. Study on the corrosion peak of carbon steel inmarine splash zone [J]. Chinese Journal of Oceanology and Limnology,1997,15(4):378-380.
    [26]戴永寿.海洋钢结构物浪溅区和潮差区的腐蚀与防护[J].材料保护,1981,(2):2-14.
    [27]佐武等,铁と钢,1969,55:246.
    [28]大场建二,制铁研究,1975,284:83.
    [29]李言涛,侯保荣.胜利油田浅海石油开发区钢铁腐蚀规律[J].海洋科学集刊,2006,(47):101-108.
    [30] Meng H., Hu X., Neville A. A systematic erosion-corrosion study of two stainlesssteels in marine conditions via experimental design [J]. Wear,2007,263(1-6):355-362.
    [31] Anwar Hossain K.M., Easa S.M., Lachemi M. Evaluation of the effect of marinesalts on urban built infrastructure[J]. Building and Environment,2009,44(4):713-722.
    [32] Rolf E. Lye. Splash zone protection-a Norwegian operator’s view. Corrosion.2001. Houston, Tx:Norsk Research Centre.
    [33]黄桂桥.合金元素对钢在海水飞溅区腐蚀的影响[J].腐蚀与防护,2001,22(12):511-516.
    [34]黄桂桥.不锈钢在海水飞溅区的腐蚀行为[J].腐蚀与防护学报,2002,22(4):211-216.
    [35] Wang X.T., Duan J.Z., Zhang J., et al. Alloy elements’ effect on anti-corrosionperformance of low alloy steels in different sea zones[J]. Materials Letters,2008,62(8-9):1291-1293.
    [36] Tinnea R., Ostbo B. Evaluating the corrosion protection of a nuclear submarinedrydock[J].Corrosion,2008.
    [37] Szokolik A. Splash zone protection:a review of20years’ experience in bassstrait[J]. J.Protect. Coat. Linings,1989,6(12):46-55.
    [38] Tadokoro Y., Nagatani T. Yoshida K., ea al. Development of techniques forcorrosion protection of steel structures for very long service using titanium,1992,17-26.
    [39] Kodama T. Enhanced durability of structural steels in marine environment[J].NRIM Research Activities(Japan),1999,49-51.
    [40] Kain R.M. Evaluating material resistance to marine environments: some favoriteexperiments in review[A]. Corrosion nacexpo200661stAnnual Conference&Exposition[C].2006.San Diego, CA; USA: NACE International.
    [41] Szokolik A. Protecting splash zones of offshore platforms[J]. Protective CoatingsEurope(USA),2000,5(12):32-38.
    [42] Harris G.M., Lorenz A. New coatings for the corrosion protection of steelpipelines and pilings in severely aggressive environments. InternationalConference to Mark the20th Anniversary of the UMISTCorrosion-and-Protection-Centre: Advances in Corrosion and Prorection.1992.Manchester, United Kingdom: Pergamon-Elsevier Science Ltd.
    [43] John R.C., Van Hooff W. Improved corrosion control by coating in the splashzone and subsea[J]. Mater. Perform,1989,28(1):41-43.
    [44] Peters D.T., Michels H.T., Powell C.A. Metallic Coatings for Corrosion Controlof Marine Structures[A]. International Workshop on corrosion Control forMarine Structures and Pipelines;9-11Feb.1999,189-220.2000[C].2000.Galveston, TX; USA;:American Bureau of Shipping,1.
    [45] Jones B.L., Sansum a.J.Review of protective coating system for pipe andstructures in splash zones in hostile environments[J].Corrosion Management,1996,(14):9-14.
    [46] Anon. Protecting splash zones of offshore platforms[J]. Journal of ProtectiveCoatings and Linings,2000,17(12):32-38.
    [47] Aghajani A. In situ corrosion protection of oil risers and offshore piles[J].Materials Performance,2008,47(4):38-42.
    [48] Leng D.L. Zinc mesh cathodic protection systems[J]. Materials Performance,2000,39(8):28-33.
    [49]张立新.表面工程应用实例[例13]重防腐涂层防护技术在海洋设备及埋地管道上的应用[J].中国表面工程,2009,22(6): F0002-F0002.
    [50] Greenwood-Sole G., Watkinson C.J. New Glassflake Coating Technology ForOffshore Applications[A]. CORROSION2004, NACE International[C].Houston.
    [51]姜秀杰,崔显林,王志超,等.海洋浪溅区钢结构超厚膜环氧涂料[J].上海涂料,2010,48(1):12-14.
    [52]刘毅,徐滨士,魏世丞,等.海洋钢结构防腐蚀技术在浪花飞溅区的应用[A].侯保荣.海洋工程结构浪花飞溅区腐蚀与控制研究[C].2009.青岛:科学技术文献出版社.
    [53]姜秀杰,崔显林,张卫国.海洋浪溅区钢结构的腐蚀防护[A].侯保荣.海洋工程结构浪花飞溅区腐蚀与控制研究[C].2009.青岛:科学技术文献出版社.
    [54]姜秀杰,崔显林,王同良,等.有机聚硅氧烷杂化涂料的研究进展[J].现代涂料与涂装,2009,(10):31-33,39.
    [55]张静,蒋建明,桂泰江,等.环氧聚硅氧烷重防腐涂料的研究[J].现代涂料与涂装,2008,11(12):15-16,20.
    [56]黄彦良.一种浪花飞溅区钢铁设施腐蚀防护方法.中国专利.2004-02-25.
    [57] Hou B.R., Zhang J., Duan J.Z., et al. Corrosion of thermally sprayed zinc andaluminium coatings in simulated splash and tidal zone conditions[J]. CorrosionEngineering Science and Technology,2003,38(2):157-160.
    [58] Hirinobu N, Tsuguo, Kazuo I.,Corrosion resistance of thermal sprayed Zn, Aland Zn-Al alloy against atmosphere corrosion[J]. Material and Environment,2002,51(9):404-409.
    [59]周学杰,张三平,付志勇,程学群,潘莹,唐树琼,萧以德,金属喷涂层在海水中的腐蚀研究[J].腐蚀科学与防护技术,2004,16(4):236-239.
    [60]李焰,邢少华,李鑫,魏绪钧,热浸镀层在青岛站的海水腐蚀行为对比(Ⅲ)—飞溅区[J],中国有色金属学报,2007,17(9):1527-1535.
    [61] Koji Tachibana,Yasufumi Moriniga,Masami Mayuzumi, Hot dip fine Zn andZn–Al alloy double coating for corrosion resistance at coastal area[J],CorrosionScience,2007,49:149-157.
    [62] Suzuki Y., Doi K., Kyuno T., et al. Study of corrosion-protection technologies insplash and tidal zones.1985. Tokyo, Jpn: Springer-Verlag.
    [63] NACE,海上钢质固定石油生产构筑物腐蚀控制的推荐做法,2003,28-29.
    [64]侯保荣.海洋环境腐蚀规律及控制技术[J].科学与管理,2004,24(5):7-8.
    [65] Powell C., Michels D.H. Review of splash zone corrosion and biofouling ofc70600sheathed steel during20years exposure[J].
    [66] Copper-Nickel Cladding for offshore structure.[cited20104-1]; Available from:http://www.copperinfo.co.uk/alloys/copper-nickel/.
    [67]顾正贤,陈树深.海运码头钢管桩在潮差区和飞溅区的防护技术[J].腐蚀与防护,2002,23(3):119-120,123.
    [68] Smith M., Bowley C., Williams L. In situ protection of splash zones-30yearson[J]. Materials Performance,2002,41(10):30-33.
    [69] Popov E.A. Modified anticorrosion composion based on gun grease[J]. JournalChemistry and Technology of Fuels and oils,2002,38(4):257-259.
    [70] Sharma B.K. Soybean oil based greases: Influence of composition onthermo-oxidative and tribochemical behavior[J]. Journal of Agriculture and FoodChemistry,2005,53(8):2961-2968.
    [71] Adhvaryu A. Preparation of soybean oil-based greases: Effect of composition andstructure on physical properities[J]. Journal of Agriculture and Food Chemistry,2004,52(21):6456-6459.
    [72]张康夫,于大南.防锈油脂与乳化切削油[M].国防工业出版社.1983,1-370.
    [73]陈红星,祁庆琚,应白桦.防锈油的研究开发与应用[J].表面技术,2005,(2):74-77.
    [74]谭胜,付洪瑞.防锈油发展现状[J].河北化工,2003,(5):16-19.
    [75]武玉玲.防锈油脂发展现状[J].石油商技,2001,19(6):1-5.
    [76]柴维智.防锈油脂的性能和应用[J].山西机械,2001,增刊:155-158.
    [77]储慧莉,黄远礼.新型油溶性缓蚀剂gac-968在常压蒸馏塔上的工业应用试验[J].石油化工腐蚀与防护,1997,14(4):37-40.
    [78]陈学兵,刘洪锦.“B1-928”油溶性缓蚀剂在长岭一套常减压装置的应用试验[J].石油化工腐蚀与防护,1998,15(2):29-32.
    [79]叶仁爱,许慧佩.防锈油脂[M].北京:中国石化出版社.1993,232.
    [80] Licata F.J. Aluminum stearate greases[J]. Industrial and Chemistry,1938,30(5):550-553.
    [81] Sharma B.K. Biobased grease with improved oxidation pergormance forindustrial application[J]. Journal of Agriculture and Food Chemistry,2006,54(20):7594-7599.
    [82]赵庆和,方平权.长效防腐润滑脂及制造方法.19881988-02-03.
    [83] E.S. Bnatov. Influence of climatic condition on functional properties oflubricants[J]. Chemistry and Technology of Fuels and Oils,1996,32(6):300-303.
    [84]黄桂芳,吴翠兰.防锈油防护性能的影响因素及油膜下金属腐蚀特征[J].中国腐蚀与防护学报,1999,19(3):179-184.
    [85] Zhong Q. A novel electrochemical testing method and its use in the investigationof the self-repairing ability of temporarily protective oil coating[J]. CorrosionScience,2002,44:1247-1256.
    [86]陈友业,姚素薇.用扩展循环伏安法测试防锈油性能[J].材料保护,2001,(12):16-18.
    [87]郭导.牺牲阳极的阴极保护施工技术在海港码头工程中的应用[J].港口科技,2009,(7):14-18.
    [88]宋日海,郭忠诚,樊爱民,龙晋明.牺牲阳极材料的研究现状[J].腐蚀科学与防护技术,2004,16(1):24-28.
    [89]中国腐蚀与防护学会<金属防腐蚀手册>编写组金辑防腐蚀手册[M].上海:上海科学技术出版社.1989,365.
    [90]化学工业部化工机械研究院主编,腐蚀与防护手册一耐蚀金属材料及防蚀技术[M].北京:化学工业出版社.1990,89l.
    [91]朱锡昶,葛燕,李岩.码头钢管桩牺牲阳极阴极保护10年效果[J].水运工程,2008,(6):82-86.
    [92]杨照兵,陆周,宋双.牺牲阳极阴极保护技术在码头桩基工程中的应用[J].水运工程,2011,(7):95-99.
    [93]颜东洲.杭州湾跨海大桥腐蚀控制措施评析[J].全面腐蚀控制,2008,22(1):4-16.
    [94]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006
    [95] Hoar T. P., Hines J. G., J. Iron. Steel Res. Int.,1954,177,148
    [96] Uhlig H. H., Sava J., The Effect of Heat Treatment on Stress CorrosionCracking of Iron and Mild Steel [J]. Trans.ASM,1963,56:361-376
    [97] Yoshino K., McMahon C. J., The Cooperative Relation Between TemperEmbrittlement and Hydrogen Embrittlement in a High Strength Steel[J].Metall.Trans.,1974,5:363
    [98] Oriani R. A., Stress Corrosion Cracking and Hydrogen Embrittlementof Iron Base Alloys [C], International Conference on Stress CorrosionCracking and Hydrogen Embrittlement of Iron Base Alloys, Houston,TX,1977:351
    [99]褚武扬,李世琼,肖纪美,高强度钢水介质应力腐蚀研究[J].金属学报,1980,16(2):179-189
    [100] Chu W. Y., Hsiao C. M., Li Z. J., Mechanism of SCC of Steel in H2S[J]. Corrosion,1980,36:475-480
    [101] Chu W. Y., Liu T. W., Hsiao C. M., Mechanism of SCC of Low AlloySteels [J]. Corrosion,1981,37:320-322
    [102]褚武扬,王核力,马若涛等.奥氏体不锈钢应力腐蚀和氢致开裂的机理[J].金属学报,1985,21(1):86-94
    [103] Mcevily A. J., Bond A. P., On the Initiation and Growth of StressCorrosion Cracks in Tarnished Brass [J]. J. Electrochem. Soc.,1965,112(2):131-138
    [104] Nielsen N. A., The Role of Corrosion Products in Crack Propagationin Austenitic Stainless Steel [M]. Electron Microscopic Studies.Physical Metallurgy of Stress Corrosion Fracture. New York,1959:341
    [105] Pourbaix M., Significance of Protection Potential in Pitting andIntergranular Corrosion [J]. Corrosion,1970,26:431
    [106] Parkins R. N., Slow strain rate testing-25years experience. Slowstrain rate testing for the evaluation of environmentally inducedcracking: research and engineering applications.Philadephia,1993:7-21
    [107] Parkins R. N., Development of slow strain rate testing and itsimplications [J]. Stress corrosion cracking: slow strain ratetechnique. Philadephia,1979:5-25
    [108] Payer J. H., Berry W. E., Boyd W. K., Evaluation of slow strain-ratestress corrosion tests results [J]. Stress corrosion cracking: slowstrain rate technique. Philadephia,1979:61-77
    [109] Schofied Michael J., Bradshaw Roy, Cottis R. A., Stress corrosioncracking of duplex stainless steel weldments in sour conditions [J].Mater. Performance,1996,35(4):65-70
    [110] Meyn D. A., Pao P. S., Slow strain rate testing of precrackedtitanium alloys in salt water and inert environment. Slow strainrate testing for the evaluation of environmentally induced cracking:research and engineering applications. Philadephia,1993:158-169
    [111] Erilsson H., Berhandsson S., Applicability of duplex stainlesssteels in Sour environments [J]. Corrosion,1991,47(9):719-727
    [112] Beavers J. A., Koch G. H., Limitations of slow strain rate testingtechnique. Slow strain rate testing for the evaluation ofenvironmentally induced cracking: research and engineeringapplications. Philadephia,1993:22-39
    [113] Kane R. D., Wilhelm S. M., Status of standardization activities onslow strain rate testing techniques. Slow strain rate testing forthe evaluation of Environmentally induced cracking: research andengineering applications. Philadephia,1993:40-47
    [114] Zhang X. Y., Du Y. L., Relationship between susceptibility toembrittlement and hydrogen permeation current for UNS G10190steelin5%NaCl solution containing H2S [J]. Br. Corros. J.,1998,33(4):292-296
    [115] Ahluwalia Harklrat S., Problems associated with slow strain ratequality assurance testing of nickel-base corrosion resistant alloytubulars in hydrogen sulfide environments. Slow strain rate testingfor the evaluation of environmentally induced cracking: researchand engineering applications, Philadephia,1993:225-239
    [116] Ikeda Akio, Ueda Masakatsu, Okamoto Hiroshi, Role of slow strainrate testing on evaluation of corrosion resistant alloys forhostile hot sour gas production. Slow strain rate testing for theevaluation of environmentally induced cracking: research andengineering applications. Philadephia,1993:240-262
    [117] Muizhnek I. A., Accelerated corrosion creaking tests of steels inActive-passive loading [J]. Soviet Materials Science,1990,26(2):168-171
    [118] Payer J. H., Berry W. E., Parkins R. N., Application of slowstrain-rate technique to stress corrosion cracking of piping steel.Stress corrosion cracking: slow strain rate technique.Philadephia,1979:222-234
    [119] Kushida T., Koichi Nose, Asahi H., Effects of metallurgical factorsand test conditions on near neutral pH SCC of pipeline steels [C],Corrosion/2001. Houston,TX,:NACE,2001
    [120] Evans, U.R.,华保定译,金属的腐蚀与氧化,机械工业出版社,1976:323
    [121] Devanath M.A.V., et.al., Proc. Rov. Soc.,1962,90:270.
    [122] Kanji Mansui, et.al., Trans. ISIJ,1979,19:547.
    [123] Braner E., Doerr. R., Corros. Sci.,1981,21:449.
    [124] C.P.Ju, J. Don and J.M.Rigsbee, Mater. Sci. Eng.1986,77:115
    [125] Senkov O. N.,Jones J. H.,Froes F. J., Recent advances in the thermohydrogenprocessing of titanium alloys [J]. J. Metals.1996,48(7):4
    [126]郑文龙,于青,钢的环境敏感断裂[M].北京:化学工业出版社,1988
    [127] Devnathan M., Stachurski Z., A technique for the Evalution ofHydrogen Embrittlement Characteristics of Electroplating Baths [J].J.Electrochem. Soc.,1963,110(8):886
    [128] Kushida T., Hydrogen Entry into Steel by Atmospheric Corrosion [J].ISIJ Int.,2003,43(4):470-474
    [129] Yoshiko Taniguchi, Atsushi Nishikata, Tooru Tsuru, Effect of Wetand Dry Corrosion Cycles on Hydrogen Entry into Iron [C],Proceedings of Japan-China Joint Seminar on Marine Corrosion. Tokyo,November13th~15th,2002:183-186
    [130] Nishimura R., Shiraishi D., Maeda Y., Hydrogen Permeation andCorrosion Behavior of High Strength Steel MCM430in Cyclic Wet-drySO2Environment [J]. Corros. Sci.,2004,46(1):225-243
    [131] Tooru Tsuru, Huang Y. L., Md Rostom Ali, et al. Hydrogen entry intosteel during atmospheric corrosion process [J]. Corros. Sci.,2005,47(10):2431-2440
    [132] Zheng C. B., Huang Y. L., Yu Q., et al. Hydrogen permeation behaviorand corrosion monitoring of steel in cyclic wet-dry atmosphericenvironment [J]. Mater. Corros.,2007,58(9):716-720
    [133] Kim H., Popov B. N., Chen K. S., Comparison of corrosion-resistanceand hydrogen permeation properties of Zn–Ni,Zn–Ni–Cd and Cdcoatings on low-carbon steel [J].Corros.Sci.,2003,45:1505-1521
    [134] Yanliang Huang and Yongyan Zhu, Hydrogen ion reduction in the process ofiron rusting [J].Corrosion Science,2005,47:1545-1554.
    [135] Foster P. K., McNabb A. and Payne C. M.,Trans. AIME,1965,233:1022
    [136] Kurlela M., Script Metal.,1982,16:455.
    [137] Zakroczymski T., corrosion,1985,41,485.
    [138]朱日彰,董建筑,张文奇.中国腐蚀与防护学报,1986,6(1):42
    [139]郭海丁,田锡唐,塑性形变对4030钢中氢富集及传输行为的影响[J].1995,7(1):47
    [140]肖纪美,腐蚀总论一材料的腐蚀及其控制方法[M].北京:化学工业出版社,1994.
    [141]朱苓,缓蚀剂缓蚀作用的研究方法[J].腐蚀与防护,1999,20(7):300-302
    [142]张大全,绿色化学及其技术在缓蚀剂研究开发中的应用[J].材料保护,2002,35(1):29~31
    [143]郭良生,石小燕,黄霓裳,邱富荣,海水中磷酸三乙醇胺-磷酸二氢盐对钢铁的缓蚀作用[J].材料保护,1997,30(8):13~14
    [144]曹楚南,杨乾刚,吕明,林海潮,中国腐蚀与防护学报,1992,12:109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700