我国高师综合科学教育专业课程设置框架的建构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国初中阶段的科学课程,自从建国以来基本上实行的是分科课程,直到20世纪80年代,综合科学课程才开始登上了科学教育的舞台。但是由于在全国范围内开设综合科学课程的实验时间很短,所以暴露出了相当多的问题,其中最大的问题就是缺乏合格的综合科学课程师资。从1997年湖南怀化学院开始尝试建立培养综合型理科师资的“综合理科”专科专业,到2001年教育部正式批准重庆师范大学建立起我国第一个“科学教育”本科专业,迄今全国已有60余所高校设置了科学教育本科专业。但是,由于科学教育专业是我国教师教育的一个新专业,各高等院校对其还缺乏全面深入的系统研究,使得各院校在专业理念、培养规格、课程结构、教学内容等专业建设方面还不太规范。这种不规范使得各高校在试办科学教育本科专业的教学实践中“各自为政”,“随意性大”。
     面对60余高校在课程设置上“各自为政”的现状,本研究希望通过对我国科学教育专业课程设置框架的建构研究,透视其背景、实施现状、并建构课程设置的框架、探讨在课程设置上的不足,寻求我国科学教育专业课程发展的方向,为我国综合科学课程教师专业化标准的制定找到依据。
     具体来说,论文包括九个部分:
     第一部分——“导言”:交代选题的缘由和意义,介绍主要的研究方法与研究思路。第j部分——“文献综述”:先对本论文所涉及到的核心概念进行界定,通过对前人研究成果进行梳理,得出综合科学课程发展的理论依据,分析综合科学课程存在的价值依据。然后,探讨当前我国综合科学课程实施中存在的问题;从提高科学教师科学素养这个角度阐明开设科学教育专业的重要性和必要性:为后面的问卷调查、访谈以及文本分析建立理论基础。第三部分——“我国综合科学教育专业课程设置的现状调查”:通过文本分析的方法对我国综合科学教育专业的开设情况以及课程设置的现状进行调研、分析。第四部分——“课程设置框架建构依据之一:科学教师专业化素养构成研究”:通过科学教师教育标准的国际比较,从综合科学教师专业素养的构成维度建构我国科学教育专业课程设置的框架。第五部分“课程设置框架建构依据之二:科学教育专业课程设置的国际比较研究”:关注发达國家和地区科学教育专业的课程设置和实施情况,通过对科学教育专业课程设置的国际比较研究为我国课程设置框架的建构找到依据。第六部分——“课程设置框架建构依据之三:中小学教师需求调研”:通过对中小学综合科学课程教师在科学教育专业课程需求上的调查研究,从一线教师实际需求的角度找到课程设置框架建构的依据。第七部分——“课程设置框架建构依据之四:科学教育专业师生反馈调研”:关注我国综合科学教育专业的师生对该专业课程设置的认识和看法,从亲身参与者、实践者的角度获取科学教育专业课程设置框架建构的依据。第八部分——“我国科学教育专业课程设置的比较研究”:通过对不同维度下课程设置框架的整合,建构我国综合科学教育专业课程设置的框架,并根据该框架结构对我国当前综合科学教育专业的课程设置进行比较研究。第九部分——“结论、建议与不足”:阐述研究发现、研究建议及研究不足。
     研究结论:
     1.对我国科学教育专业现状的调查显示:教育部共批准了62所高校开设科学教育专业。其中,2001年批准的有1所;2002年批准开设的有8所;2003年24所;2004年13所;2005年7所;2006年8所;2007年开始不再有新科学教育专业被批准开设。
     科学教育专业在学位授予上有两种,接近52%的学校授予教育学学士学位;48%的学校授予理学学十学位。对科学教育专业开设院系的调查显示:由化学化工学院开设的有15所;生命科学学院开设的有8所;物理学院开设的有9所;教育学院开设的有9所;化学与生命科学学院开设的有6所;化学与材料学院开设的有5所;数理学院开设的有5所;生命与环境科学学院开设的有2所;化学与环境科学系开设的有1所;数学与计算机科学学院开设的有1所;马克思主义学院开设的有1所。对科学教育专业开设院系的统计显示,由化学化工学院开设的比例非常显著地高于其他院系。
     对科学教育专业省市分布的调查显示我国大陆有25个省、自治区和直辖市(除了西藏自治区、内蒙古自治区、宁夏回族自治区、海南省、北京市、天津市这6个地区以外)开设了科学教育(本科)专业。其中,西南地区有14所高校开设了该专业;西北地区有8所;华北地区5所;华中地区11所;华东地区16所;东北地区8所。x2检验显示,在西南和华东地区开设科学教育专业的学校数显著地高于其他地区。
     对62所有资格开设科学教育专业学校的调查发现,其中44所目前还在开设本专业,另外18所由于招生和就业原因没有开设。
     对开设有科学教育专业的38所高校课程设置的调查发现:在专业必修课程上平均开设门数为16.21门,所占学分比例为37.59%;在教育类课程上,平均开设课程6.97门,所占学分比例为9.74%。
     对课程结构的调查发现,科学教育专业主要是以通识课程、学科基础课程、专业方向课程、教育类课程和实践课程为分类的。
     2.对科学教育专业课程设置框架建构的研究包括四个子研究,由论文的第4部分至第7部分组成。子研究一(第4部分):通过对综合科学教师专业素养的研究发现,合格的教师素养包括专业的知识、专业的技能和专业的精神。所以,针对专业知识提出了学科知识和科学知识;在专业技能上提出了实验技能、研究技能、教学技能;在专业精神部分包括专业自我、专业情意等。在专业知识部分,从对《科学课程标准(3-9年级)》的梳理发现:物理、化学、生物、地理类知识在数量比例上为2:1:3:2。子研究二(第5部分):通过对科学教育专业课程设置的国际比较发现,发达国家和地区科学教育专业在课程构成上主要由通识课程、学科课程和教育课程组成。教育课程主要包括教育理论课程、教学法课程、教学实践课程、科学教育类课程。但是,国外科学教育专业在课程设置上更重视对儿童发展培养的课程和科学史哲类的课程。子研究三和子研究四(第6、7部分)发现:我國从事综合科学课程实践的师生们对课程的关注来自学科类课程和教育类课程。学科类课程包括:物理、化学、生物、地理、科学类五个领域课程;教育类课程则涵盖了教学技能、教育理论、教学法三类领域。
     通过对第3到第7部分研究的整合,本研究认为科学教育专业课程设置应该从学科科学课程领域和教育科学课程领域来进行建构。在学科科学课程领域所设置的课程应该包括:物理、化学、生物、地理、数学、综合科学、计算机七类;在教育科学课程领域所设置的课程应该包括:教育学理论类、心理学理论类、教学论类、教学技能类、实验教学类课程五类。
     3.基于课程设置框架,对科学教育专业的课程设置进行了比较研究,结果发现在学科科学课程领域,38所学校一共开设了123门课程,但是其中超过50%的课程只有一所学校开设,对学校课程开设集中度的检验显示,学校之间存在非常显著的差异,课程设置非常分散。
     对学科科学课程的比较显示,我国科学教育专业在学科课程类型的设置上存在较为混乱的现象,一些应该在通识模块开设的课程也出现在学科科学课程领域。对学科科学课程领域7类课程的分析显示,化学类、科学类课程的开设门数最多;其次是生物类、物理类、地理类课程;数学、计算机类课程在门数设置上最少;各类学科科学课程在开设数目上存在显著的差异。
     对地理类课程的比较研究显示,大学地理、宇宙与空间科学课程开设最为集中的课程;在物理类课程领域,大学物理、大学物理实验、电子电工学这三门课程开设更为显著集中;在生物类课程中,基础生物学、基础生物学实验、动物生物学、植物生物学四门课程的开设最为集中;在化学类课程中,大学化学、大学化学实验、环境科学、有机化学这四门课程在集中度上较其他课程更为显著;对综合科学类课程的研究显示,科学史和科学·技术·社会是最主要的两门课程,其他课程开设学校较为分散。
     对物理、化学、生物、地理、科学五类主要学科科学类课程的统计显示,化学类课程的开设最为集中,其他四类课程的集中情况没有显著差异。123门学科科学课程中,大学物理、大学化学、大学物理实验、环境科学、大学化学实验、基础生物学、生物实验、科学·技术·社会、自然地理导论、地球科学、科技发展史,这11门课程的学校开始情况相较于其他112门课程非常显著地集中。
     总体来看,在学科科学课程部分,HPS课程和STS课程等科学类课程的学校开设情况显著地低于地理类、物理类、化学类、生物类课程。
     对教育科学类课程的调查和研究发现:我国现在较为重视该类课程的设置,从以往主要由教育学、心理学、科学学科教学法的“老三门”,学分比例5%~6%的状况,到如今已经接近日本15%的学分比例,虽然较美国、法国20%的比例,英国25%,德国30%的比例还有一定距离,但是已经有了长足的进步。
     在教育科学类课程部分,38所学校开设了65门课程,其中接近60%的课程只有一所学校开设。教育科学类课程包括教育理论类、心理学理论类、教学论类、教学技能类、实验教学类五类。其中,教学技能类课程的开设门数显著地多于其他类型课程数;这五类课程的学校开设情况都比较分散,集中度不高。
     在教育理论类课程中,“教育学”和“教育研究方法”这两门课程的开设情况更为显著地集中;在心理学理论类课程中,“心理学”是开设最为集中的课程;在教学论类课程中,“科学教学论”是最集中开设的课程;在实验教学类课程中,“科学实验教学”是该类课程中最显著集中的课程;对于教学技能类课程:“三笔字训练”、“教师教学语言”、“科学教学技能训练”是最集中的课程。虽然,教育科学类课程还是集中在“老三门”中——教育学、心理学、科学课程教学论。但是,逐渐有更多的学校开始关注实验教学类、教学技能类课程。不过对于教育研究类课程和学生学习类课程的关注非常少。
     据此,本研究从学科科学类课程和教育科学类课程两个维度在课程结构和课程内容的改革上提出了建议,以供相关行政管理者、专家学者在课程设置时有所参考。
Since the founding of the People's Republic of China in 1949, junior high schools (Grade 7 to 9) had always adopted a separate subject model in teaching science curriculum, which did not evolve until the 1980s, when an integrated science curriculum was introduced. Many problems, however, have emerged during the short period of the past two decades or so nation-wide. One of the most noticeable ones is the lack of quailed integrated science teachers. So far, more than 60 higher education institutes have set up Integrated Science Education programs, which, being a new specialty within the broad scope of Teachers Education, are still needing systematically thorough research and standardization in terms of professional concept, training procedure, course structure, teaching content, etc. As a result, there is a lot of haphazardry in the process of each college's setting up such programs.
     In this research on the new specialty, we will discuss the construction of the course framework and the prominent issues of the courses. Based on the discussion, we try to seek the more appropriate development direction for the specialty, and lay a solid foundation for regulating the standard professionalization of integrated science teachers.
     This paper includes 9 parts.
     The first part is introduction, which focuses on research methods and research content. Part 2, literature review, focuses on the definition of the core concepts and other researchers' achievements. Prat 3 is an investigation on the present situation of the courses offered in integrated science education specialty. Part 4 talks about a research on the construction of the scientific teachers' literacy. In this part, we first compare the westen countries' scientific professional teaching standards, and then we construct the courses offered framework based on the results of the comparsion. Part 5 is about the comparison on the overseas courses offered. We want to bulid the framework based on this international comparison. Part 6 is an investigation on the primary and middle school teachers' demand. We want to get suggestions about the courses offered from them. We use their suggestions to consturct the framework. Part 7 is another investigation on the teachers and students in science education specialty. We also want to get suggestions from the courses practitioners. Based on their views, we can get the framework construction direction. Part 8 is the comparative study based on the framework from Part 3 to Part 7, we use the framework to compare the courses offered. Part 9 discusses results, suggestions and issues for further researches.
     The main results are shown as follows:
     1. A recent national survey on the current situation of science education reveals that there are 62 institutions of higher education in China that have been approved to establish programs in science education. The 62 approvals were allocated as follows: 1 in 2001,8 in 2002,24 in 2003,13 in 2004, 7 in 2005, and 8 in 2006. In the year of 2007 the handing out of approvals ended. These science education programs offer two types of degrees: 52% of schools grant students degrees in pedagogy, and the other 48% offer bachelor's degrees in science. Another survey shows that, of the different schools (colleges/departments) that offer science education programs,15 are Schools of Chemistry,8 are Schools of Life Science,9 are Schools of Physics,9 are Schools of Pedagogy,6 are Schools of Chemistry and Life Science,5 are Chemistry and Materials,5 are Schools of Mathematics and Science,2 are Life and Environment Sciences,1 is a School of Chemistry and Environment Science, 1 is a School of Mathematics and Computer Science, and 1 is a School of Marxism Studies. The statistics clearly demonstrate that Schools of Chemistry take an obvious lead in science education programs. In terms of geography, there are higher education institutes in China's 25 provinces, autonomous regions and municipalities (except for the Tibet Autonomous Region, the Inner Mongolia Autonomous Region, the Ningxia Hui Autonomous Region, Hainan Province, Beijing and Tianjin). All of these locations have established science education programs. Of these locations,14 are in the southwestern area,8 are in the northwest,5 are in the north,11 are in the central area of China,16 are in the east, and 8 are in the northeast. The x2 test shows that the number of science education programs in the southwest and the eastern areas are significantly higher than those in the other areas.
     2. The research on the science education specialty courses offerd framework contains 4 sections. Section 1:a qualified science teacher's literacy includes professional knowledge, professional skills and professional spirit. In the professional knowledge, it includes science knowledge and discipline professional knowledge. Section 2:the courses in the overseas universities are constituted by general courses, discipline courses, and education courses. Education courses are constituted by education theory courses, teaching courses, teaching practice courses and science courses. In section 3 and section 4:the teachers and students who practice science education attach importance to discipline courses and education courses. There are five discipline courses in total. They are:physics courses, chemical courses, biological courses, geography courses and science courses. Education courses are covered by teaching skill courses, science education courses, pedagogy courses. In this paper, science education specialty courses offered should involve discipline scientific courses and education scientific courses.
     3. In the discipline courses field,38 colleges offer 123 courses. But more than half of these courses are offered by only one college, which shows significant discrepancies among colleges. The comparative results also demonstrate a disorder in the setup of the discipline courses. For example, of the 7 kinds of the discipline scientific courses, chemistry courses and science courses outnumber other courses by a wide margin..
     Of all the 123 courses, general physics, college chemistry, experiment of college physics, environmental science, experiment of college chemistry, basic biology, biological experiment, STS, natural geographical introduction, earth science, history and philosophy of science and technology are significantly important than the other 112 courses. Generally speaking, the HPS courses and STS courses are significantly less important than the other ones.
     In the education scientific courses field, there are 65 courses offered at 38 colleges. Again, more than 60% of these courses are offered by only one college. The five categories of the education scientific courses are:education theory courses, psychology theory courses, teaching theory courses, teaching skill courses and experimental teaching courses.
     In the education scientific courses field, pedagogy, psychology and science courses teaching theroy are more important than the other courses.
     Based on the investigation and research, this article provides several suggestions for administration, and professionalization of integrated science teachers and direction for further researches.
引文
[1][42]王秀红.我国初中综合科学课程改革与发展的个案研究[D].长春:东北师范大学博士学位论文,2007.
    [2][48]李延军.科学教育专业课程体系的研究[D].金华:浙江师范大学硕士学位论文,2007.
    [3]王利敏,伊恩涛.科学教育专业设置与人才培养方案的研究与实践[J].大庆高等专科学校学报,2004,(4):25-29.
    [4][85]钟启泉.科学课程与教学论[M].杭州:浙江教育出版社,2003.
    [5]周青,杨妙霞等.科学教育的发展与科学课程教师的培养[J].教学与管理,2005,(5):5-6.
    [6]张菁.国际文凭组织(IBO)的中学科学课程[J].课程教材教法,2000,(3):59-61.
    [7][12]魏明通.科学教育[M],台北:台湾五南图书出版公司,1997.
    [8]郭玉英著.从传统到现代——综合科学课程的发展[M],北京北京师范大学出版社,2002.
    [9][17]中华人民共和国教育部制订.科学(7~9年级)课程标准[S].北京:北京师范大学出版社,2003.
    [10]黄顺基.自然辩证法教程[M].北京:中国人民大学出版社,1985.
    [11]欧阳钟仁著.科学教育概论[M].台北:台湾五南图书出版公司,1987.
    [13]陈晓萍,施亿.初中设置综合理科探析[J].课程教材教法,1998,(6):53-55.
    [14]丁邦平.国际科学教育导论[M].太原:山西教育出版社,2002.
    [15]徐建飞等.关于科学课程的价值[J].化学教学,2001,(1):20-22.
    [16]中国科学技术协会中国公众科学素养调查课题组编.2001年中国科学素养调查报告[R].北京:科学普及出版社,2002.
    [18]钟圣校著.科学教育研究[M].台北:师大书苑有限公司,1990.
    [19]葛霆,刘薇,李大光.中國公众的科学素养及国际比较[J].科学,1995,(3):23-25.
    [20]调查显示我国具备基本科学素养公民比例约为3%[EB/OL]. http://news.sina.com.cn/c/ 2011-02-23/053521998566.shtml.
    [21]仲小敏.论科学课程教师教学技能与素养的建构与培养[J].天津市教科院学报,2005,(2):78-80.
    [22]陈承声.综合理科教学情况调查与师资培训问题初探[J].学科教育,1999,(8):30-43.
    [23][34]李维,刘炳升.初中科学课程实验区师生科学素养的调查研究[J].教育理论与实践,2005,(5):26-28.
    [24]胡继飞.论综合理科师资培训[J].课程教材教法,1999,(11):67-71.
    [25]梅波.综合科学课程改革现状及对策初探[J].新乡师范高等专科学校学报,2003,(3): 117-119.
    [26]梁英豪.为什么要设置综合理科[J].课程教材教法,1998,(9):34-36.
    [27]王秀红.我国综合科学课程发展的羁绊与对策[J].东北师大学报,2006,(4):155-158.
    [28]彭蜀晋等.科学课程与教学论[M].北京:高等教育出版社,2005.
    [29][33]刘宇.我国初中综合课程实施现状与策略研究[D].长春:东北师范大学硕士学位论文,2002.
    [30][43][50][70]潘苏东.从分科走向综合——初中阶段科学课程设置问题的研究[M].北京:中国轻工业出版社,2004.
    [31][44]刘健智.综合与分科科学课程的标准和实施结果的比较研究[D].重庆:西南大学博十学位论文,2007.
    [32]王秀红,马云鹏,范雪媛.实施综合科学课程理科教师们准备好了吗?分析——分科理科教师对综合科学课程适应性的调查[J].教育理论与实践,2007(3):44-48.
    [35]王红柳.我国科学课程教师教育的问题与对策[J].教育探索,2005,(6):116-117.
    [36][47]王海燕.贵州省高师院校科学教育专业课程设置中的一些问题与探讨[D].贵阳:贵州师范大学硕士论文,2007.
    [37]白风翎.培养中学科学课程师资的探索与实践[J].渤海大学学报,2005,(6):110-112.
    [38]林长春.科学教育本科专业建设研究的若干问题[C].全国第四届科学教育专业建设研讨会论文集,2008:1-3.
    [39]农万廷.从科学课程的发展看现代科学课程的建构[J].南宁师范高等专业学校学报,2005,(6):82-86.
    [40]邹洪涛.基础教育课程改革与高师“科学教育”专业的设置[J].黔南民族师范学院学报,2002,(6):42-45.
    [41][54]周勇.综合理科课程设计研究[D].上海:华东师范大学博士学位论文,2003.
    [45]刘玲玲.初中综合科学课程开展的现状分析及对策探讨[D].北京:首都师范大学硕十学位论文,2005.
    [46]李波.科学教育专业课程设置的理论与实践研究[D].成都:四川师范大学硕士学位论文,2005.
    [49][52]金一鸣.教育原理[M].北京:高等教育出版社,2006.
    [51][83]汪新等.科学课程教学论[M].合肥:合肥工业大学出版社,2004.
    [53]余自强.科学课程论[M].北京:教育科学出版社,2002.
    [55][60]郭玉英,曲亮生.世界范围内综合科学课程的发展[J].课程教材教法,2001,(1):71-75.
    [56]Black,P. Integrated or Co-ordinated Science? [J].School Science Review,2007,(6):669-681.
    [57]周勇.西方近代科学课程属性的三维检视[J].全球教育展望,2010,(1):83-87.
    [58]梁树森,谷秀娥.科学教育的社会需要研究[J].学科教育,2003,(1):66-70.
    [59]杨晓微.中小学科学课程改革:理念、趋势、困难和代价[J].课程教材教法,2000,(11):11-15.
    [61]Bybee,R.W.Reforming Science Education:social Perspectives and Personal Reflections [M]. Teachers College,Columbia University.2000.
    [62]夏征农,陈至立.辞海[M].上海:上海辞书出版社,2010.
    [63]王秀红.我国由并列走向融合的综合科学课程内容的组织[J].科学教育,2006,(2):27-29.
    [64]熊士荣.论科学课程统整的向度[J].江西教育学院学报,2008,(6):28-30.
    [65]商发明.关于我国综合课程开设方式及内容选择和组合模式的探索[J].教育科学研究,2001,(10):30-34.
    [66]Forbs,L.et al. Oceanography:a Vehicle for Integrated Science Concepts [J].The Science Teacher,2000,36(3):40-42.
    [67][71] Jacobs,H.H. the Integrated Curriculum [J]. Instructor,1999,101 (2):22-23.
    [68]Fogarty,R.Ten ways to Integrate Curriculum [J], Educational Leadership,1999,48 (10):61-65.
    [69]Frey,K..Integrated Science Education:20 Years on [J]. International Journal of Science Education,2005,11(1):3-17.
    [72]高佩.关於中小学科学教育课程的指导思想[J].吉林教育科学,2000,(7):18-20.
    [73][92]美国科学促进协会著,中国科学技术协会翻译.科学教育改革的蓝本[M].北京:科学普及出版社,2001.
    [74]刘少雪.论高等教育课程中的“专门”与“综合”[J].高等教育研究,2000,(4):78-80.
    [75][77]Fuller,e.c. Combining First Year Chemistry and Physics for Science Majors [J]. Journal of Chemical Education,2000,41 (3):136-138.
    [76]中国社会科学院语言研究所词典编辑室.现代汉语词典[Z].北京:商务印书馆出版社,2005.
    [78][102][106][107][108]教育部师范司组织编写.教师专业化的理论与实践[M].北京:人民教育出版社2006.
    [79]Lewy,A. the International Encyclopedia of Curriculum[M]. Oxford:Pergamon Press.2000.
    [80]郭晓明.从基础教育课程改革看外国高师教育改革[J].高等师范教育研究,2001,(7):13-17.
    [81]庄西真.学校课程和社会问题——关于课程改革的思考[J].教育理论与实践,2000,(5):42-45.
    [82]熊士荣等.科学课程统整设计的范式研究[J].山东教育学院学报,2008,(2):13-16.
    [84]范雪媛.综合科学课程实施的影响因素分析[D].长春:东北师范大学硕士论文,2006.
    [85]齐德江等.高师物理教育专业教师课程师范化研究[J].中央民族大学学报,2007,(2):87-90.
    [86]谢利民,郭长江.综合理科课程发展的历史、现状与建议[J].课程教材教法,2001,(5):6-10.
    [87]Gratz,P.Integrated Science:An Interdisciplinary Approach[M]. Philadepia,F.A.:Davis co.1997.
    [88]Abdullahi,A.Editorial Viewpoint:Nigerian Integrated Science Programmes[J] Journal of Science Teachers Association of Nigeria,2005, (2):3-15.
    [89]王太平.科学的课程设置有利于学生综合能力的提高[J].建材高教理论与实践,2001,(10):76-77.
    [90]Riquarts, K.& Hansen,K.-H. Collaboration among Teachers, Researchers and in-service Trainers to Develop an Integrated Science Curriculum [J]. Journal of Curriculum Studies,1999,30(6):691-717.
    [91]关小蓉等.高师物理专业教学改革如何与基础教育课程改革相适应[J].玉林师范学院学报,2006,(2):78-81.
    [93]周超.美国高师数学教育课程的设置及启示[J].中学数学月刊,2006,(3):9-11.
    [94]Lindsay, R. Bruce. A Unified Approach to Science Teaching [J]. Journal of Research in Science Teaching.2006,(7):209-215.
    [95]李俊.科学课程内容的研制[J].课程教材教法,2000,(1):9-12.
    [96]马勇军.科学课程教学系统的构成要素[J].滨州学院学报,2005,(2):84-86.
    [97]权玉萍.从教师专业化看高师生物教育专业课程设置[J].黑龙江高教研究,2006,(1):76-77.
    [98]杨國海.教师专业化与高师物理教育专业课程设置[J].襄樊职业技术学院学报,2006,(5):54-57.
    [99]Gardner,H.&Box-Mansilla,v. Teaching for Understanding within and Across the Discipline [J]. Educational Leadership,2005,51 (2):14-18.
    [100]Roberston,C.L., Cowell,B.& Olson,J.(1998). A Case Study of Integration and Destreaming: Teachers and Students in an Ontario Secondary School Respond [J]. Journal of Curriculum Studies,1998,30 (6):661-676.
    [101]刘德华.中美两国科学课程的目标与结构之比较分析[J].当代教师教育,2008,(6):37-42.
    [103]张文军,朱艳.澳大利亚全国教师专业标准评析[J].教育学,2007,(7):35-38.
    [104]凌朝霞.澳大利亚“教育专业标准运动”研究[D].广州:华南师大硕士学位论文,2007.
    [105]李杰.科学课程对教师专业发展的促进作用[J].山西教育,2005,(1):60-70.
    [109]刘健智.从学生对科学知识的掌握程度看综合与分科科学课程[J].教育测量与评价,2008,(11):24-27.
    [110]夏薇,张秀萍.中西方高师教育课程设置比较研究[J].教书育人,2005,(1):109-111.
    [111]李里特.美国加州大学食品科学专业的课程设置与教学思路[J].世界农业,2000,(5):48-49.
    [112][114][125]仲小敏.论科学课程教师专业素养:挑战与发展[J].课程教材教法,2005,(8):79-83.
    [113]郑晓娟.新课程背景下高师教育与高中教育良性衔接的对策[J].德州学院学报,2005,(6):78-81.
    [115]李婉婷.综合科学课程标准的国际比较研究[D].上海:上海师范大学硕十学位论文,2005.
    [116]徐义云.中英师范教育专业课程对比分析及思考[J].理工高教研究,2006,(2):55-56.
    [117]高艳荷.新加坡教师教育课程设置及其启示[J].全球教育展望,2006,(2):14-17.
    [118]温荣.教师教育课程设置的研究[J].成都教育学院学报,2006,(3):34-34.
    [119]陈玲.探索浙江综合科学课程实施的动力与羁绊[D].长春:东北师范大学硕士学位论文,2005.
    [120]郑喜森.地理科学课程设置与人才成长潜在问题的研究[J].松辽学刊,2000,(11):60-62.
    [121]赵卫菊.高师教育类课程设置存在的问题及原因分析[J].内蒙古师范大学学报,2005,(1):98-100.
    [122]邵秀英.高师地理专业课程设置及课程体系研究[J].太原师范专科学校学报,2000,(4):39-41.
    [123]李雁冰.“研究性学习”可资借鉴的两种评价方式[J].教育发展研究,2000,(11):22-24.
    [124]陈春媚.中学科学课程情意目标及实施策略[J].四川教育学院学报,2005,(5):143-144.
    [126][127]孙立平.香港小学和初中科学课程的评估[J].科学教育研究,2007,(1):35-36.
    [128]许应华,林长春.加拿大科学教育本科专业人才培养及其启示[J].长春师范大学学报,2008,(2):112-115.
    [129]罗筱端.国外高师教育理论与实践课程设置的比较研究[J].湖北三峡学院学报,2000,(12):71-74.
    [130]廖元锡,李江林.美国大学提供科学教师真实研究经历的课程模式及其启示[J].高等教 育研究,2006,(5):101-104.
    [131][132]中央教育研究所中小学生学业成就课题调查组.我国小学六年级学生学业成就调查报告[J].教育研究,2011,(1):27-38.
    [133]“高师教育类课程体系和教学内容改革研究”课题组.山东省高师学生教育类课程学习状况的调查报告[J].山东师范大学学报,2004,(6):9-13.
    [134]朱昆.泰国中小学教师教育课程设置及启示[J].经济与社会发展,2006.(1):215-217.
    [135]江敏,彭火伟.浅谈中学地理教材变化对高师地理专业课程改革的影响[J].临沂师范学院学报,2001,(12):109-111.
    [136]胡军.加拿大安大略省科学技术课程改革评介[J].课程教材教法,2000,(6):56-61.
    [137]罗季重.科学教育专业课程设置之思考[J].合肥教育学院学报,2002,(2):57-60.
    [138]龚大洁.科学教育本科专业课程设置的实践与探索[J].高等理科教育,2005,(3):19-23.
    [139]曹克广等.从外国职业教育专业和课程设置的得到的启示[J].承德石油高等专业学校学报,2000,(1):8-10.
    [140]李建平.科学课程实验难在哪儿?[N].中国教育报,2003-10-10.
    [141]李其龙.教师教育课程的國际比较[M].北京:教育科学出版社,2003.
    [142]马志成.高校教师教育如何适应基础教育课程改革[J].当代教育论坛,2006,(12):72-74.
    [143]刘启静.中外教师培养的教育课程设置比较[J].东北师范大学学报,2000,(5):93-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700