堤防采动破坏数值模拟与加固研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堤防是我国防洪工程体系的重要组成部分,在筑堤材料,堤体分区,堤体稳定,渗流,沉降及应力应变分析,基础处理,填筑标准,施工机具等一系列关键技术上,已经积累了丰富的经验。但由于许多堤防经过几十年的运行或经济发展的需要,自然或人为地对大堤造成了很大的坡坏,影响了大堤的正常使用,给人民的生命财产安全造成了极大的威胁。本文结合江苏省徐州市湖西大堤地下采煤的具体情况,利用数值分析理论及堤防加固技术,在深入分析研究的基础上,提出相应有效,可行的加固措施。
     主要内容如下:
     (1)回顾总结我国堤防发展的基本状况及运行现状,对堤防病害的种类及评判方法进行归纳。
     (2)对三维快速拉格郎日有限差分法进行了深入研究,并运用此理论对地下采动的结构和过程进行了数值模拟,对湖西大堤姚桥矿段由于地下采煤而引起的不均匀沉降进行了计算,得出堤体及其周围地基的三维位移场,分析了由于不均匀沉降而产生的拉应力区和剪切破坏区域。计算分析结果表明,在堤体两段拉应力区范围较大,存在横向贯穿性裂缝,并有相当深度的纵向裂缝存在,这些裂缝的存在对堤体的渗流和抗滑稳定均产生了不利的影响。剪切破坏主要发生在堤体两侧的地基,堤身表面局部区域也存在剪切破坏。上述分析与观测值较为吻合,由此本文又对后继开采可能造成的影响进行了预测性计算分析,对地下采动进行了一些规律性的研究,结果表明,影响采动沉降的主要因素是弹性模量,内摩擦角和内粘聚力的影响较小。
     (3)上述计算得出的位移场、应力场、裂缝深度等数据为堤防加固提供了理论上的依据。本文又对堤防加固的各种措施方法进行了归纳整理,通过方案比选,选择用迎水面斜铺土工膜的方法进行防渗加固,并对土工膜的材料选择进行了计算。
     (4)通过计算得出的数据和实际的观测资料,结合湖西大堤现状,对存在纵向裂缝的堤防进行了抗滑稳定和渗流的有限元计算,结果表明,由于防洪堤防的老化和采动破坏的影响,大堤现状已不能满足设计洪水位下的抗滑稳定要求,且堤身渗漏严重,直接威胁了当地人民的生命财产安全。进行堤体防渗加固后,不但可以减少渗漏,降低堤身浸润线,还可以有限度地提高抗滑稳定安全系数,改善堤身及地基的应力场,使在高水位作用下产生的不利于堤体安全的水平位移和竖向位移减小。对在后继采动中可能造成的防渗材料的破坏进行了校核,结果表明材料是安全的。
     (5)针对边坡稳定的安全问题,本文进行了参数敏感度分析。结果表明,弹性模量E、泊松比ν、剪胀角ψ和侧压力系数κ_0对边坡的安全系数影响不大,影响边坡安全系数的土体参数主要为内摩擦角φ和内粘聚力c,为边坡稳定的治理提供了理论依据。
Bank is an important part in Chinese system of controlling flood. It has accumulated much experience in the choice of bank's material, division of bank's body, stabilization of dam, seepage, settlement, analysis of stress and strain, treatment of foundation, criterion of reclamation and machine of construction and so on. But after many years running or for satisfying the need of economic development, many bank and its foundation has much disease, its normally use and benefit are naturally or man-madly influenced. According to status of HUXI Bank in XuZhouJIANGSU province, using numerical value analysis theory and technique of dam construction, this paper put forward efficiency strengthen method in the base of study and analysis .
    The main work this paper do are these like below:
    (1) this paper reviewed and summarized the development and actuality of bank in china, induced the variety of bank's disease and the measure of judge etc.
    (2) Introduced and studied Fast Lagrangian Analysis of Continua .FLAC3D is a three-dimensional explicit finite-difference program..Uing this program, obtained the three-dimensional settlements of HUXI Bank and analyzed the tention area and the cut-off area.The result shows that there are a lot of andscape orientation cracks and portrait cracks in the bank.These cracks bring some disadvantage influence to slope stabilization and seepage of bank.
    (3) The upper result of settlement field,stress field and crack deepness offers a theoretics gist for Reinforcing bank.The paper concludes several methods of Reinforcement.Through choosing project, made certain adopting geomebrance to Reinforce the bank.
    (4) On the basis of Analysed result and the status quo of HUXI bank,computing the slope safety and seepage of bank by FEM.The result shows that the tarus quo of HUXI bank could not satisfy theslope safety on designed flood lever.After the Reinforcement of seepage,the method can not only reduced leakage ,debace the soggy but also ameliorate stress fields.lt also can reduce horizontal displacement and certical displacemeng which have disadvantages to bank.
    (5) For slope safety problem,the paper analyzed the sensitivity of parameter.The
    result shows that E, v, , k0 have little affecting on slope safety, friction angle and cohness c are main factors. Providing a theoretics gist for Reinforcing bank.
引文
[1] 钱家欢,殷宗泽,土工原理与计算,中国水利水电出版社,1996;
    [2] 束一鸣等,受采动影响淮堤的安全论证与加固,水利水电科技进展,1998,VOL.18,NO.6,P28;
    [3] 束一鸣等,堆石坝变形监控的统计、混合模型与反演分析,河海大学学报,1996,VOL.24,NO.5,P1;
    [4] 束一鸣等,软硬岩相间地基上面板坝二、三维计算比较,河海大学学报,1996,VOL.24,NO.6,P96;
    [5] 黄文熙主编,土的工程性质,水利水电出版社,1983;
    [6] 王世夏编著,水工设计的理论和方法,中国水利水电出版社;
    [7] 顾淦臣,堆石的工程性质,水利水电工程学院,2001.4;
    [8] 高钟璞等编著,大坝基础防渗墙,中国电力出版社;
    [9] 束一鸣等,长江三峡二期围堰土工膜防渗结构前期研究,河海大学学报,1997,VOL.25,NO.5,P71;
    [10] 黎军锋,病险库大坝加固理论及技术研究,河海大学硕士论文,2002.3;
    [11] 董哲仁,堤防加固除险实用技术,中国水利水电出版社;
    [12] 包承刚;堤防工程土工合成材料应用技术,中国水利水电出版社;
    [13] 吴中如,老坝病变和机理探讨,中国水利,2000.9;
    [14] 徐田春,刘保平,孔俐丽,水泥土薄墙截渗技术在长江干堤截渗工程中的应用,中国水利,2000.3;
    [15] 厉志海,李雪,复合土工膜在永定新河防渗处理工程中的应用,中国水利,2000.3;
    [16] 束一鸣,土工膜连接和缺陷渗漏量计算与缺陷渗流影响,人民长江,2002,VOL.33,NO.3,P26;
    [17] 束一鸣,防渗土工膜工程特性的探讨,河海大学学报,1993,VOL.21,NO.4,P1;
    [18] 束一鸣,用复合土工膜完善土坝防渗的实践,人民长江,2002,VOL.33,NO.9,P27;
    [19] 魏岩峰,LZY成型工艺在嫩江堤防护坡中的应用,中国水利,2001.4;
    
    
    [20] 土石坝养护修理规程,中华人民共和国行业标准,SL210-98;
    [21] 德国赛德拉.迅博格特种地下工程建筑公司(Sidla & Schnberger Spezialtiefbau GmbH),高速构筑堤坝防渗连续墙FMI挖掘-混合-喷射灌浆连续施工法介绍;
    [22] Layered analysis of embankment dams D. J. Naylor and D. Mattar, Jr.
    [23] 王运辉主编,防汛抢险技术,武汉水利电力大学出版社;
    [24] 束一鸣,土工膜施工及其经验教训,水利水电技术,2002,VOL.33,NO.4,P19:
    [25] 束一鸣等,西汤土坝安全监测设置与自动化管理,河海大学学报,1996,VOL.25,水电专辑,P80。
    [26] Barton, N. (1976) "The Shear Strength of Rock and Rock Joints," Int. J. Rock Mech. Min. Sci. &Geotech. Abstr. 13, 255-279.
    [27] Brady, B.H.G., and E. T. Brown. (1985) 'Rock Mechanics for Underground Mining". London:George Allen & Unwin.
    [28] Shu YiMing(1993)'Study of the Displacement and Stress of the Earth-Rockfill dam with Geotextile', Proceedings of International Symposium on High-Rockfill Dams,Sponsored by CSHH&ICOLD,VOL.2,P691
    [29] Coetzee, M. J., R. D. Hart, P. M. Varona and P. A. Cundall. (1995) FLAC Basics. Minneapolis:Itasca Consulting Group, Inc.
    [30] Cundall, P. A. (1987) "Distinct Element Models of Rock and Soil Structure," in Analytical and Computational Methods in Engineering Rock Mechanics, Ch. 4, pp. 129-163, E. T. Brown, Ed.London: Allen & Unwin.
    [31] Cundall, P. A. (1989) "Numerical Experiments on Localization in Frictional Material," Ingenieur-Archiv, 59, 148-159.
    [32] Cundall, P. A. (1990) "Numerical Modelling of Jointed and Faulted Rock," in Mechanics of Jointed and Faulted Rock, pp. 11-18. Rotterdam: A. A. Balkema.
    [33] Cundall, P. A. (1991) "Shear Band Initiation and Evolution in Frictional Materials," in Mechanics Computing in 1990s and Beyond (Proceedings of the Conference, Columbus, Ohio, May 1991),Vol. 2: Structural and Material Mechanics, pp. 1279-1289. New York: ASME.
    [34] Fossum, A. F. (1985) "Technical Note: Effective Elastic Properties for a Randomly Jointed RockMass," Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.22(6), 467-470.
    [35] Gerrard, C. M. (1982a) "Equivalent Elastic Moduli of a Rock Mass
    
    Consisting of Orthorhombic Layers," Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 19, 9-14.
    [36] Gerrard, C. M. (1982b) "Elastic Models of Rock Masses Having One, Two and Three Sets of Joints," Int, J. Rock Mech. Min. Sci. & Geomech. Abstr.19, 15-23.
    [37] Hoek, E. (1990) "Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion," Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 27(3), 227-229.
    [38] Hoek, E., and E. T. Brown. (1980) Underground Excavations in Rock. London: IMM.
    [39] Hoek, E., and E. T. Brown. (1988) "The Hoek-Brown Failure Criterion—a 1988 Update," in Rock Engineering for Underground Excavation (Proceedings of 15th Canadian Rock Mechanics Symposium, Toronto, October 1988), pp. 31-38. Toronto: University of Toronto.
    [40] S erafim, J. L., and J. P. Pereira. (1983) "Considerations of the Geomechanical Classification of Bieniawski," in Proceeding of the International Symposium on Engineering Geology and Underground Construction (Lisbon, 1983), Vol. 1, pp. Ⅱ.33-42. Lisbon: SPG/LNEC.
    [41] Singh, B. (1973)"Continuum Characterization of Jointed Rock Masses: Part Ⅰ—The Constitutive Equations," Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 10, 311-335.
    [42] Starfield, A. M., and P. A. Cundall. (1988) "Towards a Methodology for Rock Mechanics Modelling,"Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 25(3), 99-106.
    [43] Vardoulakis, Ⅰ. (1980) "Shear Band Inclination and Shear Modulus of Sand in Biaxial Tests," Int.J. Numer. Anal. Meth. in Geomech.4, 103-119.
    [44] Vermeer, P. A., and R. de Borst. (1984)"Non-Associated Plasticity for Soils, Concrete and Rock,"Heron, 29(3), 1-64.
    [45] Wood, D. M. (1990) Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press.
    [46] 王淑云等,数值分析,河海大学出版社,;
    [47] 土工试验规程,水利水电出版社,SDS01-79上册;
    [48] 土工合成材料工程应用手册,中国建筑工业出版社,2000.10。
    [49] 李凤华,AUTOCAD2000,清华大学出版社;
    
    
    [50] 陈明致等,堆石坝设计,水利出版社,1982.6;
    [51] 钱家欢主编,土力学,河海大学出版社,第二版;
    [52] 左东启、林益才等,水工建筑物,河海大学出版社;
    [53] 赵振兴,水力学,河海大学出版社;
    [54] Scott C R. An Introduction to Soil Mechanics. Third Ed, Applied Science Publishers. 1980(8).
    [55] 顾淦臣,土石坝地震工程,河海大学出版社;
    [56] 张启岳,土石坝加固技术,中国水利水电出版社;
    [57] Giroud J P. Designing with Geotextiles. Materiaux et constructions. 1981,14 (82).
    [58] 湖西大堤杨屯河至二级坝段塌坡除险工程,江苏省水利勘测设计研究院;
    [59] 湖西大堤大屯煤电公司开采塌陷段堤防应急工程设计,江苏省水利勘测设计研究院;
    [60] 南四湖湖腰段湖西大堤加固工程初步设计报告,水利部淮委规划设计研究院
    [61] 顾淦臣,土工薄膜在坝工建设中的应用,水力发电,1995,NO.10;
    [62] 陶同康,复合土工膜在土石坝工程应用的设计,南京水利科学研究院水工研究所,1990;
    [63] Giroud,J.P. Designing with Geotextiles. Materiaux et Constructions,Vol. 14,NO.82,1981;
    [64] Giroud,J.P. Designing of Geotextiles Associated with Geomembranes. Pro.2nd ICG ,1982;
    [65] 李仲奎等,FLAC~(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用,岩石力学与工程学报,1995,Vol.21(增2),2387-2392;
    [66] 胡斌等,FLAC~(3D)前处理程序的开发及仿真效果检验,岩石力学与工程学报,1995,Vol.21,NO.9,2387-2392;
    [67] 杨新安等,FLAC程序及其在隧道工程中的应用,上海铁道大学学报(自然科学版),1996,Vol.17,NO.4;
    [68] 梁海波等,FLAC程序及其在我国水电工程中的应用,岩石力学与工程学报,1996,Vol.15,NO.3,195-200;
    [69] 杨立强等,FLAC基本原理及其在地学中的应用,地学前缘,2003,Vol0,NO.1;
    [70] 龚纪文等,FLAC数值模拟软件及其在地学中的应用,大地构造与成矿学,2002,Vol.26,NO.3,321-325;
    [71] 朱建明等,FLAC有限差分程序及其在矿山工程中的应用,中国矿业,2000,Vol.9,NO.4,78-82;
    
    
    [72]来兴平等,FLAC在地下巷道离层破坏非线性数值模拟中的应用,西安科技学院学报,2000,Vol.20,NO.3;
    [73]谢和平等,FLAC在煤矿开采沉陷预测中的应用及对比分析,岩石力学与工程学报,1999,Vol.18,NO.4,397-401;
    [74]祁生文等,阿坝铝厂地基与边坡变形稳定性预测,岩土工程学报,2001,Vol.23,NO.6;
    [75]陈忠辉等,综放开采顶煤三维变形、破坏的数值分析,岩石力学与工程学报,2002,Vol.21,NO.3,309-313;
    [76]孔德金等,粘土抗剪强度内摩擦角统计分析,水运工程,2002,NO.2,10-13;
    [77]柴建设等,用拉格朗日元法分析矿山边坡的稳定性,矿业研究与开发,2000,Vol.20,NO.5;
    [78]陈详军等,用FLAC~(3D)进行马崖高边坡稳定性分析,石家庄铁道学院学报,2002,Vol.15,NO.3;
    [79]寇小东等,应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究,土木工程学报,2002,Vol.35,NO.1;
    [80]吴洪词等,采场围岩稳定性的FLAC算法分析,矿山压力与顶板管理,2002,NO.4;
    [81]舒继森等,采矿工程与地表位移的关系,中国矿业大学学报,1997,Vol.26,NO.4;
    [82]宋志远等,长江荆江段大堤三维渗流有限元计算分析,水利水电科技进展,2003,Vol.23,NO.1;
    [83]王学滨等,底煤复采的快速拉格朗日大变形分析,煤矿开采,2001,NO.3;
    [84]沈珠江,关于破坏准则和屈服函数的总结,岩土工程学报,1995,Vol.11 NO.1;
    [85]杨强等,基于D-P准则的三维弹塑性有限元增量计算的有效算法,岩土工程学报,2002,Vol.24,NO.1;
    [86]Desai,C.S. Constitutive Model for Geological Materials. J ENG MACH DIV.ASCE, 1984,110(EM9);
    [87]沈珠江,关于理论土力学发展的可能途径[研究报告],南京水利科学研究所,1963;
    [88]Lade,P.V. Single Hardening Constitutive Frictional Model.Computer & Geotechnics, 1986,6(1);
    [89]史述昭等,岩土常用屈服函数的改进,岩土工程学报,1987,9(4),60-69;
    [90]Bishop,A.W.The strength of soils as engineering Materials.Geotechnique, 1966,16(2);
    [91]方开泽,土的破坏准则——考虑中主应力的影响,华东水利学院院报,1986,14 (2);
    [92]郑颖人等,岩土塑性力学基础,北京:建筑工业出版社。1989,65;
    [93]Lade,P.V. Elasto-Plastic Stress-Strain theory for Cohesionless Soil with Curved Yileld Surface.J solids structures, 1977,13(11);
    [94]俞茂宏等,岩土类材料的统一强度理论及其应用,岩土工程学报,1994,16(2);
    [95]姜礼尚等,有限元方法及其理论基础,人民教育出版社,1980;
    [96]龙驭球,有限元法概论,高等教育出版社,1991.10;
    [97]Zinekiewicz O Z. Basic Formnlation of Static and Dynamic Behaviour of soil
    
    and other Porous Media.Proc 4th Int conf Numerical Methods in Geomechanics,D Reidl, 1982;
    [98]Zinekiewicz O Z. Dynamic Behaviour of saturated Porous Media.Int J Num Ana Methods Numerical Methods in Geomechanics, 1984,8(1);
    [99]Skempton AW. Effective stress in soils, Concret and Rock.Pore Pressure an suction Butterworths London, 1960,4-16:
    [100](法)菲阿著,有限元法在岩石力学中的应用,冶金出版社,1979;
    [101]张俊芝等,水工建筑物老化和维修及后评价,江西水利科技,1999。VOL.25,NO.24;
    [102]夏志皋编著,塑性力学,同济大学出版社,1991.7;
    [103]卡恰诺夫著,塑性理论基础,人民教育出版社,1982;
    [104](美)陈惠发著,土木工程材料的本构方程,华中科技大学出版社,2001;
    [105]张登良编著,加固土原理,人民交通出版社,1990;
    [106]毛昶熙主编,渗流计算分析与控制,水利电力出版社,1990.5;
    [107]顾慰慈主编,渗流计算原理及应用,建材版,000601;
    [108]天津大学水力学教研室编,水力学,人民教育出版社,1980;
    [109]清华大学编,水力学,人民教育出版社,1980;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700