采煤塌陷对生态环境的影响及恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神府-东胜矿区地处毛乌素沙地边缘的晋陕蒙接壤区,是我国目前已探明的煤炭储量最丰富的地区。随着近年来采煤规模的扩大,地表发生大面积塌陷,水资源大量流失,植被由于缺水而枯萎死亡,风沙活动加剧,使本来十分脆弱的生态环境进一步恶化。为了对采煤塌陷与土壤、水分、植被等变化的响应关系进行系统研究,运用野外调查、室内分析等手段,结合前人研究的相关资料,以2004a塌陷区、2005a塌陷区以及2006a塌陷区为研究的基准对象,深入研究了该地区生态环境演化规律和驱动机制,针对区域内不同自然条件和受损生态系统类型,找出关键的限制性因子,科学合理地构建了适宜的采煤塌陷区生态恢复技术。得出以下结论:
     (1)经过野外观测和调查,神东矿区采煤后地表塌陷形式主要为连续变形塌陷和非连续变形塌陷2种类型,并在采煤过程中,2种类型的塌陷形式会同时交替出现,直接加剧了地表环境的变化。通过对塌陷裂缝的调查与分析,认为采煤塌陷形成的裂缝容易使沙丘活化,地表塌陷1年后,裂缝的偏移距离(L)与塌陷落差(H)和裂缝宽度(W)的比值(H/W)的关系为多项式函数,地表塌陷2a后由于塌陷裂缝基本愈合,并发育成新的小地貌,所以其多项式函数相关性并不是很明显,证明塌陷裂缝的形成导致了沙丘的活化。
     (2)塌陷区土壤物理性质变化方面:在坡面部位,各塌陷区的土壤容积含水量均显著低于未塌陷区相应坡位(P<0.05);在丘间低地部位,2004a塌陷区的土壤容积含水量显著低于未塌陷区相应坡位(P<0.05)。在坡面部位,2005a塌陷区的土壤体积质量显著低于未塌陷区坡面(P<0.05);在丘间低地部位,各塌陷区的土壤体积质量均与未塌陷区无显著差异(P>0.05);坡面部位,2005a塌陷区的土壤孔隙度显著高于未塌陷区坡面(P<0.05);在丘间低地部位,各塌陷区的土壤孔隙度均与未塌陷区无显著差异(P>0.05)。2005a塌陷区坡面与丘间低地部位的土壤硬度均显著低于未塌陷区坡面(P<0.05);而2004a塌陷区2个坡位的土壤硬度均与未塌陷区无显著差异(P>0.05)。入渗实验表明2005a塌陷区丘间低地未裂处样点55 mmin后入渗深度显著超过未塌陷区(P<0.05),各塌陷区的坡面样点入渗深度均与未塌陷区无显著差异(P>0.05)。多因素方差分析表明,采煤塌陷对塌陷初期风沙区错落裂缝相对出露侧孔隙扰动更大,并且这种扰动在1-2a内有显著恢复。
     (3)塌陷区土壤养分化学性质的变化方面:2004a塌陷区丘间低地部位未裂测点组的pH值显著高于未塌陷区(P<0.05)丘间低地;2004a塌陷区坡面部位未裂测点组pH值显著低于未塌陷区坡面(P<0.05)。2004a塌陷区坡面未裂测点全氮含量显著低于未塌陷区坡面(P<0.05)。2004a塌陷区坡面裂缝测点碱解氮含量较未塌陷区坡面显著升高(P<0.05)。2004a塌陷区坡面未裂测点组与裂缝测点组全磷含量较未塌陷区坡面显著降低(P<0.05)。未塌陷区与各塌陷区各坡位速磷含量均无显著差异(P>0.05)。2005a塌陷区在坡面未裂样点组的全钾含量显著超出未塌陷区(P<0.05)。2004a塌陷区坡面裂缝、未裂样点组速钾含量显著低于未塌陷区(P<0.05)。未塌陷区与各塌陷区各坡位土壤有机质含量均无显著差异(P>0.05)。
     (4)塌陷区地表植被情况变化方面,3个调查区物种数和植被盖度的变化在6个矿中有相同的趋势,即塌陷区较未塌陷区物种数多而植被盖度大,2004a塌陷区较2005a塌陷区物种数多而植被盖度大。相关分析表明,塌陷年限之间、塌陷与未塌陷之间,植物种数的相关系数在0.85以上,而植被盖度的相关系数在0.9以上,均表现出明显的相关性,表明塌陷在一定程度上影响了地表的植被。塌陷对地表植被盖度没有显著影响,对该区植物群落的主要建群种的生长也无显著影响。植物种数及植被盖度与塌陷及塌陷年限有关,植物种类的丰富程度及植被盖度与塌陷有一定的相关性。
     (5)采用试验和调研相结合的方法,在定性和定量分析的基础上,构建了矿区采前生态功能圈建设技术,并诊断了区域生态退化的基本特征、原因、过程、类型、程度等。结合采煤塌陷区自然条件,确定生态恢复的实现目标。引入文冠果,并在实地进行选种抗逆性试验,取得了成功。在现有工作基础上,集成适宜的生态修复技术,建立生态修复区并预测恢复轨迹、评价修复效果,为矿区建立良好的生态循环利用体系和增加经济效益提供了技术与实践依据。
Shenfu-dongsheng mining area located in the contiguous area of Shanxi, Shaanxi province and Inner Mongolia of southeast Mu Us sandy land. With the increasing coal mining scale in recent years, coal mining subsidence happened with large area in local place and led to loss of water resource, fade and death of vegetation caused by lack of soil moisture, aggravation of wind-sand activity and deterioration of the originally tender ecological environment. In order to research the response relationship between coal mining subsidence and soil-water-vegetation systematically, the technique of field investigation and laboratory analysis and previous reference was used. In this study, subsidence areas subsided in 2004a,2005a and 2006a was selected as references to research the evolution law of local ecological environment and driving mechanism, find out the key restrictive factors aiming at different natural conditions and damaged ecosystems, and to construct suitable ecological recovery technology scientifically. The results were as follows:
     (1) On the basis of field observation and investigation, the surface collapse form of Shendong mining area after mining was mainly "concave" continuous collapse, "step" continuous collapse and "funnel" discontinuous collapse. The three types appeared meanwhile alternating so that it exacerbated the change of surface environment in the mining process. Based on the investigation and analysis of subsidence crack, the crack formed after mining subsidence activated the dune. One year later, the relation of migration distance of crack and ratio of subsidence fall head and crack width was polynomial function. Two year later, due to the healing of subsidence crack and the formation of new landform, the correction of polynomial function was not obvious. This is means that the formation of subsidence crack lead to the activation of the dune.
     (2) At the aspect of variation of soil physical properties in coal mining subsidence area:slope of sand dune position, soil moisture of subsidence areas was significantly lower than the corresponding slope position of non-subsidence area, while at lowland position, soil moisture of 2004a subsidence area was significantly lower than the corresponding slope position of non-subsidence area. At the slope position, volume mass of 2005a subsidence area was significantly lower than the corresponding slope position of non-subsidence area, while at lowland position there was no remarkable difference between subsidence areas and non-subsidence area. At the slope position, soil porosity of 2005a subsidence area was significantly higher than the corresponding slope position of non-subsidence area, while no significant'difference was found at lowland position. Hardness of 2005a subsidence area was significantly lower than non-subsidence area at both slope and lowland position, and hardness of 2004a subsidence area showed no remarkable difference compared with non-subsidence area. Infiltration experiment showed that infiltration depth after 55 min at no-crack plot of lowland exceeded non-subsidence area significantly, while infiltration depth at slope position of subsidence areas showed no significant difference compared with non-subsidence area. Multi-factor variance analysis showed that coal mining subsidence caused larger disturbance to relatively exposure side, and this kinds of disturbance recovered at 1-2 a.
     (3) At the aspect of variation of soil nutrient chemical properties in coal mining subsidence area: pH of no-crack plot groups in lowland of 2004a subsidence area was significantly higher than the lowland of non-subsidence area (P<0.05), and pH of no-crack plot groups in slope of 2004a subsidence area was significantly lower than the slope of non-subsidence area (P<0.05). Total N of no-crack plot groups in 2004a subsidence area was significantly lower than the slope of non-subsidence area (P<0.05). Alkaline hydrolytic N of crack plot groups at slope of non-subsidence area significantly increased compared with slope of non-subsidence area (P<0.05). Total P of no-crack plot group and crack plot group in slope of 2004a subsidence area was significantly lower than slope of non-subsidence area (P<0.05). Total K of no-crack plot groups in slope of 2005a subsidence area exceeded slope of non-subsidence area significantly (P<0.05). Available K of no-crack plot group and crack plot group in slope of 2004a subsidence area was significantly lower than slope of non-subsidence area (P<0.05). Available P and Organic matter showed no significant difference at each slope position (P>0.05).
     (4) At the aspect of variation of vegetation in coal mining subsidence area:species number and vegetation coverage of 3 survey areas in 6 mines showed same tendency that is subsidence area had more kinds of plant species and larger vegetation coverage compared with non-subsidence area.2005a subsidence area had more kinds of plant species and larger vegetation coverage compared with 2004a subsidence area. Correlation analysis showed that, correlation coefficient of subsidence age limits, subsidence and non-subsidence, and plant species exceeded 0.85, and correlation coefficient of vegetation coverage exceeded 0.9, which showed obvious correlation and showed that affect vegetation in some degree. Subsidence caused no significant effect to vegetation coverage and the growth of constructive species. Species number and vegetation coverage showed correlation to subsidence and subsidence age limits. Rich degree of plant species and vegetation coverage exhibits some correlation to subsidence.
     (5) Base on qualitative and quantitative analysis, method that mixed with experiment and investigation was used to establish construction technique of ecological function cycle before mining, diagnosis essential feature, reason, process, type and degree and so on of regional ecological degradation, and to ensure the realize target of ecological restoration according to the natural condition of coal mining subsidence area. Base on current work, proper ecological rehabilitation technologies were integrated, ecological rehabilitation zone was established, ecological rehabilitation path was forecasted and repair effect was evaluated to offer technical and practical basis for constructing favorable ecological cyclic utilization system and increasing economic benefit.
引文
1.白中科,赵景逵,段永红,等.工矿区土地复垦与生态重建[J],中国农业科技出版社,2001:1-275.
    2.北京林业大学.土壤学[M].北京:中国林业出版社,1982,131-223.
    3.卞正富.国内外煤矿区土地复垦研究综述[J].中国土地科学,2000,14(1):6-11.
    4.陈静生.环境地学[M].北京:中国环境科学出版社,1986,7-8.卞正富.开采沉陷对潜水环境的影响及其控制[J].有色金属,1999,51(1):4-7.
    5.卞正富.矿区开采沉陷农用土地质量空间变化研究[J].中国矿业大学学报,2004,213-218.
    6.陈立新.人工林土壤质量演变与调控[M].北京:科学技术出版社,2004.
    7.陈有君,关世英,李绍良.内蒙古浑善达克沙地土壤水分状况的分析[J].干旱区资料与环境,2000,14(1):80.
    8.单秀枝.土壤有机质含量对土壤水动力参数的影响[J].土壤学报,1998,35(1):1-10.
    9.董柏林.陕西农业土壤环境质量状况调查与评价[J].农业环境保护,1994,13(4):173-176.
    10.范立民,杨宏科.神府矿区地面塌陷现状及成因研究[J].陕西煤炭技术,2000,(1):7-9.
    11.冯宝平,陈守伦,汪志荣.温度对点源入渗影响的实验研究[J].河海大学学报(自然科学版),2002,30(6):108-111.
    12.冯锦萍,樊贵盛.土壤水分入渗年变化特性的试验研究[J].太原理工大学学报,2003,34(1):16-19.冯起,程国栋.我国沙地水分分布状况及其意义[J].土壤学报,1999,36(2):225-236.
    13.高国雄,高保山,周心澄,等.国外工矿区土地复垦动态研究[J].水土保持研究,2001,(3):89-102.
    14.谷思玉.红松人工林土壤费力的研究[D].东北林业大学,2001.
    15.顾和和,胡振琪,刘德辉,等.高潜水位地区开采塌陷对耕地的破坏机理研究[J].煤炭学报,1998,23(5):522-525.
    16.郭达志,金学林,盛业华.矿区地表塌陷与治理的遥感应用研究[J].能源环境保护,1994,8(6):9-10.
    17.韩德儒,杨文斌,杨茂仁.干旱半干旱区沙地灌(乔)木种水分动态关系及其应用[M].北京:中国科学技术出版社,1995,17.
    18.韩兴国,李凌浩,黄建辉.生物地球化学概论[M].北京:高等教育出版社,1999:197-244.
    19.何国清,杨伦,凌赓娣,等.矿山开采塌陷学[M].徐州:中国矿业大学出版社,1991,27-33.
    20.何金军,魏江生,贺晓,等.采煤塌陷对黄土丘陵区土壤物理特性的影响[J].煤炭科学技术,2007,35(12):92-96.
    21.何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-171.
    22.何志斌,赵文智.半干旱地区流动沙地土壤湿度变异及其对降水的依赖[J].中国沙漠,2002,22(4):359-362.
    23.胡明忠,汤杰.矿山生态恢复与重建存在的问题与对策[J].中国环境管理,2003,22-23:729.
    24.胡明忠,汤杰.矿山生态恢复与重建存在的问题与对策[J].中国环境管理,2003,29:22-23.
    25.胡晓龙,张文军,樊文颖,等.毛乌素沙地不同覆盖度油蒿群落土壤水分特征研究[J].内蒙古林业科技,1996,3(4):32.
    26.胡振琪,胡锋,李久海,等.华东平原地区采煤塌陷对耕地的破坏特征[J].煤矿环境保护,1996,11(3):6-10.
    27.胡振琪.国外土地复垦新进展[J].中国土地,1996,10:41-42.
    28.《环境科学大辞典》编辑委员会.环境科学大辞典.北京:中国环境科学出版社,1991,669.33(2):213-218.
    29.纪万斌.我国采煤塌陷生态环境的恢复及开发利用[J].中国地质灾害与防治学报,1998,9:47-51.
    30.贾平,郝伟,李广凡.落叶松人工林土壤中磷的研究[J].东北林业大学学报,1998,26(1):36-39.
    31.贾文锦.辽宁土壤[M].沈阳:辽宁科学技术出版社,1992.
    32.蒋柏藩.中国土壤P素养分潜力概图及其说明[J].土壤学报,1979,16(1):17-20.
    33.解文艳,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,2004,35(4):381-384.
    34.康世勇,高春明.东胜矿区沙漠化土地治理技术[J].煤矿环境保护,1999,13(2):39-41.
    35.李惠娣.采煤塌陷作用引起的地下水环境效应研究——以大柳塔媒为例[M].2001
    36.李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):233-457.
    37.李晓冰,李富平.我国矿山土地复垦存在的问题及对策[J].河北理工学院学报,2002,11:52.
    38.李银科,李小刚,张平良,等.土地利用方式对荒漠土壤有机碳和养分含量的影响[J].甘肃农业大学学报,2007,42(2):103-107.
    39.林大仪.土壤学实验指导[M].中国林业出版社,2004,100-105.
    40.凌婉婷,贺纪正,高彦征.我国矿区土地复垦概况[J].Agro-environ and Develop,2000,17(4):34-36.
    41.刘畅,云丽丽,葛成明.辽东山区不同森林类型土壤改良效益分析[J].防护林科技,2005,(64):21-22.
    42.刘发民,金燕,张小军.荒漠地区柽柳人工固沙林土壤水分动态研究[J].西北植物学报,2001,21(5):937.
    43.刘纪远.国家资源环境遥感宏观调查与动态监测研究[J].遥感学报,1997,1(3):225-230.
    44.刘细元,魏源,衷存堤,等.江西萍乡采煤区地面塌陷灾害现状及发展趋势分析[J].地质调查与研究,2006,29(2):119-123.
    45.刘贤赵,康绍忠.连续与间歇积水入渗对比试验研究[J].水科学进展,1999,10(1):53-58.
    46.刘心彪.甘肃省华亭县采空区地面塌陷成因及防治对策[J].中国地质灾害与防治学报,2007,18(3):77-81.
    47.刘雪芹,范兴科,马甜.滴灌条件下砂壤土水分运动规律研究[J].灌溉排水学报,2006,25(3):56-59.
    48.柳容.国外土地复垦新进展[J].中国土地,1996,(10):41-45.
    49.陆军.煤矿土地复垦主要问题和政策措施建议[J].中国煤炭,2001,27(4):21-24.
    50.吕家珑.农田土壤磷素淋溶及其预测[J].生态学报,2003,23(12):2689-2701.
    51.吕晶洁,胡春元,贺晓.采煤塌陷对固定沙丘土壤水分动态的影响研究[J].干旱区资源与环境,2005,19(7):152-156.
    52.吕贻忠,胡克林,李保国.毛乌素沙地不同沙丘土壤水分的时空变异[J].土壤学报,2006,43(1):152-154.
    53.吕贻忠.土壤学[M].北京:中国农业出版社,2006,151-190.
    54.马克明,孔红梅,吴文彬,等.生态系统健康评价:方法与方向[J].生态学报,2001,21(12),2106-2116.
    55.马彦卿.矿山土地复垦与生态恢复[J].有色金属,1999,51(3):23-29.
    56.聂小军,胡斌,赵同谦.焦作韩王矿塌陷区土壤质量变化规律[J].干旱环境监测,200.
    57.潘明才.我国土地复垦发展趋势与对策[J],中国土地,2000,(7):16-18.
    58.裴喜春,薛河儒.SAS及应用[M].北京,中国农业出版社,1998,158-187.
    59.彭胜,陈家军,王金生,等.包气带水气二相流实验研究[J].土壤学报,2002,39(4):505-511.
    60.盛积贵.枣庄地区土壤养分状况调查分析[J].内蒙古农业科技,2007,(2):38-39.
    61.孙保平.荒漠化防治工程学[M].北京:中国林业出版社,2000,64.
    62.孙翠玲,顾万春,郭玉文.废弃矿区生态环境恢复林业复垦技术的研究[J],资源科学.1999,21(3):68-70.
    63.王兵,崔向惠,白秀兰,等.荒漠化地区土壤水分时空格局及其动态规律研究[J].林业科学究,2002,15(2):143-149.
    64.王辉,刘德辉,胡锋等.平原高潜水位地区采煤沉陷地农业土壤退化的空间变化规律[J].火山地质与矿产,2000,21(4):296-300.
    65.王健,高永,魏江生.采煤塌陷对风沙区土壤理化性质影响的研究[J].水土保持学报,2006,20(5):52-55.
    66.王健,吴发启,孟秦倩,等.不同利用类型土壤水分下渗特征试验研究[J].干旱地区农业研究,2006,24(6):159-162.
    67.王健,武飞,高永.风沙土机械组成、容重和孔隙度对采煤塌陷的响应[J].内蒙古农业大学学报,2006,27(4):37-41.
    68.王健.半干旱区采煤塌陷对沙质土壤理化性质影响研究[D].内蒙古农业大学,2007,1-2.
    69.王鸣远,关三和,王义.毛乌素沙地过渡地带土壤水分特征及其植物利用[J].干旱区资源与环境,2002,16(2):37.
    70.王现国,刘平河,吴东民.平顶山矿区地面塌陷灾害发展趋势及防治对策研究[J].湖南科技大学学报(自然科学版),2004,19(3):14-17.
    71.王新平,康尔泗,张景光,等.草原化荒漠带人工固沙植丛区土壤水分动态[J].水科学进展,2004,15(2):216-222.
    72.王志宏,刘志斌,陈建平.黑岱沟露天煤矿土地复垦及生态重建规划研究[J].露天采矿技术,2003(1),19-21.
    73.魏江生,贺晓,胡春元,等.干旱半干旱地区采煤塌陷对沙质土壤水分特性的影响[J].干旱区资源与环境,2006,20(5):84-88.
    74.武强,安永会,刘文岗,等.神府东胜矿区水土环境问题及其调控技术[J].煤田地质与勘探2005,33(3):54-57.
    75.辛占良,温臻.陕北风沙区能源开发中的生态环境建设对策[J].陕西林业科技,1997,2:30-33.
    76.徐化成.景观生态学[M].北京:中国林业出版社,1996,86.
    77.闫德仁,王晶莹,杨茂仁.落叶松人工林土壤衰退趋势[J].生态学杂志,1996,1(2):63-66.
    78.闫德仁,王晶莹.落叶松人工林土壤养分含量变化的研究[J].内蒙古林业科技,1999,(34):99-102.
    79.杨农朝,胡全才.工业矿区复垦产业化战略[J].山西农业科学,1999,27(2):86-90.
    80.杨选民,丁长印.神府东胜矿区生态环境问题及对策[J].煤矿环境保护,2000,14(1):69.
    81.游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究[J].江西农业大学学报,2005,27(3):67-70.
    82.余雪.美国矿山环境治理[J].国土资源,2001,(1),52.
    83.原国家土地管理局.赴澳土地复垦考察报告[R].北京,1996.
    84.袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.
    85.张发旺,侯新伟,韩占涛.煤矿引起水土环境演化及其调控技术[J].地球学报,2001,22(4):345-350.
    86.张发旺,侯新伟,韩占涛等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19(3):67-70.张发旺,赵红梅,宋亚新等.神府东胜矿区采煤塌陷对水环境影响效应研究[J].地球学报,2007,28(6):521-527.
    87.张国盛,王林和,董智,等.毛乌素沙地主要固沙灌(乔)木林地水分平衡研究[J].内蒙古农业大学学报,2001,23(3):1-9.
    88.张锦瑞,陈娟浓,岳志新等.采煤塌陷引起的地质环境问题及其治理[J].中国水土保持,2007,(4):37-39.张丽娟,王海邻,胡斌.煤矿塌陷区土壤酶活性与养分分布及相关研究——以焦作韩王庄矿塌陷区为例[J].环境科学与管理,2007,32(1):126-129.
    89.张平仓,王文龙,唐克丽.神府-东胜矿区采煤塌陷及其对环境影响初探[J].水土保持研究,1994,1(4):36-44.
    90.张永波,等水工环研究的现状与趋势[M].北京:地质出版社,2001.
    91.赵明鹏,张震斌,周立岱.阜新矿区地面塌陷灾害对土地生产力的影响[J].中国地质灾害与防治学报,2003,14(1):77-80.
    92.赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    93.郑健,胡笑涛,蔡焕杰,等.局部控制地下浸润灌溉土壤入渗特性研究[J].西北农林科技大学学报(自然科学版),2007,35(3):227-232.
    94.周树理,刘仁英.国外复垦经验简介[C].矿山废地复垦与绿化.中国林业出版社,1995:213-216.
    95.朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社,1992,120.
    96.朱祖祥.土壤学[M].农业出版社,1985.
    97. Aina P O.and S P Periaswami. Estimating available water-holding capacity western Nigerian soils from soil texture and bulk density, using core and sie samplis[J].Soil Sci.1985,140:55-58.
    98. Austin N R, Prendergast J B. Use of kinematic wave theory to model irrigation on cracking soil[J]. Irrig Sci,1997,18:1-10.
    99. Blinkley D, Harts C. The components of nitrogen availability assessments in forest soils[J]. Advance in soil science,1998,10:57-111.
    100. Booth C J, Spande E D, Pattee C T, et al. Positive and negative impacts of longwall mine subsidence on a sandstone aquifer[J]. Environmental Geology, 1998,34,223-233.
    101. Booth C J. Groundwater as an environmental constraint of longwall coal mining[J]. Environ Geol,2006,49:796-803.
    102.Bouma J. Soil morphology and preferential flow along macropores. Agric Water Manage,1981,3:235-250.
    103. Costanza, R, et al. The value of the world's ecosystem services and natural capital[J]. Naturel997,387:252-259.
    104. Coulthard M A. Applications of numerical modelling in underground mining and construction [J]. Geotechnical and Geological Engineering,1999.17: 373-385.
    105. Crossey G B. Chinese eolonization in Mongolia[J]. Pioneer settlment, New York,1931,279-287.
    106. Dadhwal KS. et al. Studies on placing and mixing of a normal soil in limestone mine spoil on the performance of two treespices[J]. Indian-Forester, 1993(119):1011-1019.
    107. Datta K K, Jong C. Adverse effect of water logging and soil salinity on crop and land productivity in northwest region of Haryana, India[J]. Agricultural Water Management,2002(57):223-238.
    108. Goncalves M C, Pereira L S, Leij F J.1997. Pedo-transfer functions for estimating unsaturated hydraulic properties of
    109. Hammack R W, Love E I, Veloski G A, et al. Using Helicopter Electromagnetic Surveys to Identify Environmental Problems at Coal Mines [J]. Mine Water and the Environment,2003,22:80-84.
    110. Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from containing different phosphorus concentrations in the Broadbalk experiment[J]. Environ Qual,1995,24:904-910.
    111. Hilty J, Merenlender A. Faunal indictor tax selection for monitoring encosystem health[J]. Biological conservation,2000,92(2):185-197.
    112. Ing Kratzsch H. Mining Subsidence Engineering[J]. Environ Geol Water Sci, 1986,8(3):133-136.
    113. J F AngusA, R R Gault. Soil water extraction by dryland crops, annual pastures, and lucerne in South-eastern Australia[J], Australian Journal of Soil Research,2001,52:183-192.
    114. Jowett D. Adaptation of a lead tolerant poplation to low mining soil fertility [J]. Nature,1999(18):43.
    115. Luo Y. Systematic approach to assess and mitigate longwall subsidence influences on surface structures[J]. Journal of Coal Science & Engineering(China),2008,14(3):407-414.
    116. M Tatha, M A Aziz, et al《巴哈利亚绿洲与植物性质间关系》[J], Egyptian Journal of Soil Science,1987,21(1):43-60.
    117. M Tatha, M A Aziz. Remote Sensing and Tropical Land Management [M], 1986,223-233.
    118. Mario Polemio, J D Rhoaoes. Determination cation exchange capacity:A new Procedure for calcareous and Gypsiferous Soil[J]. Soil Sci.Soc.Am.J.1997,1.
    119. Mooney H A, Vitovsek P V, Matson P A.Exchange of materials between terrestrials ecosystems and the atmosphere[J]. Science,1987,238:926-932.
    120. Near-surface fracturing and associated hydrogeological effects[A].Robert E D, Barnhisel R I, Darmody R G. Proceeding of 1992 National symposium on Prime Farmland Reolamation[C]. Urbana:University of Illinois Press,1992, 147-158.
    121. Pidgeon J D. The measurement and prediction of available water capacity ferralitic soils in Uganda[J]. J.Soil Sci.1972,23:431-441.
    122. RaPPort D J. Evaluating and monitoring the health of large scale ecosystems [M].Heidelberg:Springer Verlag,1995,5-31.
    123. Rapport D J. Gaing respectability:development of quantitative methods in ecosystem health [J]. Ecosystem health,1999,5:1-2.
    124. Rawls W J, T J Gish, D L Brakensiek. Estimating soil water retention froms physical properties and characteristics [J]. Akv.Soil Sci.1991,16:213-234.
    125. Roosendaal Van D J. Longwall mine subsidence of farmland in Southern Illinois:
    126. Schuman G E, et al. Revegetation bentonite mine-spoils with saw mill by-products and gypsum [C]. Agriculture utilization of urban and industrial by-products proceeds,1995,261-274.
    127. Schuman G E, et al. Short term effects of surface-applied gypsum on revegetated sodicbentonite spoils[J]. Soil Science Society of America Journal, 1993,57(4):1083-1088.
    128. Seils D E, Darmody R G, Simmons F W. The effects of coal mine subsidence on soil macroporsity and water flow[A]. Robert E D, Barnhisel R I, Darmody R G. Proceeding of 1992 National Symposium on Prime Farmland Reclamation[C]. Urbana:University of Illinois Press,1992,137-146.
    129. Shi J F, Song W D, Zhang J C, et al. The application of modern surveying technology in mining survey[J]. Journal of Coal Science & Engineering(China),2008,14(2):283-286.
    130. Vitovsek P M, Howarth R W. Nitrogen limitation on land and in the sea:how can it occur[J]. Biogeochemistry,1991,13:87-115.
    131. Xue J F, Gavin K. Effect of Rainfall Intensity on Infiltration into Partly Saturated Slopes[J]. Geotech Geol Eng,2008,26:199-209.
    132. Zipper C, Balfour W, Roth R, et al. Domestic water supply impacts by underground coal mining in Virginia. USA[J]. Environmental Geology,1997, 29,84-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700