承压地下水开采井流模型及其渗流理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
承压地下水开采目前已成为影响地下水运动变化最主要的因素之一,也是引发地面沉降和沉陷等环境地质灾害的主要原因。承压地下水开采模型及其渗流理论历来在预测和控制地下水开采引发的环境地质灾害中发挥着重要的作用。
     本文在前人关于地下水抽水井流模型和相关渗流理论研究的基础上,针对现有模型和理论中存在的不足,以及根据实际需要,研究了新的抽水井设置方式和抽水-灌水模式下承压含水层地下水渗流问题,建立了特定地质水文条件下开采地下水的数学模型并进行了求解和分析;对受潮浪和径流补给影响的滨海承压含水层地下水开采问题以及井周非均匀、各向异性表皮层和各向异性、层状承压含水层抽水产生的渗流等问题建立了新的数学模型并进行求解和较详细的分析。主要工作和创新成果包括:
     1.为减小抽水产生的承压含水层水头降落漏斗深度和范围,对传统开采水井作了改进,设计了集抽、灌水功能于一体的抽一灌同轴井。针对同步或非同步循环抽水和灌水产生的承压含水层井流建立相应的数学模型,给出了相应的解析解,该解既可以退化到已有的考虑越流的定流量完整井解析解和定流量非完整井解析解,也可退化为Theis (1935)解。并通过计算分析阐明了循环抽水和灌水模式下承压水头降等变化规律。
     2.针对潮浪影响、越流补给和径流补给共同作用下的滨海承压含水层地下水开采问题建立了数学模型,利用双重傅立叶变换得到承压地下水非稳态井流的解析解,现有相关解均为其特例。基于该解详细分析了潮浪和径流等对滨海承压含水层抽水井流的影响以及多因素共同作用下承压地下水的发展变化规律。
     3.对末穿透承压含水层覆盖层的承压泉水井或基坑坑底降水井抽取承压含水层产生的地下水渗流问题分别建立了三种侧向边界条件下的抽水井流模型,给出了不同条件下的水头降表达式;对比分析了三种边界条件下承压含水层水头降随时间发展规律以及沿厚度和径向分布规律的差异;详细分析了三种边界条件下的水头降随时间发展速度和空间分布规律,以及越流补给、各向异性、井底渗流面大小、承压含水层厚度和宽度等对水头降速率和幅度的影响。
     4.考虑表皮效应随机分布和各向异性以及承压含水层的层状结构和各向异性,建立了径向单层和径向双层两种情形的承压井流数学模型,通过矩阵理论和Laplace变换方法,分别求得了两种情形下的解。所求解能够退化到简单表皮效应条件下的现有解。利用所求解全面分析了非均匀、非等厚和各向异性表皮层对层状、各向异性承压含水层中水头降和抽水流量变化规律以及正、负表皮效应对承压含水层水头降和抽水量的差异。
Groundwater exploitation has become nowadays one of the main factor that change the movement way of groundwater and also the main reason causes environmental and geologic hazard such as subsidence and sink of ground. Studies of the subject involved in this dissertation are important, because it provides a tool for knowing and mastering the information of groundwater change, and test methods of geohydraulic parameters. What's more, it plays important role in discovering some mechanism for subsidence, sink and fissure of ground and other environment geology disaster due to pumping groundwater.
     Based on the exsiting achievement about the models for well flow of groundwater and related theoretical solutions, and on account of some defect in the models and theory for groundwater exploitation, this dissertation has made some development and improvement for the models and theories of well flow due to confined water exploitation. The main original work and innovative achievements are as follows:
     1. To reduce the amplitude and affected area of drawdown of hydraulic head in confined aquifer caused by pumping, a new vertical well is designed, which contains double screens. With such a kind of well, a 3D flow model for confined aquifer, subjected to pumping and injection in synchronou or nonsynchronous way, is developed. Then, by application of Hankel transformation and Laplace transformation, the corresponding analytical solution is obtained, which is more general and can reduces to the solutions for full penetrating well and partial penetrating well in leaky confined aquifer and also to Theis's (1935) solution. The solution is used to analyze interplay of flow casused by pumping and injection and the change of hydraulic head in the confined.
     2. When pumping in the coastal leaky confined aquifer with runoff toward ocean, well flow may be influenced by not only the tide, but also the runoff. In order to study the comprehensive effect of groundwater flow under several factors, a mathematical model is formulated, and then by double Fourier transformation, the analytical solution is presented, which is consistent with some available solutions under a simpler condition. Based on the present solution, the effect of tide, runoff and other factors on well flow and hydraulic head in coastal confined aquifer is studied.
     3. Some pumping wells located above the confined aquifer without penetrating the covering layer of confined aquifer, and the water infiltrating from confined aquifer through the well bottom is continuously pumped off, which may lead to drawdown of hydraulic head in confined aquifer. For sucn a special problem, a mathematical model with three different lateral boundary conditions is developed for groundwater flow in the confined aquifer, and three ananlytical solutions are presented. The development and distribution of drawdown of hydraulic head under three lateral boundary conditons is compared. And the responses of hydraulic head under three lateral boundary conitions to different factors, such as leakage, anisotropy, the area of well bottom, thickness and width etc, are analyzed in detail.
     4. With consideration of radomly vertical distribution and antisotropicity of wellbore skin, and layered formation and antisotropicity of the the confined aquifer, two mathematical models for groundwater flow are developed. One model is neglected of skin storage and the other takes consideration of skin storage. And by finite diffence method, the semianalytical solutions for two models are obtained. The present solutions can reduce to some previous available solutions with simple skin conditions.The new solutions can be ued to analyze the effect of nonuniform and anisotropic wellbore skin on the drawdown and flow rate in layer-formulated and anisotropic confined aquifer and the different effects of negative and positive skin on drawdown and flow rate.
引文
[1]Ahmed N. Research Needs in Well Hydraulics [J].Water Resources,2000,24 (2): 1-10.
    [2]Barua Gautam, Bora S. N. Hydraulics of a partial ly penetrating well with skin zone in a confined aquifer [J]. Advances In Water Resources,2010,33 (12): 1575-1587.
    [3]Barua Gautam, Bora S. N. Hydraulics of a partially penetrating well with skin zone in a confined aquifer [J]. Advances In Water Resources,2010,33 (12): 1575-1587.
    [4]Bear J, Braester C, Flow from infiltration basins to drains and wells, in: Proceedings of the American Society of Civil Engineers,J Hydra Div,1966, 115-134.
    [5]Bidaux P.,Tsang C. F. Fluid flow patterns around a well bore or an underground drift with complex skin effects[J].Water Resour. Res,1991,27 (11):2993-3008.
    [6]Butler Jr. J. J., Bohling G. C, Hyder Z. etc. The use of slug tests to describe vertical variations in hydraulic conductivity[J]. J. Hydrol,1994,156 (2): 137-162.
    [7]Cassiani G., Kabala Z. J. Hydraulics of a partial ly penetrating well:solution to a mixed-type boundary value problem via dual integral equations [J]. Journal of Hydrology,1998,211(1-4):100-111.
    [8]Cassiani G., Kabala Z. J., Jr. M. A. Medina. Flowing part ial ly penetrating well: solution to a mixed-type boundary value problem[J]. Advances In Water Resources,1999,23:59-68.
    [9]Chang C. C, Chen C. S. An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skintJ]. WATER RESOURCES RESEARCH,2002,38 (6):1071.
    [10]Chang C. C., Chen C. S. A flowing partially penetrating well in a finite-thickness aquifer:a mixed-type initial boundary value problem[J]. J. Hydrol,2003,271 (1-4):101-118.
    [11]Chang Y.C.,Yeh H. D.New solutions to the constant-head test performed at a partially penetrating well [J]. Journal of Hydrology,2009,369 (1-2):90-97.
    [12]Chang Ya-Chi, Yeh Hund-Der. A new analytical solution solved by triple series equations method for constant-head tests in confined aquifers [J]. Advances In Water Resources,2010,33 (6):640-651.
    [13]Chen C. S, Chang C. C. Well hydraul ics theory and data analysis of the constant head test in an unconfined aquifer with the skin effect [J].2003.
    [14]Chen Chia-Shyun, Chang Chien-Chieh. Well hydraulics theory and data analysis of the constant head test in an unconfined aquifer with the skin effect [J]. Water Resour. Res.,2003,39 (5):1121.
    [15]Chen Chia-Shyun, Chang Chien-Chieh. Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumping [J]. Journal of Hydrology,2006,317 (3-4):190-201.
    [16]Chen Yen-Ju, Yeh Hund-Der. Parameter Estimation/Sensitivity Analysis for an Aquifer Test with Skin Effect[J]. Ground Water,2009,47 (2):287-299.
    [17]Chiu Pin Yuan, Yeh Hund Der, Yang Shaw Yang. A new solution for a partially penetrating constant-rate pumping well with a finite-thickness skin[J]. Int. J. Numer. Anal. Meth.Geomech,2007,31:1659-1674.
    [18]Chu W.C., Garcia-Rivera, J Raghavan, R. Analysis of interference test data influenced by well bore storage and skin at the flowing well [J]. J. Pet. Tech,1980, (2):171-178.
    [19]Cohen R.M, Rabold R. R. Simulation of sampling and hydraulic tests to assess a hybrid monitoring well design[J]. Ground Water Monitoring Rev,1988,8 51-59.
    [20]Cooper Hilton H, Bredehoeft John D, Papadopulos Istavros S. Response of finite-diameter well to instantaneous charge of water[J]. Water Resour. Res,1967,3(1).
    [21]De Glee G. J. Over Grondwater Stroomingen bij Wateronttrekking door middel van Putten[J]. Waltman, Delft.,1930.
    [22]Dougherty D.E,Babu D. K. Flow to a partially penetrating well in a double-porosity reservoir [J].Water Resour. Res,1984,20 (2):1116-1122.
    [23]Dupuit J. Etudes Theoriques et Pratiques sur le Mouvement des Eaux dans les Canaux de Couverts et Traversles Terrains Permeables[M]. Paris:Dunod,1863
    [24]Erskine A D. The effect of tidal fluctuation on a coastal aquifer in the UK [J]. Ground Water,1991,29 (4):556-562.
    [25]Faust CR, Mercer JW. Evaluation of slug tests in wells containing a finite-thickness skin[J]. Water Res Res,1984,20 (4):504-506.
    [26]Fetter C W.Applied hydrogeology[M]. New York:MacmilIan College Publishing Company,1994
    [27]Forchheimer P.Hydraulik[M]. Berlin,1930
    [28]G. Cassiani, Kabala Z. J. Hydraulics of a partially penetrating well:solution to a mixed-type boundary value problem via dual integral equations [J]. Journal of Hydrology,1998,211(1-4):100-111.
    [29]Gringarten A. C, Ramey Jr. H. J. An approximate infinite conductivity solution for a partially penetrating line-source well. [J]. Soc Petrol Eng J,1975,259 (2):140-148.
    [30]Hantush M. S. Drawdown around a partially penetrating well[J]. Jounal of Hydraulic Division, American Society of Civil Engineers, ASCE87, 1961a,87 (HY4):83-98.
    [31]Hantush M. S. Hydraulics of wells[M]. New York:Academic Press,1964
    [32][32] Hantush M. S. Analysis of data from pumping wells near a river [J]. Jour. Geophys.Res,1959a,64 (11).
    [33]Hantush M. S. Hydraulics of wells[A]. Chow. Advances in Hydroscience[C]. New York:Academic,1964.281-442.
    [34]Hantush M.S. Aquifer tests on partially penetrating wells [J]. J. Hydraul. Div. Proc. ASCE,1961b,87 (HY5):171-195.
    [35]Hantush MS. Modification of the theory of leaky aquifers [J]. Journal of Geophysical Research,1960,65 (11):3713-3725.
    [36]Hantush MS, Jacob CE. Non-steady radial flow in an infinite leaky aquifer [J]. Trans. Am. Geophys. Union,1955,36 (1):95-100.
    [37]Hawkins Jr.M. A note on the skin effect[J]. Journal of Petroleum Technology,1956,8(12):65-66.
    [38]Hunt B. Unsteady stream deplet ion when pumping from semiconf ined aquifer [J]. Journal of Hydrologic Engineering,2003,8(1):12-19.
    [39]Hunt Bruce. Stream Depletion for Streams and Aquifers with Finite Widths [J]. Journal of Hydrologic Engineering,2008,13(2):80-90.
    [40]Hunt Bruce, Scott David.Extension of Hantush and Boulton Solutions [J]. Journal of Hydrologic Engineering,2005,10(3):223-236.
    [41]Hunt Bruce, Smith Matt. Improved Spring Depletion Solution and Analysis [J]. Journal of Hydrologic Engineer ing,2008,13 (2):577-584.
    [42]Hurst W. Establishment of the skin effect and its impediment to flud flow into a well bore [J]. Pet. Eng,1953,25(2):B6.
    [43]Jacob C. E. Drawdown test to determine effective radius of artesian well [J]. Am. Soc. Civ. Eng,1947,112 (2):1047-1064.
    [44]Jacob C. E Radial flow in a leaky artesian aquifer[J]. Trans. Am. Geophys. Union,1946,27(2):198-208.
    [45]Jacob C. E., Lohman S. W. Nonsteady flow to a well of constant drawdown in an extens ive aquifer [J]. Trans.Am. Geophys. Union,1952,33 (2):559-569.
    [46]Javandel Iraj, Witherspoon Paul A. A Method of Analyzing Transient Fluid Flow in Multilayered Aquifers[J]. Water Resour. Res.,1969,5(4):856-869.
    [47]Jeffrey Alan; Zwellinger, Daniel. Table of integrals, series, and products (Seventh Edition) [M].Sigapore:Academic Press,2007
    [48]Jeng D S, Li L, Barry D A. Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer [J]. Advance in Water Resources,2002,25 (5):577-584.
    [49]Jiao J J,Tang Z. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer [J]. Water Res Res,1999,35 (3):747-751.
    [50]Kabala Z.J, Cassiani G. well hydraulics with the Weber-Goldstein transforms[J]. Transport in porous media,1997,29 (2):225-246.
    [51]Kabala Z. J. Sensitivity analysis of a pumping test on a well with wellbore storage and skin[J]. Adv. Water Resour,2001,24(6):483-504.
    [52]Lai R. Y, Karandi G. M, Williams R. A. Drawdown at time-dependent flow rate[J]. Water Resour. Bull,1973,9(5):892-900.
    [53]Lai R. Y, Su C. Nonsteady flow to a large well in a leaky aquifer [J]. J. Hydrol.1974,22:33-345.
    [54]Lee T.C.Applied Mathematics in Hydrogeology[M]. New York:Lewis Publishers,1999
    [55]Li H, Jiao J J. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a leaky layer with storage [J]. Advance in Water Resources,2001,24 (5):565-573.
    [56]Li Jiang. Transient radial movement of a confined leaky aquifer due to variable well flow rates [J].Journal of Hydrology,2007,333 (2-4):542-553.
    [57]Li Jiang. A nonlinear elastic solution for 1-D subsidence due to aquifer storage and recovery applications[J]. Hydrogeology Journal,2003,2 (11): 646-658.
    [58]Li Jiang, Helm D. C., Elastic Solutions of 1-D Subsidence due to ASR Applications in:World Water Congress,2001,1-11.
    [59]Li L, Barry D A, Jeng D S. Tidal fluctuations in a leaky confined aquifer:Dynamic effects of an overlying phreatic aquifer[J]. WATER RESOURCES RESEARCH,2003, 37:1095-1098.
    [60]Lough Hilary K.,Hunt Bruce.Pumping Test Evaluation of Stream Depletion Parameters[J]. Ground Water,2006,44(4):540-546.
    [61]Lu Jing, Tiab Djebbar. Productivity equations for an off-center partially penetrating vertical well in an anisotropic reservoir[J]. Journal Of Petroleum Science And Engineering,2008,60(1):18-30.
    [62]Maas C. Transient well flow in leakdy multiple-aquifer systems[J].Journal of Hydrology,1985,81 (2):111-126.
    [63]Ma lama Bwalya, Kuhlman Kristopher L., Barrash Warren. Semi-analytical solution for flow in a leaky unconfined aquifer toward a partially penetrating pumping well [J].Journal of Hydrology,2008,356 (1-2):234-244.
    [64]Meesters A. G. C. A.,Hemker C.J., Berg E. H. van den. An approximate analytical solution for well flow in anisotropic layered aquifer systems [J]. Journal of Hydrology,2004,296 (1-4):241-253.
    [65]Moench A. F. Transient flow to a large-diameter well in an aquifer with storative semiconfining layers [J].Water Resour. Res,1985,21:1121-1131.
    [66]Moench AF, Hsieh PA. Comment on "Evaluation of slug tests in wells containing a finite-thickness skin"by C. R. Faust and J.W. Mercer [J]. Water Res Res,1985, 21(9):7-12.
    [67]Moench Allen F. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer[J]. Water Resour. Res.,1997,33 (6):1397-1407.
    [68]Moench Allen F. Transient Flow to a Large-Diameter Well in an Aquifer With Storative Semiconfining Layers[J]. Water Resour. Res.,1985,21 (8):1121-1131.
    [69]Motz L. H. Leaky one-dimensional flow with storage and skin effect in finite-width sink[J]. J. Irrig. Drain. Eng,2002,128 (5):298-304.
    [70]Muskat M. The flow of compressible fluids through porous media and some problems in heat conduction[J]. Physics,1934,5:71-94.
    [71]Narasimhan T. N. Hydraulic characterization of aquifers, reservoir rocks and soils:A history of ideas [J].Water Resour Res,1998 34(1):33-46.
    [72]Neuman S. P, Wither spoon P. A. Appl icabi lity of current theories of flow in leaky aquifers [J].Water Resour. Res,1969a,5(4):817-829.
    [73]Neuman Shlomo P., Witherspoon Paul A. Theory of Flow in a Confined Two Aquifer System[J]. Water Resour.Res.,1969b,5 (4):803-816.
    [74]Neuman Shlomo P.,Witherspoon Paula A. Field Determination of the Hydraulic Properties of Leaky Multiple Aquifer Systems[J]. Water Res.Res.,1972,8 (5): 1284-1289.
    [75]Novakowski K S. Interpretation of the transient flow rate obtained from constant-head tests conducted in situ in clays[J]. Can Geotech J,1993, 30:600-606.
    [76]Papadopulos I. S., Cooper H. H. Drawdown in a well of large diameter [J]. Water Res Res,1967,3 (1):241-244.
    [77]Pasandi M., Samani N.,Barry D.A. Effect of wellbore storage and finite thickness skin on flow to a partially penetrating well in a phreatic aquifer [J]. Advances In Water Resources,2008,31 (2):383-398.
    [78]Peng H. Y., Yeh H. D., Yang S. Y., Improved numerical evaluation for the radial groundwater flow equation[J].Advances In Water Resources,2002,25 (6): 663-675.
    [79]Perina T. Analytical solutions for groundwater and soil vapor flow to a partially penetrating well with non-uniform radial flux along the screen. Doctoral Dissertation.University of California Riverside,2003.
    [80]Perina Tomas, Lee Tien-Chang. General well function for pumping from a confined, leaky, or unconf ined aquifer [J]. Journal of Hydrology,2006,317 (3-4):239-260.
    [81]Poland JF Guidebook to studies of land subsidence due to groundwater withdrawal, in:UNESCO Studies and Reports in Hydrology no 40, New York,1984.
    [82]Pyne G, Singer PC, Miller CT, Aquifer storage recovery of treated drink water, in:Research Report,AWWA Research Foundation and American Water Work Association,1995.
    [83]Ramey Jr HJ,Agarwal RG,Martin I. Analysis of "slug test" of DST flow period data[J]. J. Can. Petrol Technol,1975,14(3):37-47.
    [84]Ramey Jr HJ, RG Agarwal. Annulus unloading rates as influenced by wellbore storage and skin effect [J]. Soc. Petrol. Eng. J,1972,2 (2):453-463.
    [85]Ridolfi Luca, Sordo Sebastiano. Hydrodynamic dispersion in an artesian aquifer during flow to a partially penetrating well[J]. Journal of Hydrology,1997, 201(1-4):183-210.
    [86]Ruud N.C.,Kabala Z.J.Response of a partially penetrating well in a heterogeneous aquifer:integrated well-face flux vs. uniform well-face flux boundary conditions [J].Journal of Hydrology,1997,194(1-4):76-94.
    [87]Ruud NC, Kabala ZJ. Numerical evaluation of flowmeter test interpretation methodologies [J].Water Resour Res,1996,32(4):845-852.
    [88]Ruuda N. C.,Kabalab Z.J.Response of a partially penetrating well in a heterogeneous aquifer:integrated well-face flux vs. uniform well-face flux boundary conditions [J].Journal of Hydrology,1997,194 (1-4):76-94.
    [89]Sageev A. Slug test analysis[J]. Water Res Res,1986,22 (8):1323-1333.
    [90]Sen Zekai. Type curves for large-diameter wells near barriers [J]. Ground Water,1982,20 (3):274-277.
    [91]Singh Sushil K. Semianalytical Model for Drawdown due to Pumping a Partially Penetrating Large Diameter Well[J]. Journal of irrigation and drainage engineering,2007,133(2):155-161.
    [92]Singh Sushil K.Rate and Volume of Stream Flow Depletion due to Unsteady Pumping[J]. Journal of irrigation and drainage engineering,2005,131 (6): 539-545.
    [93]Singh Sushi 1 K. Rate and Volume of Stream Depletion Due to Pumping [J]. Journal of irrigation and drainage engineering,2000,126 (5):336-338.
    [94]Singh V. S., Gupta C. P. Analysis of pump test data for a large-diameter well near a hydrogeological boundary [J].Journal of Hydrology,1988,103 (3-4): 219-227.
    [95]Sneddon I N;何衍璇;张变(译).富利叶变换[M].北京:科学出版社,1958
    [96]Sneddon Ian N.Fourier Transforms [M].New York:McGraw-Hill,1951
    [97]Spiegel Murray R.Theory and problems of Laplace transforms[M]. New York:McGraw-Hill,1965
    [98]Stehfest H. Algor ithm 368 numerical inversion of Laplace transforms[J]. Communicat ions of ACM,1970,13 (1):47-49.
    [99]Stehfest H. Remark on Algorithm 368 numerical inversion of Laplace transforms[J]. Communicat ions of ACM,1970,13 (10):624-625.
    [100]Theis C. V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage [J]. Trans. Amer. Geophys. Union,1935,16 (1):519-524.
    [101]Theis C.V.The lowering of the piezometer surface and the rate and discharge of a well using ground-water storage [J].Eos Trans.AGU,1935,519-524.
    [102]Thiem G. Hydrologische Methoden[M]. Gebhardt:Leipzig,1906
    [103]Turner L T,P Coates B,I.Acworth R.The effects of tides and waves on water-table elevations in coastal zones [J]. Hydrogeology Journal,1996,4 (2): 51-69.
    [104]Van Everdingen A. F,Hurst W. The application of the Laplace Transformation to flow problems in reservoirs[J]. Pet. Trans.,949,305-323.
    [105]Van Everdingen A. F. The skin effect and its influence on the productive capacity of a well[J]. Petroleum Transaction, AIME,1953,198 (2):171-176.
    [106]Wang Xu Sheng, Chen Chong Xi, Jiao Jiu J. Modified Theis equation by considering the bending effect of the confining unit [J]. Advances In Water Resources,2004, 27 (10):981-990.
    [107]Weber H, Die Reichweite Von Grundwasserabsenkungen Mittels Rohrbrunnen in, Springer-Verlag,New York,1928.
    [108]Wen Zhang,Huang Guan-Hua,Zhan Hong-Bin. Non-Dareian flow toward a finite-diameter vertical well in a confined aquifer [J].Pedosphere,2008b, 18(3):288-303.
    [109]Wen Zhang, Huang Guanhua, Zhan Hongbin. An analytical solution for non-Darcian flow in a confined aquifer using the power law function[J]. Advances In Water Resources,2008,31 (1):44-55.
    [110]Wen Zhang, Huang Guanhua, Zhan Hongbin. An analytical solution for non-Darcian flow in a confined aquifer using the power law function [J]. Advances In Water Resources,2008a,31 (2):44-55.
    [Ill]Wen Zhang,Zhan Hongbin,Huang Guanhuaetc.Constant-head test in a leaky aquifer with a finite-thickness skin[J]. Journal of Hydrology,2011,399 (3-4): 326-334.
    [112]Wiest J.M. Roger De. Flow to an eccentric well in a leaky circular aquifer with varied lateral replenishment[J]. Pure and Applied Geophysics,,1963,54 (1): 87-102.
    [113]Xiang Jiannan.Improvements in evaluating constant-head permeameter test data [J].Journal of Hydrology,1994,162 (2):77-97.
    [114]Yang S.Y, Yeh H. D. A nove analytical solution for constant-head test in a patchy aquifer [J]. Int. J. Numer. Anal.Meth. Geomech,2006,30(2):1213-1230.
    [115]Yang S. Y, Yeh H. D. Laplace-domain solutions for radial two-zone flow equations under the conditions of constant-head and partially penetrating well[J]. J. Hydraul. Eng. ASCE,2005,131 (3):209-216.
    [116]Yang S. Y., Yeh H. D. Solution for flow rates across the wellbore in a two-zone confined aquifer [J]. J. Hydraul. Eng. ASCE,2002,128 (2):775-783.
    [117]Yang S. Y., Yeh, H. D. Radial groundwater flow to a finite diameter wel 1 in a leaky confined aquifer with a finite-thickness skin [J]. Hydrol. Process.,2009,23 (3):382-3390.
    [118]Yeh H.D., Chen Y.J.,Yang S.Y.Semi-analytical solution for a slug test in partially penetrating wells including the effect of finite-thickness skin[J]. Hydrol. Process,2008,22 (2):3741-3748.
    [119]Yeh Hund-Der, Yang Shaw-Yang. A novel analytical solution for a slug test conducted in a well with a finite-thickness skin [J]. Advances In Water Resources,2006,29 (10):1479-1489.
    [120]Yeh Hund-Der, Yang Shaw-Yang, Peng Huan-Yi. A new closed-form solution for a radial two-layer drawdown equation for groundwater under constant-flux pumping in a finite-radius well [J]. Advances In Water Resources,2003,26 (7): 747-757.
    [121]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007,29(3):275-279.
    [122]陈娟,庄水英,李凌.潮汐对地下水波动影响的数值模拟[J].水利学报,2006,37(5):630-633.
    [123]陈崇希.地下水不稳定井流计算方法[M].北京:地质出版社,1983
    [124]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999
    [125]陈崇希,裴顺平.地下水开采—地面沉降模型研究[J].水文地质工程地质,2001,(2):5-8.
    [126]付丛生,陈建耀,曾松青.滨海地区潮汐对地下水位变化影响的统计学分析[J].水利学报,2008,39(12):1365-1376.
    [127]耿三方,徐月珍.何谓水文地质概念模型[J].水文地质工程地质,1985,(4):34.
    [128]贾永禄.外边界定压试井分析有效井径模型及其样版曲线[J].西南石油学院学报,1993,15(4):51-57.
    [129]刘运航,王旭东,诸宏博等.承压含水层非稳定流拉普拉斯变换有限层分析[J].水利学报,2010,41(6):748-753.
    [130]李佩成.地下水非稳定渗流解析法[M].北京:科学出版社,1990
    [131]李晓平,刘启国,赵必荣.具有不同表皮的双渗地层试井分析有效井径模型及其压力动态[J].天然气工业,2002,23(1):70-73.
    [132]李顺初,黄炳光,周荣辉.考虑井筒储存和表皮效应的变流率问题的精确解[J].西南石油学院学报,1992,14(3):35-42.
    [133]吴世余,李宏.均质各向异性土层中轴对称渗流问题的分析[J].岩土工程学报,2008,30(4):581-584.
    [134]文章,黄冠华,李健等.承压含水层中抽水井附近非达西流的近似解析解[J].水利学报,2008,39(7):815-821.
    [135]王庆良,冉兴龙,郭建忠.定降深抽水引起的泰斯承压含水层水平运动[J].大地测量与地球动力学,2003,23(1):12-16.
    [136]王旭东,殷宗泽.柱坐标系下地下水非稳定流模拟的有限层法[J].岩土工程学报,2009,31(1):15-20.
    [137]王旭升,陈崇希.改进的The is井流模型及其解析解—考虑含水层顶板的挠曲作用[J].地球科学,2002,(2):199-203.
    [138]许烨霜,沈水龙,唐翠萍,姜弘.基于地下水渗流方程的三维地面沉降模型[J].岩土力学,2005,26:109-113.
    [139]许烨霜,余恕国,沈水龙.地下水开采引起地面沉降预测方法的现状与未来[J].防灾减灾工程学报,2006,26(3):352-357.
    [140]许涓铭.地下水水力学.地质出版社,北京,1985.
    [141]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(2):1-8.
    [142]薛禹群,张云,叶淑君等.我国地面沉降模拟现状及需要解决的问题[J].第四纪研究,2003,153-160.
    [143]薛禹群,张云,叶淑君等. 我国地面沉降若干问题研究[J]. 高校地质学报,2006,12(2):153-160.
    [144]杨天行.地下水流向井的非稳定运动的原理及计算方法[M].北京:地质出版社,1980
    [145]杨金忠,蔡树英,王旭升.地下水运动数学模型[M].北京:科学出版社,2009
    [146]苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M].北京:中国建材工业出版社,2001
    [147]于广明,张春会,潘永站等.采水地面沉降时空预测模型研究[J].岩土力学,2006,27(5):759-763.
    [148]张义堂,童宪章.试井分析中有效井径模型表皮效应模型及其压降解样板曲线对比[J].石油学报,1991,12(2):51-60.
    [149]张宏仁.地下水水力学的发展[M].北京:地质出版社,1992
    [150]张蔚榛.考虑井孔蓄水和延迟给水作用时潜水含水层非稳定流[J].水利学报,1989,20(2):1-16.
    [151]钟玉泉.复变函数论(第三版)[M].北京:高等教育出版社2004
    [152]朱军政,于普兵.钱塘江河口杭州湾风暴潮溢流计算方法研究[J].水科学进展,2009,2O(2):269-274.
    [153]朱学愚.越流含水层中非稳定井流的边界元分析[J].工程勘察,1991,(1):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700