高炉出铁口炮泥加工机理及开铁口装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国钢铁产业发展迅速,目前粗钢年产量已经达到6.3亿吨,约占全世界钢产量的45%,钢材品种和质量也不断优化,国内自给率已超过96%,技术和装备水平明显提高,大中型钢铁企业的主体设备基本实现大型化、自动化。
     目前,国内各大钢铁厂大部分都对传统的电动和气动开铁口机向全液压开铁口机进行升级或改造,取得了较好的效果。高炉开铁口机是高炉炉前的关键设备之一,其钻削铁口炮泥的效果直接影响高炉的工作效率和生产安全。随着高炉向大型化发展,高炉出铁口炮泥的配方不断改进,其强度和硬度提高,导致开铁口机的钻削效果差、开口效率低,钻具使用寿命短、消耗成本高等问题一直难以解决。
     本文的研究内容结合我国钢铁行业的发展要求,针对济南钢铁集团炼铁厂开铁口机对炮泥钻削以及开铁口机装备存在的问题,旨在突破目前我国高炉开铁口领域存在的技术瓶颈,提高生产效率,降低生产成本,推动相关行业的发展。
     本文采取理论研究结合虚拟样机技术和有限元分析技术对高炉出铁口炮泥温度场进行分析,从高炉出铁口炮泥焙烧后的理化性能、高温焙烧矿相、显微组织结构等方面分析炮泥的结构特性和力学性能,研究铁口炮泥钻削机理,并优化设计开铁口钻头;基于运动学和动力学仿真分析,优化设计和研究全液压开铁口机的结构和关键组成部分,并进行生产现场验证。
     建立高炉出铁口炮泥的有限元模型,利用ABAQUS软件对其温度场进行有限元分析,获得了高炉出铁口炮泥温度场分布,为铁口炮泥焙烧机理研究奠定了基础。基于高炉炮泥的功能要求、原料配比和理化性能等基本特性,建立了高炉炮泥的破坏准则。
     对高炉炮泥的切削性能进行研究,采用YG类硬质合金刀具,系统研究了不同焙烧温度条件下获得炮泥的切削机理和刀具磨损机理。
     建立了开铁口机钻具系统的虚拟样机模型,采用ADAMS对其进行了动力学仿真分析,为钻具系统的优化设计奠定了基础。
     系统分析了开铁口机钻头的失效形式,设计开发了一种新型开铁口钻头,其特殊的结构具有把持和固齿作用,避免钻头在高温环境下的钻进过程中刀片脱落导致钻头失效,生产现场实际应用效果表明,该新型钻头可明显提高开铁口质量和效率。
     基于二流式雾化原理,研究开发出开铁口机雾化水冷却装置,可以有效地降低钻头失效或钻杆变形,同时有利于出铁口孔道内高温炮泥的局部龟裂和微破碎,减少钻进阻力,提高开铁口效率,减少烟尘污染和粉尘排放量,降低操作工人的劳动强度,改善炉前作业环境。
     建立了全液压开铁口机的虚拟样机模型,并对其进行动力学仿真分析,获得其在整个工作过程中的受力状况,确定其各主要约束处的受力峰值,为设计开发新型矮身全液压开铁口机奠定了基础。
     提出并研究开发了矮身全液压开铁口机,针对高炉生产现场有限的空间,以大回转结构代替传统的折叠式结构,提高整机刚性;采用锚钩结构提高钻具系统的稳定性和工作可靠性。
Steel and iron industry of China has made great progress in the past few years. Higher requests to the blast furnace ironmaking technology and equipment were proposed to fit the rapid development in steel and iron industry and the optimization of product structures. The crude steel annual production of China is 630 million tons, which is about 45% of the world's production. The board rate increases rapidly and the quality of steel is improved continuously. The self-sufficient rate of steel and ironin in China is more than 96% at the present time. The capability of independent innovation has been enhanced continuously. The technique and equipment level has been improved obviously. Major progress has been made in the integrated innovation of ten million ton iron and steel complex. Therefore, it is necessary to improve the technique and equipment level.
     Tapping machine and its drilling tool are the keys to blast furnace ironmaking, their operation effect has direct impact to the production efficiency and safety of blast furnace. Short service life, high cost and low efficiency of the drilling tool have always been the technical problems which puzzle the steel and iron industry in China. At present, domestic steel manufacturers are faced with the important task of rebuilding and upgrading tapping machine from electrical or pneumatic to entire hydraulic. This research complies with the requirements of development in the steel and iron industry, and specifically address the technical problems of drilling tool and tapping machine existing in the practical production of the Jinan Steel and Iron Group, aims to breakthrough the technical bottleneck in drilling tool and tapping machine of the blast furnace, to enhance the production efficiency, reduce production cost, and promote the development of iron and steel industry.
     This research combines theoretical analysis, virtual prototype technology and finite element method to complete the analysis of the blast furnace taphole clay temperature field. The structure characteristic of taphole clay and the strength theory about brittle material were studied in terms of its physical and chemical properties, high temperature phase and theoretical strength, which made a foundation for stress analysis of drilling tool in the next stage. The kinematical and dynamical analysis of the working process is taken by using ADAMS software for its structure design. Practical results have proved that the taphole drilling machine meet low energy consumption, environmental protection and efficient performance.
     The finite element method analysis model of the blast furnace taphole clay is established and its temperature field is analyzed. Temperature contour of taphole clay was carried out, which made a foundation for stress analysis of drilling tool in the next stage. In addition, basic characteristics of blast furnace taphole clay, such as the function requirements, raw materials allocated proportion, the physical and chemical properties etc. were analyzed. The structure characteristic of taphole clay and the strength theory about brittle material were studied. The destruction criterion of brittle material which is similar to concrete and suitable for taphole clay has been determined.
     According to the theoretical strength and failure criterion, experimental study of taphole clay's cutting property has been finished. Cemented carbide tool was used for the experiment. The cutting scrap and tool wear mechanism of different roasted clay were investigated.
     Virtual prototype model of the tapping machine and drilling tool system was built, dynamic simulation analysis with ADAMS was carried out, and the dynamic characteristics of the system were obtained. The stress distribution in drill was analyzed in theory and was simulated. Different failure modes of the drill under normal temperature and high temperature were analyzed, the main reason for its failure in the process of opening taphole is that the drill edges falling off from the tank of drill body. A new tapping drill was developed according to the design criterion of rock drill on the basis of full consideration the failure reasons of dill, and the preliminary scene examination was carried. Practical results indicated that the defect which the blade fell off under high temperature would be overcome through the adoption of this new drill. Its working efficiency was distinct enhanced and its cost was obvious reduced compared with original one.
     Based on the principle of two-flow atomization, a new atomized water cooling system has been developed. It can effectively reduce drill pipe deformation and drill failure, and also conducive to the high-temperature taphole clay occurs micro-cracking and crushing, result in reducing drilling resistance, improving the efficiency of opening furnace taphole, reducing emissions of soot and dust pollution.
     Virtual prototype model of the entire hydraulic tapping machine was built, and its dynamic simulation analysis was carried out. Force status of the tapping machine and the maximum force in each constraint in the whole work process were obtained. The finite element analysis and the strength check of each key element of the tapping machine were finished.
     Research and developed a new kind of short body hydraulic tapping machine, which is especially suitable for the limited space of blast furnace production environment. A rotary structure was designed to replace the traditional folding structure to improve the whole system rigid. An anchor structure was developed to improve the stability and work reliability of dirlling system.
引文
[1]李杰,王晨.我国冶金炉钻具概况[J].凿岩机械气动工具.2007(1):6-9.
    [2]杜鹤桂.我国高炉炼铁生产现状及未来发展分析[J].鞍钢技术.2006(5):1-5.
    [3]肖勇.高炉开铁口机改造方案分析[J].新疆钢铁.2000,(2):23-26.
    [4]王筱留.高炉生产知识问答[M].第二版.北京:冶金工业出版.2004.
    [5]Shanwen Du, Weisen Chen. Numerical Prediction and Practical Improvement of Pulverized Coal Combustion in Blast Furnace[J]. International Communications in Heat and Mass Transfer.2006.33(3):327-334.
    [6]Jian Chen. A Predictive System for Blast Furnaces by Integrating a Neural Network with Qualitative Analysis[J]. Engineering Applications of Artificial Intelligence. 2001.14(1):77-85.
    [7]Y.S. Shen, B.Y. Guo, A.B. Yu, P. A Three-dimensional Numerical Study of the Combustion of Coal blends in Blast Furnace[J]. Fuel.2009.88(2):255-263.
    [8]周龙义.大高炉炉前设备配置探讨[J].炼铁.2000,19(5):22-25.
    [9]任起龙,张莹.对我国现用高炉开铁口机的分析研究[J].北方工业大学学报.1995,7(1):50-55.
    [10]连成平.高炉开铁口机的合理结构[J].冶金设备.1995,(1):6-10.
    [11]唐英.DDS开铁口机气动系统的改进[J].液压气动与密封.2007,(1):39-41.
    [12]温新周.DDS开口机消化与吸收[J].江苏冶金.2004,32(5):46-47.
    [13]王鲁霞,贾友剑.全液压开铁口机的应用评析与改造[J].莱钢科技.2008,(2):72-73.
    [14]Shen Yuansheng, Liu Zongming, Zhu Tao. The New Technology and the Partial Thermotechnical Computation for Air-cooled Blast Furnace Tuyere[J]. Applied Thermal Engineering.2009.29(5-6):1232-1238.
    [15]Thilo Rennert, Tim Mansfeldt. Sorption and Desorption of Iron-cyanide Complexes in Deposited Blast Furnace Sludge[J]. Water Research.2002.36(19): 4877-4883.
    [16]John G, Mathieson, John S, Truelove, Harold Rogers. Toward an Understanding of Coal Combustion in Blast Furnace Tuyere Injection[J]. Fuel.2005.84(10): 1229-1237.
    [17]Mansheng Chu, Xianzhen Guo, Feng-man Shen. Numerical Analysis of Blast Furnace Performance Under Charging Iron-Bearing Burdens With High Reducibility[J]. Journal of Iron and Steel Research.2007.14(2):13-19.
    [18]钱利康,苏立江,白建民等.昆钢6号高炉开口机国产化过程[J].炼铁.2003,22(1):52-53.
    [19]李文青.唐钢第二炼铁厂3#高炉开口机改造及效果[J].河北冶金.2003,(5):53-54.
    [20]全立新,张树春,袁晓东.宣钢炼铁厂7号高炉炉前设备改造实践[J].炼铁技术通讯.2007,(5):10-13.
    [21]戴琳,李润明,时本宁.太钢高炉液压泥炮开口机的改造[J].炼铁.2004,23(增刊):68-70.
    [22]藏中海,姜竟,王丁子等.世界各国开铁口机分析[J].炼铁.2003,22(5):21-25.
    [23]张秀萍,胡华平,张春义等.高炉开铁口机技术发展与新型开铁口机的研发[J].冶金设备.2007,(6):53-56.
    [24]韩德林.包钢炼铁厂近几年炉前技术的进步[J].包钢科技.1993,(3):64-96.
    [25]张龙来,敖爱国.宝钢高炉炉前作业技术进步[J].炼铁.2005,24(增刊):27-29.
    [26]刘树芳.攀钢高炉开铁口机技术进步[J].四川冶金.2007,29(6):1.4.
    [27]B Desai, S Lenka. Quantification of Blast Furnace Hearth Drainage Parameters through Physical Model Study[J]. Ironmaking & Steelmaking.2007,34(3): 269-271.
    [28]Daisuke Tanaka, Tatsuya Kageyama, Masatsugu Kitamura. Study of Taphole Mix Binders[J]. Journal of the Technical Association of Refractories.2006,26(4): 279-283.
    [29]Melissa L Trapani, Ross K Andrews, Dennis Montgomerie, etc. Instrumentation of a Production Taphole[C].2005 Extraction&Processing Division Congress (EPD). San Francisco, California, USA.2005:985-994.
    [30]Pietro Navarra, Frank Mucciardi, Tim Van Rompaey. Recent Improvements in Evaporative Cooling Technology for Copper Tapholes and Launders[C]. EPD Congress. San Antonio, Texas, USA.2006, Vol.1:17-26.
    [31]朱中华,吴文勇,杨骏等.低耗环保高效开口机的研制及应用[J].炼铁.2006,25(5):38-40.
    [32]Barry C Felton. Taphole Repair Outage at Mittal Steel USA-Burns Harbor[J]. AISE Steel Technology.2006,3(3):157-168.
    [33]Barry C Felton. Taphole Repair Outage ISG Burns Harbor[C]. The Iron & Steel Technology Conference (AISTech 2005). Charlotte, North Carolina, USA.2005, vol.1:363-375.
    [34]C Bell, B Boetcher, F Hribljan, etc. Taphole Maintenance Improvements at Dofasco:Taphole maintenance, equipment and operating practices at Dofasco #4 Blast furnace[C]. Iron & Steel Technology Conference (AISTech 2004). Nashvile, Tennessee, USA.2004, Vol.1:303-321.
    [35]Garadetsky G M. BOF Taphole Sleeve Improvements at Bethlehem Steel-Sparrows Point[J]. Iron & Steelmaker.1996,23(6):23-26.
    [36]He Zhen, Huang Maolin, Xiang Chengxuan. Study and Practice on Elimina-ting Overconstraint to Reduce Sensitivity to Error in Blast Furnace Taphole Drill [J]. Chinese Journal of Mechanical Engineering.2004,17:65-68.
    [37]刘建平,尹忠俊,朱允言.转臂折叠式全液压开铁口机[J].冶金设备.2001,(6):]8-21.
    [38]Martin P Miller. BOF Taphole Drill[J]. AISE Steel Technology.2002,79(9): 48-51.
    [39]S. Gupta, D. R. Sakurovs, M H. Sun, etc. Minerals and Iron-making Reactions in Blast Furnaces[J]. Progress in Energy and Combustion Science.2008.34(2): 155-197.
    [40]温涛,王晨.高炉开铁口钻头的研究与试验分析[J].甘肃冶金.2007,29(4):109-111.
    [41]David Ellis, John Tedbury. Integration of MSC. ADAMS Virtual Prototyping Technology into Westland Helicopters CAD/CAE Architecture[C]. ADAMS conference 2002-Europe,2002.
    [42]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [43]王刚,杨莺,刘少军.虚拟样机技术在工程机械领域的应用[J].工程机械.2003,34(8):11-14.
    [44]颜旭晖.基于虚拟样机技术LED键合机传送机构的设计与研究[D].广东工业大学硕士学位论文,2008.
    [45]Dr. Klaus Jorg Dittmann. Validation of Virtual Prototypes Via A Virtual Test Laboratory[C]. ADAMS conference 2002-Europe,2001.
    [46]ADAMS inc. ADAMS Optimization Guide[M]. MSC. Software Corporation. November,1994:49-57.
    [47]Jiangping Yuan, Qun Fang, Juan Wei. Design and Analysis of Space-Station-Based Micro-Statellite Networks[C]. AAS/AIAA Astrodynamics Specialist Conference. Girdwood, Alaska, AIA. August 1999:1619
    [48]杜中华,王兴贵,狄长春.用Pro/E和ADAMS联合建立复杂机械系统的仿真模型[J].机械.2002,29(增刊):153-154.
    [49]成永昌.基于虚拟样机技术的弹射挂弹机构动力分析[D].西安电子科技大学硕士学位论文,2008.
    [50]Mc Cornville J B. The Application of the ADAMS General-Purpose Mechanical Systems Simulation Code to Aerospace Problems[J]. The 14-th Annual AESS/IEEE Conference.1997:223-225.
    [51]刑俊文,陶永忠.MSC. ADAMS/View高级培训教程[M].北京:清华大学出版社.2004:203-204.
    [52]Yu Wei, Yang Lei, Guan Xiaodong. Application of MSC. Adams/view Technology in Spacecraft Solar Array Dynamic Analysis[J]. Computer Aided Engineering.2006,(1):198-199.
    [53]齐明.虚拟样机技术在低压断路器操作机构中的应用[D].长春理工大学硕士学位论文.2008.
    [54]Reinforced Plastics Group. ABAQUS Wound Composite[J]. Reinforced Plastics. 2006,50(2):31.
    [55]Hiroaki Hoshino. Application of ADAMS for Vibration Analysis and Structure Evaluation by Nastran for Cab Floor of Heavy Duty Truck[C]. ADAMS conference2002-Europe.2002.
    [56]M Prandstottor, H Piener. Simulation of an Engine Speed-up:Integration of MBS-FE-EHD-Fatigue[C]. ADAMS conference 2002-Europe.2002.
    [57]陶金波,孙立波,尹进鸣.无水炮泥使用效果的综合分析[J].山东冶金.2007,29:85-86.
    [58]卢世葵.铁口铁棒埋入法操作[J].宝钢技术.1994,(2):5-8.
    [59]董晓春,刘苗,管山吉.大型高炉用出铁口炮泥的现状与发展[J].莱钢科技.2007,(5):81-83.
    [60]方永辉.包钢高炉出铁口炮泥的发展与进步[J].包钢科技.2007,33(增刊):5-13.
    [61]胡先.高炉炉前操作技术[M].北京:冶金工业出版社,2006.
    [62]张利峰.浅析高炉用炮泥的研究与探索[J].冶金标准化与质量.2005,(43):44-48.
    [63]干福熹.光学玻璃[M].第二版.北京:科学出版社,1982:210.
    [64]占华生,孙加林,陈俊红等.含氮化硅铁的Al2O3-SiC-C炮泥的研制[J].耐火材料.2005,39(4):309-310.
    [65]陈守平,甘菲芳.Si3N4在高炉出铁口炮泥中的应用[J].宝钢技术.1995,(2): 54-59.
    [66]下村兴治.树脂系炮泥[J].全荣译.国外耐火材料.1992,(11):31-37.
    [67]严春风.类混凝土脆性材料断裂力学研究与探索[M].四川:四川科学技术出版社.2005.
    [68]由口梅太郎,西松裕一.岩石力学入门[M].东京:东京大学出版会,1979:108.
    [69]Andrzej Ziebik, Krzysztof Lampert, Marcin Szega. Energy Analysis of a Blast-furnace System Operating with the Corex Process and CO2 Removal [J]. Energy.2008.33(2):199-205.
    [70]Jian Xu, Shengli Wu, Mingyin Kou, Lihua Zhang, Xiaobo Yu. Circumferential Burden Distribution Behaviors at Bell-less Top Blast Furnace with Parallel Type Hoppers[J]. Applied Mathematical Modelling.2011.35(3):1439-1455.
    [71]J.I.Escalante-Garcia, L.J.Espinoza-Perez. Coarse Blast Furnace Slag as a Cementitious Material Comparative study as a Partial Replacement of Portland Cement and as an Alkali Activated Cement[J]. Construction and Building Materials. 2009.23(7):2511-2517.
    [72]Lijun Wu, Huier Cheng. Mathematical Model for On-line Prediction of Bottom and Hearth of Blast Furnace by Particular Solution Boundary Element Method[J]. Applied Thermal Engineering.2003.23(16):2079-2087.
    [73]Sumiya H, Uesaka S, Satoh S. Mechanical Property of High Purity Polycrystalline CBN Synthesized by Direct Conversion Sintering Method[J]. Journal of Materials Science.2000,35:1181-1186
    [74]李军希.高炉炮泥的发展及现状[J].河南冶金.2003,(3):22-26.
    [75]金宗哲.脆性材料力学性能评价与设计[M].北京:中国铁道出版社,1996.
    [76]Jiang Wenping, More Abhijeet S, Brown W D. A CBN-TiN Composite Coating for Carbide Inserts:Coating Characterization and Its Applications for Finish Hard Turning[J]. Surface and Coatings Technology.2006,201(6):2443-2449
    [77]张桃旺.板料拉深过程中的摩擦模型及其有限元模拟研究[D].南昌大学硕士学位论文.2005.
    [78]Louise Elliott. Releases Hosted Collaboration Tool[J]. Design News.2001, 56(18):34.
    [79]傅友宾.基于PRO/E和ADAMS的变速器动力学仿真[D],大连理工大学硕士学位论文.2007.
    [80]朱玉.高精度斜齿轮插削数控加工的运动学、动力学分析及仿真[D].东南大学硕士学位论文.2007.
    [81]尚鹏举,舒大文,岳艳琴.基于Pro/E和ABAQUS的圆柱齿轮参数化建模和啮合模拟仿真[J].新技术新工艺.2010,(9):21-23.
    [82]杨曼娟.ABAQUS用户材料子程序开发及应用[D].华中科技大学硕士学位论文,2005.
    [83]谢世坤.参数化网格划分及其在板料成形有限元分析中的应用[D].南昌大学博士学位论文.2005.
    [84]李昌雪.金属薄板成形模拟及回弹规律研究[D].新疆大学硕士学位论文.2006.
    [85]Zhen He, Maolin Huang, Chengxuan Xiang. Study and Practice on Eliminating Over Constraint to Reduce Sensitivity to Error in Blast Furnace Taphole Drill[C]. 11th World Congress in Mechanism and Machine Science.2004, Vol.3: 1309-1313.
    [86]赖海辉,朱成忠,李夕兵等.机械岩石破碎学[M].长沙:中南工业大学出版社,1991.
    [87]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [88]靳宗向.转臂折叠式开铁口机虚拟样机的研究[D].北京科技大学硕士学位论文,2004.
    [89]洪达灵,顾太和,徐曙光等.钎钢与钎具[M].北京:冶金工业出版社,2000.
    [90]张国榉.凿岩钎具的设计制造和选用[M].长沙:湖南科学技术出版社,1988.
    [91]饶建华,叶凌云,邓群等.40MnB高炉开口机钎杆的研制[J].凿岩机械气动工具.2006,(1):56-59.
    [92]刘建平,廖永峰.高炉开铁口机的轴压扭矩分析[J].北京科技大学学报.2001,23(6):543-546.
    [93]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001.
    [94]Sreejith P S, Krishnamurthy R, Malhotra S K. Effect of Specific Cutting Pressure and Temperature during Machining of Carbon/phenolic Ablative Composite using PCBN tools[J]. Journal of Materials Processing Technology.2007:183(1),88-95
    [95]Krzysztof Lampert, Andrzej Ziebik, Wojciech Stanek. Thermoeconomical Analysis of CO2 Removal from the Corex Export Gas and its Integration with the Blast-furnace Assembly and Metallurgical Combined Heat and Power (CHP) Plant[J]. Energy.2010.35(2):1188-1195.
    [96]Shengfu Zhang, Liangying Wen, Chenguang Bai. Cold Model of Coal Gas Component Concentration Distribution in Blast Furnace Raceway [J]. Journal of Iron and Steel Research.2009.16(6):1-6.
    [97]Xiaohua Liu, Guosheng Gai,Yufen Yang. Kinetics of the Leaching of TiO2 from Ti-bearing Blast Furnace Slag [J]. Journal of China University of Mining and Technology.2008.18(2):275-278.
    [98]V. R. Radhakrishnan, K. Maruthy Ram. Mathematical Model for Predictive Control of the Bell-less Top Charging System of a Blast Furnace [J]. Journal of Process Control.2001.11(5):565-586.
    [99]Mingyan Gu, Guang Chen, Mingchuan Zhang. Three-dimensional Simulation of the Pulverized Coal Combustion Inside Blast Furnace Tuyere[J]. Applied Mathematical Modelling.2010.34(11):3536-3546.
    [100]Haibing Jiang Jianliang Zhang, Jianxun Fu. Properties and Structural Optimization of Pulverized Coal for Blast Furnace Injection[J]. Journal of Iron and Steel Research.2011.18 (3):6-12.
    [101]冯军军,刘麟,顾伯勤.基于ABAQUS的承受外弯矩作用的螺栓法兰连接的参数化研究[J].润滑与密封.2010,35(10):55-58.
    [102]周玉乾,朱永战,王跃功.基于ABAQUS的液压支架整架非线性有限元分析[J].煤矿机械.2010,31(11):92-94.
    [103]李懿,张永霞,李铁英.基于ABAQUS的钢结构相贯节点非线性静力分析[J].山西建筑.2010,36(35):4-6.
    [104]李敏科,李春强.基于ABAQUS的X80钢断裂失效行为模拟研究[J].水利与建筑工程学报.2010,8(6):59.61.
    [105]陈宇.基于ABAQUS的斜拉桥三维有限元静力模型的建立[J].科技资讯.2010,(33):81-81.
    [106]李敏科,李春强,解文正.基于ABAQUS的27SiMn(?)冈管温度场变形分析[J].科技传播.2010,(10):147.148.
    [107]赵腾伦.基于ABAQUS的弹体旋压成形有限元数值模拟[J].精密成形工程.2010,2(6):35-38.
    [108]刘崇慧,王道博,杨士岭等.济钢液气混合动力开口机的使用与维护[J].炼铁.2005,24(4):41-43.
    [109]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005: 164
    [110]谢锋.纳米改性金属陶瓷刀具的研制及其几何参数的数字化设计[D].合肥工业大学博士学位论文.2003:19-20
    [111]朱远志,尹志民,曾渝等.重型发动机气门座圈磨损机理与材料[J].内燃机工程.2004,8(2):78-82
    [112]W.Y.H.Liew, B.K.A.Ngoi, Y.G..Lu. Wear Characteristics of PCBN Tools in the Ultra-precision Machining of Stainless Steel at Low Speeds[J]. Wear.254(2003): 265-277
    [113]刘志峰,张崇高,任家隆.干切削加工技术及应用[M].北京:机械工业出版社,2005
    [114]G.布思罗伊德著,山东工学院机制教研室译.金属切削加工的理论基础[M].济南:山东科学技术出版社,1980:113-117
    [115]陆剑中,孙家宁.金属切削原理与刀具(第4版)[M].北京:机械工业出版社,2005
    [116]刘战强,黄传真,郭培全.先进切削加工技术及应用[M].北京:机械工业出版社,2005
    [117]李忠科,张宇.高速硬切削技术及刀具的合理选择[J].工具技术.2007,(1):89-92
    [118]李成贵,张国维,袁长良.分形维数与表面粗糙度参数的关系[J].工具技术.1997,(12):36-38
    [119]庞俊忠,王敏杰.高速切削淬硬钢的研究进展[J].中国机械工程.2006,(8):421-425
    [120]段春争,王敏杰.高速切削锯齿形切屑内绝热剪切带微观特征研究[J].爆炸与冲击.2007,27(1):91-96
    [121]刘战强.先进刀具设计技术刀具结构、刀具材料与涂层技术[J].航空制造技术.2006,7:38-42
    [122]张锁平.欧洲齿轮刀具技术发展近况简评[J].工具技术.2002,(5):40-41
    [123]于化东.修光刃刀片的应用[J].机械工人冷加工.2002,(10):11-14
    [124]Mills B. Recent Developments in Cutting Tool Materials[J]. Journal of Materials Processing Technology.1996,56(1):16-23
    [125]Bhaumik S K. Divakar C. Singh A K. Machining Ti-6A1-4V Alloy with a WBN-CBN Composite Tool[J]. Materials and Design.1995,16(4):221-222
    [126]Wang Z Y, Rajurkar K P, Murugappan M. Cryogenic PCBN Turning of Ceramic(Si3N4)[J]. Wear.1996,195(1):5-6
    [127]Harris T K, Brookes E J, Taylor C, J. The Effect of Temperature on the Hardness of Polycrystalline Cubic Boron Nitride Cutting Tool Materials[J]. International Journal of Refractory Metals and Hard Materials.2004,22(2):105-110
    [128]Erasmus R M, Comins J D, Fish M L. Raman and Photoluminescence Spectra of Indented Cubic Boron Nitride and Polycrystalline CBN[J]. Diamond and Related Materials.2000,9(6):600-604
    [129]Sigala, Davies, etc. Ultra-hard WC-diamond and WC-BN Composite Materials for Abrasive Tools[P]. WO 2004040029.2004.
    [130]Yong Zhou, Huang. Ceramic/cermet Composites Having Ordered Microstructures for Mining and Machining Cutting Tools[P].U.S.6063502.2002.
    [131]Rong X Z, Fukunaga Q. Cubic BN-WC-Co Composite Sintered at High Pressures and High Temperatures[J]. Technol.1993,3 (2):65-75
    [132]Rong X Z, Fukunaga Q. High-pressure sintering of cBN-TiN-Al Composite for Cutting tool Application[J]. Trails Mater.1994,14:1455-1458
    [133]Poulachon G, Albert A. An Experimental Investigation of Work Material Microstructure Effects on White Layer Formation in PCBN Hard Turning[J]. International Journal of Machine Tools and Manufacture.2005,45(2):211-218
    [134]Evelyn D, Mark P. Elastic Properties of Translucent Polycrystalline Cubic Boron Nitride as Characterized by the Dynamic Resonance Method[J]. Diamond and Related Materials.1999,8(9):1522-1526
    [135]Sumiya Hitoshi, Uesaka Shinya. Properties of High-purity Polycrystalline cBN[J]. New Diamond and Frontier Carbon Technology.2000,10(1):40-51
    [136]Neo K S. Performance Evaluation of Pure CBN Tools for Machining of Steel[J]. Journal of Materials Processing Technology.2003, (140):326-331
    [137]Casanova C A M. Experimental Study of Plastic Deformation during Sintering of Cubic Boron Nitride Compacts[J]. Diamond and Related Materials.1999,8(9): 1451—1454
    [138]Liu X L. Wen D H. Cutting Temperature and Tool Wear of Hard Turning Hardened Bearing Steel[J]. Journal of Materials Processing Technology.2002,129: 200-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700