高炉开口机钻具优化及系统仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国钢铁产业的迅速发展,对高炉炼铁技术和设备均提出了更高的要求。高炉开口机和钻具是高炉炉前关键设备,其运行效果直接影响到高炉安全生产。目前,国内各钢铁厂家均面临着由电动和气动开口机向全液压开口机升级改造的重要课题,而开口机钻具寿命短、成本高、效率低也一直是困扰我国钢铁冶炼行业的技术难题。本课题正是顺应钢铁行业的发展要求,针对济南钢铁集团生产中开口机和钻具存在的技术难题提出的,旨在突破目前高炉开口机和钻具的技术瓶颈,提高生产效率,降低生产成本,推动钢铁行业的发展。
     本文主要采取理论研究、虚拟样机仿真和有限元分析进行高炉钻具和开口机系统的分析研究和优化设计。
     首先分析了高炉炮泥的功能要求、原料配比和理化性能等基本特性;研究了高炉炮泥的结构特性和脆性材料的强度理论,确定了适合炮泥的类混凝土脆性材料破坏准则;建立了高炉出铁口炮泥的有限元模型,利用ABAQUS软件对高炉出铁口炮泥的温度场进行了有限元分析,明确了出铁孔炮泥的温度分布情况,为下一步高炉钻具的受力分析奠定基础。
     建立了开口机钻具系统的虚拟样机模型,用ADAMS软件对模型进行了动力学仿真分析,明确了钻具系统的动力学特性;理论和仿真分析了钻头的受力情况;分析了开口机钻头在常温和高温环境下的失效形式,明确了钻头在开铁口过程中的失效主要是刀片从钻头体刀槽中脱落所致。
     以钎具设计准则为依据,在充分考虑钻头失效原因的基础上,设计了一种新型开口机钻头,并进行了初步的现场试验,结果表明,新型钻头克服了原用钻头在高温下刀片易脱落的缺陷,使用效果明显优于原用钻头,能显著提高生产效率、降低生产成本。
     系统分析了开口机钻杆的工作状态及其产生横向振动的原因;利用钻具系统的动力学模型对钻杆进行了仿真研究,明确了钻杆的动力学特性;提出了一种解决钻杆横向振动的方案,并用ADAMS对方案进行了优化;对比研究结果表明,新方案能够有效降低钻杆的横向振动。
     建立了全液压开口机的虚拟样机整机模型,对开口机开铁口过程进行了动力学仿真分析,明确了开口机整个工作过程的受力状况,并确定了各主要约束处的受力峰值;以此为基础对开口机本体各主要元件进行了有限元分析和强度校核,结果表明全液压开口机方案中各主要承力构件均符合强度要求。
Higher requests to the blast furnace ironmaking technology and equipment were proposed to fit the rapid development in steel and iron industry of our country recently. Tapping machine and its drilling tool are the keys to the blast furnace ironmaking, their operation effect has direct impact to the safety of blast furnace production. At present, domestic steel manufacturers are faced with the important task of rebuilding and upgrading tapping machine from electic or pneumatic to the entire hydraulic. As well as the short lifespan, high cost and low efficiency of the drilling tool have always been the technical problems which puzzle the steel and iron industry in China. This research complies with the requirements of development in the steel and iron industry, and is dead against the technical problems of drilling tool and tapping machine existing in the practical production of the Jinan Steel and Iron Group, and aims to breakthough the technical bottleneck in drilling tool and tapping machine of the blast furnace, to enhance the production efficiency, reduce production cost and promote the development of iron and steel industry.
     This reaserch use theoretical research tool, virtual prototype technology and finite element method to complete the analysis and optimization design of driliing tool and tapping machine of the blast furnace.
     In this thesis, basic characteristics of blast furnace taphole clay such as the function requirements, raw materials allocated proportion, the physical and chemical properties etc. were analyzed. The structure characteristic of taphole clay and the strength theory about brittle material were studied. The destruction criterion of brittle material which is similar to concrete and suitable for taphole clay has been determined. The finite element model of clay in the blast furnace tap hole was built and its temperature field was then analyzed by using ABAQUS. Temperature contour of taphole clay was carried out, which made a foundation for stress analysis of drilling tool in the next stage.
     Virtual prototype model of the tapping machine and drilling tool system was built, dynamic simulation analysis with ADAMS was carried out, therefore the dynamic characteristics of the system were obtained. The drill bit stress was analyzed in theory and simulation. Different failure modes of the drill bit under normal temperature and high temperature were analyzed, the mainly reason of its failure at the process of opening taphole is that the drill edges falling off from the tank of bit body.
     A new tapping machine drill bit was designed according to the design criterion of rock drill on the basis of full consideration the failure reason of dill bit, and the preliminary scene examination was carried. The results indicated that the defect which the blade fell off under the high temperature would be overcomed through the adoption of this new drill. Its working efficiency was distinct enhanced and its cost was obvious reduced compared with original one.
     The drill rod working status of tapping machine was analyzed, and the reasons for the drill rod's transverse vibration were studied. The dynamic simulation research about the drill rod was carried out with ADAMS, and the dynamic characteristics of drill rod have been acquired. A solution for drill rod transverse vibration was proposed and optimized by using ADAMS. The simulation results of new plan show that the transverse vibration of the drill rod can be reduced effectively compared with original one.
     Virtual prototype model of the entire hydraulic tapping machine was built, and its dynamic simulation analysis was carried out. Force status of tapping machine and the maximum force in each constraint in the whole work process were obtained. The finite element analysis and the strenth check of each key element of the tapping machine were finished.
引文
[1]李杰,王晨.我国冶金炉钻具概况[J].凿岩机械气动工具.2007,(1):6-9.
    [2]杜鹤桂.我国高炉炼铁生产现状及未来发展分析[J].鞍钢技术.2006,(5):1-5.
    [3]肖勇.高炉开铁口机改造方案分析[J].新疆钢铁.2000,(2):23-26.
    [4]王筱留.高炉生产知识问答[M].第二版.北京:冶金工业出版,2004.
    [5]周龙义.大高炉炉前设备配置探讨[J].炼铁.2000,19(5):22-25.
    [6]任起龙,张莹.对我国现用高炉开铁口机的分析研究[J].北方工业大学学报.1995,7(1):50-55.
    [7]连成平.高炉开铁口机的合理结构[J].冶金设备.1995,(1):6-10.
    [8]唐英.DDS开铁口机气动系统的改进[J].液压气动与密封.2007,(1):39-41.
    [9]温新周.DDS开口机消化与吸收[J].江苏冶金.2004,32(5):46-47.
    [10]王鲁霞,贾友剑.全液压开铁口机的应用评析与改造[J].莱钢科技.2008,(2):72-73.
    [11]钱利康,苏立江,白建民,等.昆钢6号高炉开口机国产化过程[J].炼铁.2003,22(1):52-53.
    [12]李文青.唐钢第二炼铁厂3#高炉开口机改造及效果[J].河北冶金.2003,(5):53-54.
    [13]全立新,张树春,袁晓东.宣钢炼铁厂7号高炉炉前设备改造实践[J].炼铁技术通讯.2007,(5):10-13.
    [14]戴琳,李润明,时本宁.太钢高炉液压泥炮开口机的改造[J].炼铁.2004,23(增刊):68-70.
    [15]藏中海,姜竟,王丁子,等.世界各国开铁口机分析[J].炼铁.2003,22(5):21-25.
    [16]张秀萍,胡华平,张春义,等.高炉开铁口机技术发展与新型开铁口机的研发[J].冶金设备.2007,(6):53-56.
    [17]韩德林.包钢炼铁厂近几年炉前技术的进步[J].包钢科技.1993,(3):64-96.
    [18]张龙来,敖爱国.宝钢高炉炉前作业技术进步[J].炼铁.2005,24(增刊): 27-29.
    [19]刘树芳,攀钢高炉开铁口机技术进步[J].四川冶金.2007,29(6):1-4.
    [20]B Desai,S Lenka.Quantification of Blast Furnace Hearth Drainage Parameters through Physical Model Study[J].Ironmaking&Steelmaking.2007,34(3):269-271.
    [21]Daisuke Tanaka,Tatsuya Kageyama,Masatsugu Kitamura.Study of Taphole Mix Binders[J].Journal of the Technical Association of Refractories.2006,26(4):279-283.
    [22]Melissa L Yrapani,Ross K Andrews,Dennis Montgomerie,etc.Instrumentation of a Production Taphole[C].2005 Extraction&Processing Division Congress (EPD).San Francisco,California,USA.2005:985-994.
    [23]Pietro Navarra,Frank Mucciardi,Tim Van Rompaey.Recent Improvements in Evaporative Cooling Technology for Copper Tapholes and Launders[C].EPD Congress.San Antonio,Texas,USA.2006,Vol.1:17-26.
    [24]朱中华,吴文勇,杨骏,等.低耗环保高效开口机的研制及应用[J].炼铁.2006,25(5):38-40.
    [25]Barry C Felton.Taphole Repair Outage at Mittal Steel USA-Bums Harbor[J].AISE Steel Technology.2006,3(3):157-168.
    [26]Barry C Felton,Taphole Repair Outage ISG Bums Harbor[C].The Iron & Steel Technology Conference(AISTech 2005).Charlotte,North Carolina,USA.2005,vol.1:363-375.
    [27]C Bell,B Boetcher,F Hribljan,etc.Taphole Maintenance Improvements at Dofasco:Taphole maintenance,equipment and operating practices at Dofasco #4Blast furnace[C].Iron & Steel Technology Conference(AISTech 2004).Nashvile,Tennessee,USA.2004,vol.1:303-321.
    [28]Garadetsky G M.BOF Taphole Sleeve Improvements at Bethlehem Steel-Sparrows Point[J].Iron & Steelmaker.1996,23(6):23-26.
    [29]He Zhen,Huang Maolin,Xiang Chengxuan.Study and Practice on Elimina-ting Overconstraint to Reduce Sensitivity to Error in Blast Furnace Taphole Drill[J]. Chinese Journal of Mechanical Engineering,2004,17(DecS):65-68.
    [30]刘建平,尹忠俊,朱允言.转臂折叠式全液压开铁口机[J].冶金设备.2001,(6):18-21.
    [31]Martin P Miller.BOF Taphole Drill[J].AISE Steel Technology.2002,79(9):48-51.
    [32]Rainer Altland,Georg Grabietz.Discussion following Taphole Design and Experience[J].The Taphole-The Blast Furnace Lifeline:Design/Maintenance/Operating Practices.2001:231-232.
    [33]温涛,王晨.高炉开铁口钻头的研究与试验分析[J].甘肃冶金.2007,29(4):109-111.
    [34]David Ellis,John Tedbury.Integration of MSC.ADAMS Virtual Prototyping Technology into Westland Helicopters CAD/CAE architecture[C].ADAMS conference 2002-Europe,2002.
    [35]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [36]王刚,杨莺,刘少军.虚拟样机技术在工程机械领域的应用[J].工程机械.2003,34(8):11-14.
    [37]颜旭晖.基于虚拟样机技术LED键合机传送机构的设计与研究[D].广东工业大学硕士学位论文,2008.
    [38]Dr.klaus Jorg Dittmann.Validation of Virtual Prototypes Via A Virtual Test Laboratory[C].ADAMS conference 2002-Europe,2001.
    [39]ADAMS inc.ADAMS Optimization Guide[M].MSC.Software Corporation.November,1994:49-57.
    [40]Jiangping Yuan,Qun Fang,Juan wei.Design and Analysis of Space-Station-Based Micro-Statellite Networks[C].AAS/AIAA Astrodynamics Specialist Conference.Girdwood,Alaska,AIA.August 1999:1619
    [41]杜中华,王兴贵,狄长春.用Pro/E和ADAMS联合建立复杂机械系统的仿真模型[J].机械.2002,29(增刊):153-154.
    [42]成永昌.基于虚拟样机技术的弹射挂弹机构动力分析[D].西安电子科技大 学硕士学位论文,2008.
    [43]Mc Cornville J B.The Application of the ADAMS General-Purpose Mechanical Systems Simulation Code to Aerospace Problems[J].The 14-th Annual AESS/IEEE Fairbon.1997:223-225.
    [44]刑俊文,陶永忠.MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004:203-204.
    [45]YU Wei,YANG Lei,GUAN Xiaodong.Application of MSC.Adams/view Technology in Spacecraft Solar Array Dynamic Analysis[J].Computer Aided Engineering.2006,(S1):198-199.
    [46]齐明.虚拟样机技术在低压断路器操作机构中的应用[D].长春理工大学硕士学位论文,2008.
    [47]Reinforced Plastics Group.ABAQUS wound composite[J].Reinforced Plastics.2006,50(2):31.
    [48]Guido Dhondt.Mixed-Mode Intensity Distributions Calculated by the Program ABAQUS[J].Werkstoffe und Bauteile,Technologien und Anwendungen.2000,42(10):396-400.
    [49]张桃旺.板料拉深过程中的摩擦模型及其有限元模拟研究[D].南昌大学硕士学位论文,2005.
    [50]Louise ElliottPTC.Releases Hosted Collaboration Tool[J].Design News.2001,56(18):34.
    [51]傅友宾.基于PRO/E和ADAMS的变速器动力学仿真[D],大连理工大学硕士学位论文,2007.
    [52]朱玉.高精度斜齿轮插削数控加工的运动学、动力学分析及仿真[D].东南大学硕士学位论文,2007.
    [53]M Prandstottor,H Piener.Simulation of an Engine Speed-upTun:integration of MBS-FE-EHD-Fatigue[C].ADAMS conference 2002-Europe,2002.
    [54]Hiroaki Hoshino.Application of ADAMS for Vibration Analysis and Structure Evaluation by Nastran for Cab Floor of Heavy Duty Truck[C].ADAMS conference2002-Europe,2002.
    [55]刘崇慧,王道博,杨士岭,等.济钢液气混合动力开口机的使用与维护[J].炼铁.2005,24(4):41-43.
    [56]陶金波,孙立波,尹进鸣.无水炮泥使用效果的综合分析[J].山东冶金.2007,29(专刊):85-86.
    [57]卢世葵.铁口铁棒埋入法操作[J].宝钢技术.1994,(2):5-8.
    [58]董晓春,刘苗,管山吉.大型高炉用出铁口炮泥的现状与发展[J].莱钢科技.2007,(5):81-83.
    [59]方永辉.包钢高炉铁口炮泥的发展与进步[J].包钢科技.2007,33(增刊):5-13.
    [60]胡先.高炉炉前操作技术[M].北京:冶金工业出版社,2006.
    [61]张利峰.浅析高炉用炮泥的研究与探索[J].冶金标准化与质量.(43):44-48.
    [62]李军希.高炉炮泥的发展及现状[J].河南冶金.2003,(3):22-26.
    [63]占华生,孙加林,陈俊红,等.含氮化硅铁的A1203-SiC-C炮泥的研制[J].耐火材料.2005,39(4):309-310.
    [64]陈守平,甘菲芳.Si3N4在高炉出铁口炮泥中的应用[J].宝钢技术.1995,(2):54-59.
    [65]下村兴治,等.树脂系炮泥[J].全荣译.国外耐火材料.1992,(11):31-37.
    [66]严春风.类混凝土脆性材料断裂力学研究与探索[M].四川:四川科学技术出版社,2005.
    [67]由口梅太郎,西松裕一.岩石力学入门[M].东京:东京大学出版会,1979:108.
    [68]中川元等.材料试验方法[M].东京:养贤堂,1978:115.
    [69]干福熹.光学玻璃[M].第二版.北京:科学出版社,1982:210.
    [70]金宗哲.脆性材料力学性能评价与设计[M].北京:中国铁道出版社,1996.
    [71]杨曼娟.ABAQUS用户材料子程序开发及应用[D].华中科技大学硕士学位论文,2005.
    [72]谢世坤.参数化网格划分及其在板料成形有限元分析中的应用[D],南昌大学博士学位论文,2005.
    [73]李昌雪.金属薄板成形模拟及回弹规律研究[D].新疆大学硕士学位论文, 2006.
    [74]Zhen He,Maolin Huang,Chengxuan Xiang.Study and Practice on Eliminating Overconstraint to Reduce Sensitivity to Error in Blast Furnace Taphole Drill[C].11th World Congress in Mechanism and Machine Science.2004,vol.3:1309-1313.
    [75]赖海辉,朱成忠,李夕兵,等.机械岩石破碎学[M].长沙:中南工业大学出版社,1991.
    [76]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [77]靳宗向.转臂折叠式开铁口机虚拟样机的研究[D].北京科技大学硕士学位论文,2004.
    [78]洪达灵,顾太和,徐曙光,等.钎钢与钎具[M].北京:冶金工业出版社,2000.
    [79]张国榉,等.凿岩钎具的设计制造和选用[M].长沙:湖南科学技术出版社,1988.
    [80]饶建华,叶凌云,邓群,等.40MnB高炉开口机钎杆的研制[J].凿岩机械气动工具.2006,(1):56-59.
    [81]刘建平,廖永峰.高炉开铁口机的轴压扭矩分析[J].北京科技大学学报.2001,23(6):543-546.
    [82]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001.
    [83]郑建荣.ADAMS--虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700