汽油燃料替代混合物均质压燃反应动力学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均质压燃着火(HCCI)概念给出了实现内燃机高效率、低污染的新途径,是目前内燃机燃烧学界及相关领域的研究热点。燃料的化学反应动力学是HCCI燃烧模型的核心,对HCCI燃烧过程与排放研究起到至关重要的作用。作为内燃机的主要燃料,汽油是一种复杂的多组分燃料,其数值模拟仍面临着诸多基础理论上的难题。本文对汽油燃料在均质压燃数值模拟中替代混合物燃烧化学反应动力学模型进行了系统研究。
     首先,以当前被广泛应用作为汽油燃料替代混合物的基础燃料(包含异辛烷和正庚烷)为研究对象,在HCCI发动机工况下进行了针对化学反应动力学耦合计算的研究与分析。通过四种典型反应机理的计算与HCCI发动机相关实验数据比较发现,各反应机理在不同实验状况下性能各异。由此提出了适用于HCCI发动机燃烧过程的基础燃料氧化反应的骨架机理(42种组分和71个反应),该机理可以较准确地预测发动机HC和CO的排放,对着火时刻和燃烧速率等参数的预测精度与详细机理模型基本相同,为耦合化学动力学机理的HCCI发动机多维模型计算创造了必要条件。
     在此基础上考虑芳香烃的重要影响,本文提出使用甲苯参比燃料(包含异辛烷、正庚烷和甲苯)作为汽油燃料替代混合物。目前甲苯参比燃料的研究正处于初级阶段,其氧化反应机理大多为详细化学动力学机理。针对HCCI燃烧工况,构建了一个甲苯参比燃料氧化反应的简化机理(70种组分和196个反应)。此机理在激波管着火滞燃期和HCCI发动机缸内燃烧的计算预测中均表现出较高的准确性。应用响应曲面法确定替代混合物组分的比例,建立了四种数学模型并进行误差分析。模型不但可以进行汽油燃料替代混合物组分比例的确定,而且能够较为准确地预测燃料的研究辛烷值RON和马达辛烷值MON。
     为了评价替代混合物对汽油燃料的预测效果,将基础燃料、甲苯参比燃料与汽油燃料进行了对比研究。在激波管着火滞燃期和HCCI发动机工况条件下,甲苯参比燃料对于汽油的预测计算均是令人满意的,而基础燃料则表现出放热率较低的情况。甲苯在燃烧过程中产生的苯甲基与HO2反应生成大量OH,消耗更多的燃料,提高了系统的反应率。鉴于汽油燃料的替代研究尚需要进一步的完善,本文开展了汽油燃料重要烯烃替代组分——二异丁烯的燃烧特性计算与化学动力学研究,为进一步完善汽油燃料替代混合物化学动力学机理奠定了基础。
Homogenous charge compression ignition (HCCI) combustion is being paid much attention and widely investigated due to their potential for high efficiencies and low emissions. The combustion in HCCI engine is controlled by the chemical kinetics of the fuels, which play a key role in combustion process and emission. Gasoline is one of the most important fuels in internal combustion engine. It is a complex mixture of hundreds of hydrocarbons, and is faced with the problem of many basic theories in numerical simulation. This thesis focuses on developing appropriate kinetic models of gasoline surrogate mixtures for HCCI combustion mode. The principal aim of this work is to understand gasoline HCCI combustion process and further development.
     Primary reference fuel (PRF) is applied widespread as gasoline surrogates. Based on the analysis of PRF detailed mechanism, chemical kinetic calculation was performed in HCCI engine. The computation results with four typical mechanisms including shock tube, rapid compression machine and HCCI engine indicate that these mechanisms are different in concrete experimental conditions. Therefore, a skeleton mechanism for HCCI engine including 42 species and 71 reactions was developed. It could predict CO and HC emissions, ignition point and burn rate of HCCI engine. The simulations show that this skeleton mechanism model generally agrees well with those of the detailed chemical kinetic model. Thus, the highly efficient HCCI engine simulations using chemistry with multi-dimensional CFD are attainable by using the present model.
     With regard to the influence of aromatic hydrocarbon, toluene reference fuel (TRF), a ternary mixture of iso-octane, n-heptane and toluene, is suitable as a gasoline surrogate fuel for HCCI combustion simulation. A review of currently TRF oxidation mechanisms was performed, and it indicates that most of those are detailed chemical kinetic model. A reduced kinetic model for TRF including 70 species and 196 reactions was constructed for HCCI combustion. Comparison of various experimental data, including shock tube tests and HCCI engine experiments, shows that the present TRF mechanism performs well. Response surface method (RSM) is applied for the octane number of any arbitrary tri-component gasoline surrogate consisting of toluene, i-octane and n-heptane. Given the octane number, the component proportion of TRF could be predicted.
     In HCCI combustion conditions, the research results of primary reference fuel, toluene reference fuel and gasoline fuel indicate that the predicted calculation of toluene reference fuel is satisfactory, and heat release rate of primary reference fuel is lower. Addition of toluene, Production benzyl is oxidated to OH with HO2, which consumes more fuel, improves reaction rate. In view of gasoline surrogate mixture is still need further improvement, Diisobutylene, as a important candidate, could be considered. It is an additional component that is important to include based upon present and continuing uses as gasoline surrogate. The HCCI combustion characteristics and chemical kinetic of diisobutylene were studied numerically.
引文
[1] Onishi S, Jo H S, Shoda K, et al. Active thermo– atmosphere combustion (ATAC)– a new combustion process for internal combustion engines [C]. SAE Paper 790501, 1979.
    [2] Noguchi M, Tanaka Y, Takeuchi Y. A study on gasoline engine combustion by observation of intermediate reactive products during combustion [C]. SAE Paper 790840, 1979.
    [3] Najt P M, Foster D E. Compression– ignited homogeneous charge combustion [C]. SAE Paper 830264, 1983.
    [4] Thring R H. Homogeneous– charge compression– ignition (HCCI) engines [C]. SAE Paper 892068, 1989.
    [5] US Department of Energy, Energy Efficiency and Renewable Energy Office of Transportation Technologies, Homogeneous charge compression ignition (HCCI) technology [R]. A Report to the US Congress, April 2001.
    [6]苏万华,赵华,王建昕.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社, 2010.
    [7] Westbrook C K, Dryer F L. Chemical kinetic and modeling of combustion processes [J]. Proceedings of the Combustion Institute, 1981, 18(1): 749-767.
    [8] Zhao H, Li J, Ma T, et al. Performance and analysis of a 4-stroke multi-cylinder gasoline engine with CAI combustion [C]. SAE Paper 2002-01-0420, 2002.
    [9] Yang J, Culp T, Kenney T. Development of a gasoline engine system using HCCI technology– the concept and the test results [C]. SAE Paper 2002-01-2832, 2002.
    [10] Christensen M, Hultqvist A, Johansson B. Demonstrating the multi-fuel capability of a homogenous charge compression ignition engine with variable compression ratio [C]. SAE Paper 1999-01-3679, 1999.
    [11] Oakley A, Zhao H, Ma T, et al. Dilution effects on the controlled auto-ignition (CAI) combustion of hydrocarbon and alcohol fuels [C]. SAE Paper 2001-01-3606, 2001.
    [12] Zhao H, Peng Z, Williams J, et al. Understanding the effects of recycled burnt gases on the controlled autoignition (CAI) combustion in four-stroke gasoline engines [C]. SAE Paper 2001-01-3607, 2001.
    [13] Zhao H, Peng Z, Ladommatos N. Understanding of controlled auto-ignition combustion in a four-stroke gasoline engine [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(12): 1297-1310.
    [14] Willand J, Nieberding R G, Vent G, et al. The knocking syndrome– its cure and its potential[C]. SAE Paper 982483, 1998.
    [15] Koopman L, Denbratt I. A four stroke camless engine operated in homogeneous charge compression ignition mode with commercial gasoline [C]. SAE Paper 2001-01-3610, 2001.
    [16] Law D, Allen J, Kemp D, et al. Controlled combustion in an IC-engine with a fully variable valve train [C]. SAE Paper 2001-01-0251, 2001.
    [17] Wolters P, Salber W, Geiger J, et al. Controlled auto-igntion combustion process with an electromechanical valve train [C]. SAE Paper 2003-01-0032, 2003.
    [18] Yeom K, Jang J, Bae C. Homogeneous charge compression ignition of LPG and gasoline using variable valve timing in an engine [C]. Fuel, 2007, 86(4): 494-503.
    [19] Lee C H, Lee K H. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine [J]. Experimental Thermal and Fluid Science, 2007, 31(8): 1121-1132.
    [20] Urushihara T, Hiraya K, Kakuhou A, et al. Expansion of HCCI operating region by the combination of direct fuel injection, negative valve overlap and internal fuel reformation [C]. SAE Paper 2003-01-0749, 2003.
    [21] Milovanovic N, Blundell D, Gedge S, et al. SI-HCCI-SI mode transition at different engine operating conditions [C]. SAE Paper 2005-01-0156, 2005.
    [22] Li J, Zhao H, Ladommatos N, et al. Research and development of controlled auto-ignition (CAI) combustion in 4-stroke multi-cylinder gasoline engine [C]. SAE Paper 2001-01-3608, 2001.
    [23] Stokes J, Lake T H, Murphy R D, et al. Gasoline engine operation with twin mechanical variable lift (TMVL) valvetrain [C]. SAE Paper 2005-01-0752, 2005.
    [24] Cairns A, Blaxill H. The effects of combined internal and external exhaust gas recirculation on gasoline controlled auto-ignition [C]. SAE Paper 2005-01-0133, 2005.
    [25] Hyv?nen J, Haraldsson G, Johansson B. Supercharging HCCI to extend the operating range in a multi-cylinder VCR-HCCI engine [C]. SAE Paper 2003-01-3214, 2003
    [26]陈韬.拓展汽油HCCI燃烧运行范围的试验研究[D].天津:天津大学硕士学位论文, 2006.
    [27] Christensen M, Johansson B, Amnéus P, et al. Supercharged homogeneous charge compression ignition [C]. SAE Paper 980787, 1998.
    [28] Olson J O, Tunestal P, Johansson B. Boosting for high load HCCI [C]. SAE Paper 2004-01-0940, 2004.
    [29] Cairns A, Blaxill H. Lean boost and exhaust recirculation for high load controlled autoignition [C]. SAE Paper 2005-01-3744, 2005.
    [30] Hatamura K. A study on HCCI (homogenous charge compression ignition) gasoline engine supercharged by exhaust blow down pressure [C]. SAE Paper 2007-01-1873, 2007.
    [31]尧命发,郑尊清,沈捷,等.辛烷值对均质压燃发动机燃烧特性和性能的影响[J].燃烧科学与技术, 2004, 10(3): 244-249.
    [32]郑尊清,尧命发,张波,等.均质压燃的燃烧循环变动试验[J].天津大学学报, 2005, 38(6): 485-489.
    [33] Urushihara T, Yamaguchi K, Yoshizawa K, et al. A study of a gasoline-fuelled compression ignition engine-expansion of HCCI operation range using SI combustion as a trigger of compression ignition [C]. SAE Paper 2005-01-0180, 2005.
    [34] Osbourne R J, Li G, Sapsford S M, et al. Evaluation of HCCI for future gasoline powertrains [C]. SAE Paper 2003-01-0750, 2003.
    [35] Hyv?nen J, Haraldson G, Johansson B. Operating conditions using spark assisted HCCI combustion during combustion mode transfer to SI in a multi-cylinder VCR-HCCI engine [C]. SAE Paper, 2005-01-0109, 2005.
    [36] Milovanovic M, Blundell D, Pearson R, et al. Enlarging the operational range of a gasoline HCCI engine by controlling the temperature [C]. SAE Paper 2005-01-0157, 2005.
    [37] Aroonsrisopon T, Werner P, Waldman J Q, et al. Enlarging the operational range of a gasoline HCCI engine by controlling the coolant temperature [C]. SAE Paper 2005-01-0157, 2005.
    [38] Sj?berg M, Dec J, Cernansky N P. Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments [C]. SAE Paper 2005-01-0113, 2005.
    [39] Koopmans L, Str?m H, Lundgren S, et al. Demonstrating a SI-HCCI-SI mode change on a volvo 5-cylinder electronic valve control engine [C]. SAE Paper 2003-01-0753, 2003.
    [40]贾明.均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究[D].大连:大连理工大学博士学位论文, 2006.
    [41] Westbrook C K, Dryer F L. Chemical kinetic modeling of hydrocarbon combustion [J]. Progress in Energy and Combustion Science, 1984, 10: 1-57.
    [42] Chen W, Shuai S, Wang J. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel [J]. Fuel, 2009, 88: 1927-1936.
    [43] Daling D K, Haider G, Pugmire R J, et al. Application of new C-13 NMR techniques to the study of products from catalytic hydrodeoxygenation of Src-li liquids [J]. Fuel, 1984, 63(4): 525-529.
    [44] Pitz W J, Cernansky N P, Dryer F L, et al. Development of an experimental database and chemical kinetic models for surrogate gasoline fuels [C]. SAE Paper 2007-01-0175, 2007.
    [45] Easley W L, Agarwal A, Lavoie G A. Modeling of HCCI combustion and emissions using detailed chemistry [C]. SAE Paper 2001-01-1029, 2001.
    [46] Eng J A, Leppard W R, Sloane T M. The effect of di-tertiary butyl peroxide (DTBP) addition to gasoline on HCCI combustion [C]. SAE Paper 2003-01-3170, 2003.
    [47] Jerzembeck S, Peters N, Pepiot-Desjardins P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation [J]. Combustion and Flame, 2009, 156: 292-301.
    [48]姚春德,王阳,宋金瓯,等.汽油与异辛烷/正庚烷的燃烧特性分析[J].内燃机学报, 2009, 27(2): 116-120.
    [49] Risberg P, Kalghatgi G, Angstrom H. Auto-ignition quality of gasoline-like fuels in HCCI engines [C]. SAE Paper 2003-01-3215, 2003.
    [50] Bieleveld T, Frassoldati A, Cuoci A, et al. Experimental and kinetic modeling study of combustion of gasoline, its surrogates and components in laminar non-premixed flows [J]. Proceedings of the Combustion Institute, 2009, 32: 493-500.
    [51] Machrafi H, Cavadias S. Three-stage autoignition of gasoline in an HCCI engine: an experimental and chemical kinetic modeling investigation [J]. Combustion and Flame, 2008, 155: 557-570.
    [52] Mittal G, Sung C. Homogeneous charge compression ignition of binary fuel blends [J]. Combustion and Flame, 2008, 155: 431-439.
    [53] Ogink R, Golovitchev V. Gasoline HCCI modeling: An engine cycle simulation code with a multi-zone combustion model [C]. SAE Paper 2002-01-1745, 2002.
    [54] Gauthier B M, Davidson D F, Hanson R K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures [J]. Combustion and Flame, 2004, 139: 300-311.
    [55] Dagaut P, TogbéC. Oxidation kinetics of butanol-gasoline surrogate mixtures in a jet-stirred reactor: Experimental and modeling study [J]. Fuel, 2008, 87: 3313-3321.
    [56] Zhang F,Shuai S, Wang Z, et al. A detailed oxidation mechanism for the prediction of formaldehyde emission from methanol-gasoline SI engines [J]. Proceedings of the Combustion Institute, 2011, 33: 3151-3158.
    [57] Cancino L R, Fikri M, Oliveira A A M, et al. Ignition delay times of ethanol-containing multi-component gasoline surrogates: Shock-tube experiments and detailed modeling [J]. Fuel, 2011, 90: 1238-1244.
    [58] Fikri M, Herzler J, Starke R, et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures [J]. Combustion and Flame, 2008, 152: 276-281.
    [59] Lenhert D B, Miller D L, Cernansky N P, et al. The oxidation of a gasoline surrogate in the negative temperature coefficient region [J]. Combustion and Flame, 2009, 156: 549-564.
    [60] Mehl M, Pitz W J, Westbrook C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions [J]. Proceedings of the Combustion Institute, 2011, 33: 193-200.
    [61] Machado G B, Barros J M, Braga S L, et al. Investigations on surrogate fuels for high-octane oxygenated gasolines [J]. Fuel, 2011, 90: 640-646.
    [62] Cancino L R, Fikri M, Oliveira A A M, et al. Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressure: Experimental and numerical approaches [J]. Proceedings of the Combustion Institute, 2009, 32: 501-508.
    [63] Andrae J C G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel, 2008, 87: 2013-2022.
    [64] Andrae J C G, Head R A. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame, 2008, 156: 842-851.
    [65] Naik C V, Pitz W J, Westbrook C K, et al. Detailed chemical kinetic modeling of surrogate fuels for gasoline and application to an HCCI engine [C]. SAE Paper 2005-01-3741, 2005.
    [66] Viljoen C L, Yates A D B, Swarts A, et al. An investigation of the ignition delay character of different fuel components and an assessment of various autoignition modeling approaches [C]. SAE Paper 2005-01-2084, 2005.
    [67] Ra Y, Reitz R D. A combustion model for IC engine combustion simulations with multi-component fuels [J]. Combustion and Flame, 2011, 158: 69-90.
    [68] Puduppakkam K V, Liang L, Naik C V, et al. Combustion and emissions modeling of a gasoline HCCI engine using model fuels [C]. SAE Paper 2009-01-0669, 2009.
    [69] Kalghatgi G T, Hildingsson L, Harrison A J, et al. Autoignition quality of gasoline fuels in partially premixed combustion in diesel engines [J]. Proceedings of the Combustion Institute, 2011, 33: 3015-3021.
    [70] Cracknell R F, Andrae J C G, McAllister L J, et al. The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes [J]. Combustion and Flame, 2009, 156: 1046-1052.
    [71] Touchard S, Fournet R, Glaude P A, et al. Modeling of the oxidation of large alkenes at low temperature [J]. Proceedings of Combustion Institute, 2005, 30(1): 1073-1081.
    [72] Metcalfe W K, Pitz W J, Curran H J, et al. The development of a detailed chemical kinetic mechanism for diisobutylene and comparison to shock tube ignition times [J]. Proceedings of Combustion Institute, 2007, 31: 377-384.
    [73] Cavallotti C, Rota R, Faravelli T, et al.“Ab initio”evaluation of primary cyclo-hexaneoxidation reaction rates [J]. Proceedings of Combustion Institute, 2007, 31: 201-209
    [74] Buda F, Heyberger B, Fournet R, et al. Modeling of the gas-phase oxidation of cyclohexane [J]. Energy and Fuels, 2006, 20(4): 1450-1459.
    [75] Pitz W J, Naik C V, Mhaolduin T N, et al. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine [J]. Proceedings of Combustion Institute 2007, 31: 267-275.
    [76] Li J, Kazakov A, Dryer F L. Chemical kinetics of ethanol oxidation [R]. 2nd European Combustion Meeting, Louvain-la-Neuve, Belgium, 2005.
    [77] Li J, Kazakov A, Dryer F L. Experimental and numerical studies of ethanol decomposition reactions [J]. J. Phys. Chem. A 2004. 108(38): 7671-7680.
    [78] Marinov N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. Int. J. Chem. Kinet. 1999, 31: 183-220.
    [79] Zhao F, Asmus T W, Assanis D N, et al. Homogeneous charge compression ignition (HCCI) engines: Key research and development issues [C]. Warrendate, PA: Society of Automotive Engines, 2003.
    [80] Semenov N N. Chemical kinetics and chain reactions [M]. 1935, London: Oxford University Press.
    [81] Pilling M J. Comprehensive chemical kinetics [M]. 1997, Vol.35, Elsevier.
    [82] Ranzi E T, Gaffuri P, Faravelli T, et al. A wide-range modeling study of n-heptane oxidation [J]. Combustion and Flame, 1995, 108(1/2): 91-106.
    [83] Ranzi E T, Faravelli T, Gaffuri P, et al. A wide-range modeling study of iso-octane oxidation [J]. Combustion and Flame, 1997, 108(1/2): 24-42.
    [84] Curran H J, Gaffuri P, Pit W J, et al. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame, 114(1/2): 149-177.
    [85] Curran H J, Gaffuri P, Pit W J, et al. A comprehensive modeling study of iso-octane oxidation [J]. Combustion and Flame, 129(3): 253-280.
    [86] Livengood J, Wu P. Correlation of autoignition phenomenon in internal combustion engines and rapid compression machines [J]. Proceedings of the Combustion Institute, 1995, 5(1): 347-356.
    [87] Douaud A M, Eyzat P. Four-octane-number method for predicting the anti-knock behavior of fuels in engines [C]. SAE Paper 780080, 1978.
    [88] Ryan-III T W, Callahan T J. Homogeneous charge compression ignition of diesel fuel [C]. SAE Paper 961160, 1996.
    [89] Halstead M P, et al. The auto-ignition of hydrocarbon fuels at high temperatures andpressure-fitting of mathematical model [J]. Combustion and Flame, 1977, 30: 45-60.
    [90] Hamosfakidis V, Raitz R D. Optimization of a hydrocarbon fuel ignition model for two single component surrogates of diesel fuel [J]. Combustion and Flame, 2003, 132: 433-450.
    [91] Zheng J, Miller D L, Cernansky N P. A global reaction model for the HCCI combustion process [C]. SAE Paper 2004-01-2950, 2004.
    [92] Tanaka S, Ayala F, Keck J C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine [J]. Combustion and Flame, 2003, 133(4): 467-481.
    [93] Zheng J, Yang W, Miller D L, et al. A skeletal chemical kinetic model for the HCCI combustion process [J]. SAE Paper 2002-01-0423, 2002.
    [94]郑朝蕾,尧命发.正庚烷均质压燃燃烧反应简化动力学模型研究[J].燃烧科学与技术, 2005, 11(6): 547-553.
    [95]黄豪中,苏万华.一个新的用于HCCI发动机燃烧研究的正庚烷化学反应动力学简化模型[J].内燃机学报, 2005, 23(1): 42-51.
    [96]王志,帅石金,王建昕.高辛烷值燃料HCCI燃烧特性的变参数研究[J].内燃机学报, 2005, 23(4): 329-335.
    [97] Jia M, Xie M. A chemical kinetics model of iso-octane oxidation for HCCI engines [J]. Fuel, 2006, 85: 2593-2604.
    [98] Westbrook C K, Dryer F L. Chemical kinetic and modeling of combustion processes [J]. Proceedings of the Combustion Institute, 1981, 18(1): 749-767.
    [99] Wagner A F. The challenges of combustion for chemical theory [J]. Proceedings of the Combustion Institute, 2002, 29(1): 1173-1200.
    [100] Ritter E R, Bozzelli J W. Thermodynamic property estimation for gas phase radicals and molecules [J]. International Journal of Chemical Kinetics, 1991, 23(9): 767-778.
    [101] Benson S W. Thermochemical kinetic [M]. New York: John Wiley & Sons, 1976.
    [102] Ranzi E, Faravelli T, Sogaro A, et al. A wide range modeling study of propane and n-butane oxidation [J]. Combustion Science and Technology, 1994, 100: 229-330.
    [103] Frouzakis G E, Boulouchos K. Analysis and reduction of the CH4-air mechanism at lean conditions [J]. Combustion Science and Technology, 2000, 151: 281-303.
    [104] Dagaut P, Cathonnet M, Boettner J C. Ethylene pyrolysis and oxidation: a kinetic modeling study [J]. International Journal of Chemical Kinetics, 1990, 22: 641-664.
    [105] Simmie J M. Detailed chemical kinetic models for the combustion of hydrocarbon fuels [J]. Progress in Energy and Combustion Science, 2003, 29: 599-634.
    [106] Battin-Leclerc F. Detailed chemical kinetic models for the low-temperature combustion ofhydrocarbons with application to gasoline and diesel fuel surrogates [J]. Progress in Energy and Combustion Science, 2008, 34(4): 440-498.
    [107] Griffiths J F. Reduced kinetic models and their application to practical combustion systems [J]. Progress in Energy and Combustion Science, 1995, 21(1): 25-107.
    [108] Glaude P A, et al. Construction and simplification of a model for the oxidation of alkanes [J]. Combustion and Flame, 2000, 122: 451-462.
    [109] Broadbelt J, et al. Rate-based construction of kinetic models for complex systems [J]. Comput. Chem. Eng., 1996, 20: 113-122.
    [110] Turányi T. Applications of sensitivity analysis to combustion chemistry [J]. Reliability Engineering and System Safety, 1997, 57(1): 41-48.
    [111]赵昌普,陈生齐,李艳丽,等.正庚烷燃烧详细化学动力学模型的简化及其有效性分析[J].内燃机学报, 2008, 26(4): 346-352.
    [112] Lu T F, Law C K. Strategies for mechanism reduction for large hydrocarbons: n-heptane [J]. Combustion and Flame, 2008, 154(1/2): 153-163.
    [113] Lam S H, Goussis D A. The CSP method of simplifying kinetics [J]. International Journal of Chemical Kinetics, 1994, 26: 461-486.
    [114] Valorani M, Creta F, Goussis D A, et al. An automatic procedure for the simplication of chemical kinetic mechanisms based on CSP [J]. Combustion and Flame, 2006, 146: 29-51.
    [115] Turanyi T. Reaction rate analysis of complex kinetic systems [J]. International Journal Chemical Kinetics, 1989, 21(2): 83-99.
    [116] Maas U, Pope S B. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space [J]. Combustion and Flame, 1992, 88: 239-264.
    [117]叶栋,邱榕,蒋勇.一种固有低维流形的计算方法[J].燃烧科学与技术, 2008, 14(3): 269-274.
    [118] Keck J C. Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems [J]. Progress in Energy and Combustion Science, 1990, 16: 125-154.
    [119]蒋勇,邱榕.复杂化学机理简化的关联水平法[J].化学学报, 2010, 68(5): 403-412.
    [120] Lu T, Law C K. A directed relation graph method for mechanism reduction [J]. Proceedings of the Combustion Institute, 2005, 30: 1333-1341.
    [121] Lu T, Law C K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane [J]. Combustion and Flame, 2006, 14: 24-36.
    [122] Pepiot-Desjardins P, Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms [J]. Combustion and Flame, 2008, 154: 67-81.
    [123]蒋勇,邱榕.基于直接关系图法的碳氢燃料复杂化学机理简化[J].物理化学学报, 2009,25(5): 1019-1025.
    [124] Sun W, Chen Z, Gou X, et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms [J]. Combustion and Flame, 2010, 157: 1298-1307.
    [125]苟小龙,陈正,孙文廷,等.一种新型动态自适应反应动力学机理简化法[J].内燃机学报, 2010, 28: 514-518.
    [126] Kee R J, Rupley F M, Miller J A, et al. CHEMKIN release 4.1 [CP/DK]. Reaction Design, San Diego, CA, 2006.
    [127] Smith G P, et al. Http://www.me.berkeley.edu/gri_mech/. GRI-mech3.0 data [DB/OL].
    [128] Curran H J, Pitz W J, Westbrook C K, et al. Oxidation of automotive primary reference fuels at elevated pressures [R]. Twenty-Seventh (International) Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1998, 379-387.
    [129] Aroonsrisopon T, Sohm V, Werner P, et al. An investigation into the effect of fuel composition on HCCI combustion characteristics [C]. SAE Paper 2002-01-2830, 2002.
    [130] Cox R A, Cole J A. Chemical aspects of the autoignition of hydrocarbon-air mixtures [J]. Combustion and Flame, 1985, 60 (2): 109—123.
    [131] Hu H, Keck J C. Autoignition of adiabatically compressed combustion gas mixtures [C]. SAE Paper 872110, 1987.
    [132] Griffiths J F, Hughes K J, Schreiber M. A unified approach to the reduced kinetic modeling of alkane combustion [J]. Combustion and Flame, 1994, 99 (3/4): 533-540.
    [133] Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion [J]. Proceedings of the Combustion Institute, 2009, 32 (2): 2835-2841.
    [134] Davis S G, Law C K. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames [J]. Proceedings of the Combustion Institute, 1998, 27 (1): 521-527.
    [135] Ogink R, Golovitchev V. Gasoline HCCI modeling: computer program combining detailed chemistry and gas exchange processes [C]. SAE Paper 2001-01-3614, 2001.
    [136] Chaos M, Kazakov A, Zhao Z, et al. A high-temperature chemical kinetic model for primary reference fuels [J]. International Journal of Chemical Kinetic, 2007, 39(7): 399-414.
    [137] Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels [J]. Combustion and Flame, 2008, 155 (4): 713-738.
    [138] Jerzembeck S, Peters N, Pepiot-Desjardins, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline: experimental and numerical investigation [J]. Combustion and Flame, 2009, 156 (2): 292-301.
    [139] Callahan C V, Held T J, Dryer F L, et al. Experimental data and kinetic modeling of primary reference fuel mixtures [R]. Twenty-Sixth (International) Symposium on Combustion, TheCombustion Institute, Pittsburgh, PA, 1996, 739-746.
    [140] Buda F, Bounaceur R, Warth V, et al. Progress towards an unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K [J]. Combustion and Flame, 2005, 142 (1/2): 170-386.
    [141] Andrae J, Johansson D, Bj?rnbom P, et al. Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/ toluene blends [J]. Combustion and Flame, 2005, 140 (4): 267-286.
    [142] Vermeer D J, Meyer J W, Oppenheim A K. Auto-ignition of hydrocarbons behind reflected shock waves [J]. Combustion and Flame, 1972, 18 (3): 327-336.
    [143] Fieweger K, Blumenthal R, Adomeit G. Self-ignition of SI engine model fuels: a shock tube investigation at high pressure [J]. Combustion and Flame, 1997, 109 (4): 599-619.
    [144] Gauthier B M, Davidson D F, Hanson R K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures [J]. Combustion and Flame, 2004, 139 (4): 300-311.
    [145] Griffiths J F, Halford-Maw P A, Rose D J. Fundamental features of hydrocarbon autoignition in a rapid compression machine [J]. Combustion and Flame, 1993, 95 (3): 291-306.
    [146] Minetti R, Carlier M, Ribaucour M, et al. Comparison of oxidation and autoignition of the two primary reference fuels by rapid compression [R]. Twenty-Sixth (International) Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1996, 747-753.
    [147] Tanaka S, Ayala F, Keck J C, et al. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives [J]. Combustion and Flame, 2003, 132 (1/2): 219-239.
    [148] Dryer F L, Brezinsky K. A flow reactor study of the oxidation of n-octane and iso-octane [J]. Combustion Science and Technology, 1986, 45 (1): 199-212.
    [149] Dagaut P, Reuillon M, Cathonnet M. High pressure oxidation of liquid fuels from low to high temperature. 1. n-heptane and iso-octane [J]. Combustion Science and Technology, 1994, 95 (1/6): 233-260.
    [150] Dubreuil A, Foucher F, C.M.R, et al. HCCI combustion: effect of NO in EGR [J]. Proceedings of the Combustion Institute, 2007, 31 (2): 2879-2886.
    [151] Dec J E, Sj?berg M. A parametric study of HCCI combustion- the sources of emissions at low loads and the effects of GDI fuel injection [C]. SAE Paper 2003-02-0752, 2003.
    [152] LüX C, Chen W, Hou Y C, et al. Study on the ignition, combustion and emissions of HCCI combustion engines fueled with primary reference fuels [C]. SAE Paper 2005-01-0155, 2005.
    [153] Davidson D F, Gauthier B M, Hanson R K. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures [J]. Proceedings of the Combustion Institute, 2005, 30 (1): 1175-1182.
    [154] Patel A, Kong S C, Reitz R D. Development and validation of reduced reaction mechanism for HCCI engine simulation [C]. SAE Paper 2004-01-0558, 2004.
    [155] Ciezki H K, Adomeit G. Shock-tube investigation of self-ignition of n-heptane-air mixture under engine relevant conditions [J]. Combustion and Flame, 1993, 93 (4): 421-433.
    [156] Andrae J C G, Bj?rnbom P, Cracknell R F, et al. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics [J]. Combustion and Flame, 2007, 149(1/2): 2-24.
    [157] Chaos M, Zhao Z, Kazakov A, et al. A PRF+toluene surrogate fuel model for simulating gasoline kinetics [R]. 5th U.S. Combustion Meeting Organized by the Western States Section of the Combustion Institute, 2007.
    [158] Klotz S D, Brezinsky K, Glassman I. Modeling the combustion of toluene-butane blends [R]. Twenty-Seventh Symposium on Combustion/ The Combustion Institute, 1998, 337-344.
    [159] Sakai Y, Miyoshi A, Koshi M, et al. A kinetic modeling study on the oxidation of primary reference fuel– toluene mixtures including cross reactions between aromatics and aliphatics [J]. Proceedings of the Combustion Institute, 2009, 32(1): 411-418.
    [160] Ogura T, Sakai Y, Miyoshi A, et al. Modeling of the oxidation of primary reference fuel in the presence of oxygenated octane improvers: ethyl tert-butyl ether and ethanol [J]. Energy Fuels, 2007, 21(6): 3233-3239.
    [161] Pitz W J, Seiser R, Bozzelli J W, et al. Chemical kinetic characterization of the combustion of toluene [R]. Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001.
    [162] Anderlohr J M, Bounaceur R, Pires Da Cruz A, et al. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels [J]. Combustion and Flame, 2009, 156(2): 505-521.
    [163] Machrafi H, Cavadias S, Amouroux J. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates [J]. Fuel Processing Technology, 2009, 90: 247-263.
    [164] Sivaramakrishnan R, Tranter R S, Brezinsky K. A high pressure model for the oxidation of toluene [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1165-1173.
    [165] Alzueta M U, Glarborg P, Dam-johansen K. Experimental and kinetic modeling study of the oxidation of benzene [J]. Int. J. Chem. Kinet. 2000, 32: 498-522.
    [166] Http://maeweb.ucsd.edu/~combustion/cermech.html, 2005. [DB/OL]
    [167] Oehlschlaeger M A, Davidson D F, Hanson R K. Thermal decomposition of toluene: overallrate and branching ratio [J]. Proceedings of the Combustion Institute, 2007, 31(1): 211-219.
    [168] Oehlschlaeger M A, Davidson D F, Hanson R K. Experimental investigation of toluene + H→benzyl + H2 at high temperatures [J]. J. Phys. Chem. A. 2006, 110:9867-9873.
    [169] Oehlschlaeger M A, Davidson D F, Hanson R K. Investigation of the reaction of toluene with molecular oxygen in shock-heated gases [J]. Combustion and Flame, 2006, 147 (3): 195-208.
    [170] Seta T, Nakajima M, Miyoshi A. High-temperature reactions of OH radicals with benzene and toluene [J]. J. Phys. Chem. A. 2006, 110: 5081-5090.
    [171] Silva, G. and Bozzelli J. W. Kinetic modeling of the benzyl + HO2 reaction [J]. Proceedings of the Combustion Institute, 2009, 32 (1): 287-294.
    [172] Box G E P, Wilson K B. On the experimental attainment of optimum conditions (with discussion) [J]. Journal of the Royal Statistical Society Series B, 1951, 13 (1): 1-45.
    [173] Bezerra M A, Santelli R E, Oliverira E P, et al. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry [J]. Talanta, 2008, 76 (5): 965-977.
    [174] Morgan N, Smallbone A, Bhave A, et al. Mapping surrogate gasoline compositions into RON/MON space [J]. Combustion and Flame, 2010, 157 (6): 1122-1131.
    [175] Standard test method for research octane number of spark-ignition engine Fuel [S]. ASTM D2699-08.
    [176] Standard test method for motor octane number of spark-ignition engine fuel [S]. ASTM D2700-08.
    [177] Heywood J. Internal combustion engine fundamentals [M]. McGraw Hill, 1988.
    [178] Kalghatgi G, Risberg P, Angstrom H E. A method of defining ignition quality of fuels in HCCI engines [C]. SAE Paper 2003-01-1716, 2003.
    [179] Kalghatgi G, Head B. The available and required autoignition quality of gasoline-like fuels in HCCI engines at high temperatures [C]. SAE Paper 2004-01-1969, 2004.
    [180] Zhang B, Yao M, Yang D, et al. Experimental study on the effect of fuel properties on HCCI combustion characteristics at various intake temperatures [J]. Transactions of CSICE, 2008, 26(1): 1-10.
    [181] Kaiser E W, Siegl W O, Cotton D F. Effect of fuel structure on emissions from a spark-ignited engine.3.olefinic fuels [J]. Environmental Science and Technology, 1993, 27(7): 1440-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700