丁醇燃烧反应动力学的实验与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对生物质能这一可再生能源的开发有助于全球能源短缺和温室气体排放等重大问题的解决。与传统的生物乙醇相比,生物丁醇具有更高的能量密度、更好的适用性、更低的挥发性以及吸水性等优点,使其成为极具应用潜力的生物质燃料。对丁醇进行燃烧反应动力学研究有助于我们更好地理解丁醇的燃烧特性和燃烧反应过程,从而更好地利用这种新兴生物质燃料。但前人对丁醇的基础燃烧实验研究工作多偏重于在常压或接近常压的压力条件以及氧化反应氛围下对宏观燃烧参数和稳定燃烧物种浓度的测量,特别缺乏对自由基、烯醇等活泼燃烧中间体的全面测量,导致现有丁醇燃烧反应动力学模型无法得到全面的验证。针对这一问题,本文利用同步辐射真空紫外光电离质谱(SVUV-PIMS)技术,在国际上首次研究了四种丁醇的变压力热解。结合燃料子机理中关键基元反应的高精度量子化学计算(下简称量化计算)和速率常数计算发展出了全新的详细丁醇燃烧反应动力学模型,并利用本文实验结果和前人的实验数据对本文模型进行了全面的验证,从而深入系统地研究了丁醇的燃烧反应动力学。
     实验方面,用SVUV-PIMS技术研究了四种中丁醇在800~1600K温度下的流动管热解,并通过改变热解腔中的压力研究了5~760Torr范围内丁醇热解过程随压力的变化规律。通过扫描光电离效率谱对热解过程中生成的不同类型中间体进行了鉴别,在每种丁醇的热解中都检测到了20~30种热解产物,其中包括了自由基、同分异构体、醛酮类含氧物种以及乙烯醇、丙烯醇和丁烯醇等不稳定烯醇类物种。通过在选定的光子能量下改变热解温度,得到了不同压力条件下质谱信号随温度的变化情况,从中推导出各热解物种的摩尔分数曲线。通过对流动管中温度分布曲线的测量以及压力分布曲线的计算,准确地描述了流动管的物理模型。此外,还利用SVUV-PIMS技术研究了正丁醇4个当量比在0.7-1.8之间的低压层流预混火焰。通过扫描光电离效率谱鉴别了燃烧中间体,并通过扫描炉子表面位置,测量了正丁醇火焰物种摩尔分数的空间变化曲线。
     模型方面,在本课题组早期丁烯模型的基础上,结合新发展的四个丁醇同分异构体的子机理,发展出了一个包含186个物种和1314个反应的全新丁醇模型,用以模拟四种丁醇同分异构体的基础燃烧实验数据。相比于前人模型,本文模型的主要创新之处体现在以下三点。首先,对于在燃料子机理中发挥重要作用的丁醇单分子解离反应,针对其文献实验或理论研究极其缺乏的问题,利用高精度的量化计算和速率常数计算得到了这些反应在800~2000K和5-76000Torr条件下的速率常数。其次,对丁醇H提取反应产物C4H8OH自由基的后续分解机理进行了发展与优化。C4H80H自由基的β断键反应是丁醇机理中承上启下的关键反应,但前人尚未对这些反应进行实验或理论研究。本文对这些反应进行了量化计算和速率常数计算,优化了不同C4H8OH自由基的后续分解机理。再次,关注了烯醇类物种的生成与消耗机理。针对这一类在丁醇的热解、氧化和火焰中都易于生成的中间体,本文通过调研分析近几年烯醇基元反应的实验和理论研究成果,发展并优化了烯醇的子机理。
     借助Chemkin-PRO软件的模拟和生成速率分析、灵敏性分析等模型分析工具,利用本文的实验结果和文献报道的激波管热解、层流预混火焰、射流搅拌反应器氧化、点火延迟时间和火焰传播速度等实验数据对本文发展的丁醇模型进行了全面的验证和优化,提高了本文模型对丁醇基础燃烧实验数据预测的准确性。此外,还结合实验测量结果和模型分析工具对丁醇的燃烧反应动力学过程进行了深入系统的分析。
     在热解方面,利用本文模型能够很好地模拟本文流动管热解和Hanson课题组的激波管热解的实验结果,并通过灵敏性分析发现激波管热解和流动管热解中产物的摩尔分数都对丁醇的单分子解离反应非常敏感,从而验证了本文计算的丁醇单分子解离反应的速率常数的精确性。另一方面,利用前人的模型对本文的热解实验进行了模拟,并与本文模型的模拟结果进行了对比。结果发现前人模型之间对丁醇热解中的重要中间体的预测有很大的差别,而且普遍具有较大的误差。通过生成速率分析以及对不同模型间速率常数的比较,发现导致这一问题的主要原因是前人模型中丁醇单分子解离反应的速率常数均为估算值。
     通过生成速率分析可以发现,丁醇在各个压力条件下的热解均主要通过单分子解离反应(包括脱水反应和C-C断键反应)和由H、OH等小分子自由基引发的H提取反应进行分解。压力对于丁醇热解反应动力学的影响表现在随着压力的变化,燃料的主要分解路径会发生改变。在低压条件下燃料的单分子解离反应发挥着非常重要的作用,而随着压力的升高燃料会更趋向于通过H提取反应进行分解。通过将丁醇单分子解离反应的速率常数改变2倍,发现模拟结果发生了较大的变化,并会偏离实验结果,表明我们的流动管热解实验对燃料的单分子解离反应很敏感,非常适用于对这些关键基元反应的速率常数的验证。特别是随着压力的降低,由于滞留时间变短以及分子密度变低,因此模拟结果对单分子解离反应更为敏感。在单分子解离反应中,脱水反应对于四种丁醇的分解都具有重要贡献,并且能够清晰地体现出燃料分子的同分异构体效应。本文发现,叔丁醇和异丁醇分子中由于分别含有9个和1个β-H原子,其热解分别是四个丁醇热解中脱水反应贡献率最高和最低的;正丁醇的脱水反应只会产生1-丁烯,仲丁醇会同时产生1-丁烯和2-丁烯,而异丁醇和叔丁醇均只会产生异丁烯,这与实验观测结果是一致的;同时,叔丁醇热解中异丁烯的最大摩尔分数要远远高于其它三种丁醇热解中的丁烯产物。
     在氧化和火焰方面,本文对不同丁醇的常压或高压JSR氧化以及低压层流预混火焰进行了模拟,大部分物种的摩尔分数预测结果均可以较好地与实验结果相符合。生成速率分析显示,由于JSR氧化和层流预混火焰中含有大量的H、OH等活性自由基,燃料主要通过H提取反应进行消耗。因此本文通过JSR氧化和层流预混火焰实验对燃料的H提取反应及其C4H8OH产物的后续分解过程进行了详细的验证。另一方面,本文还利用丁醇的JSR氧化实验对模型中的低温氧化机理进行了检验。此外,研究结果还发现烯醇类中间体对于丁醇热解、氧化和火焰中醛酮类污染物的产生都具有非常重要的作用,因此烯醇在解决醇类燃料燃烧过程中醛酮类污染物排放与碳烟颗粒物排放折衷(trade-off)问题中的作用必须被考虑。最后本文还利用文献中的点火延迟时间和火焰传播速度数据验证了本文模型对丁醇宏观燃烧参数的预测性能,得到了较好的预测结果。
     综上所述,本文所发展的丁醇模型可以在800-2000K、5~7600Torr、当量比从0.5~-∞的宽广条件下,很好地对四种丁醇热解、氧化和火焰的微观物种浓度以及点火延迟时间和火焰传播速度等宏观燃烧参数进行全面模拟,具有明显优于前人模型的表现。这表明本文模型超出前人模型的精确性和适用性,将能够为工程燃烧研究中对丁醇的评估及应用提供理论指导
It is suggested that the use of biofuels has the potential to relieve the energy crisis and reduce the greenhouse gas emissions from combustion of fossil fuels. Bio-butanols including four isomers are typical biofuels, which have several advantages over bio-ethanol, such as higher energy density, better miscibility with practical fuels, lower water absorption, and higher suitability for conventional engines. Thus bio-butanols are considered to be a kind of promising biofuels. Investigating combustion chemistry of butanols will help us to understand their combustion behaviors and assess pollutant formation. In this work, the pyrolysis of four butanol isomers at various pressures was studied using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). With the help of high level theoretical calculations, a universal kinetic model was developed to understand the combustion chemistry of four butanol isomers and validated by comprehensive experimental results from this work and literature studies.
     The pyrolysis of four butanol isomers were studied at800-1600K in a flow reactor. The pressure in the pyrolysis chamber varied from5to760Torr in order to investigate the fall-off effect of unimolecular decomposition reactions of butanols. The photoionization efficiency (PIE) spectra of all observed mass peaks were measured to identify the pyrolysis species. Approximately20-30species, including radicals and enols, were detected and identified in each butanol pyrolysis. The signals were measured at various temperatures with several photon energies to evaluate the mole fraction profiles of the pyrolysis species. The temperature distributions along the centerline of the flow tube were measured and the pressure distributions were calculated to accurately describe the physical model of the flow reactor. Furthermore, the low-pressure premixed flames of n-butanol with the equivalence ratio ranging from0.7to1.8were also studied by SVUV-PIMS. Flame species were identified by the measured PIE spectra, and their mole fraction profiles varying with the axial direction of the burner were measured.
     Based on our previously developed butene model, a new butanol model with186species and1314reactions was developed to simulate the pyrolysis, oxidation and combustion of four butanol isomers in this work. Compared with previous butanol models, the present model has three primary contributions. First, the unimolecular decomposition reactions of butanols are key reactions in the sub-mechanism of butanols. Available knowledge on the kinetics of these reactions is very limited. In the present thesis, the unimolecular decomposition pathways of four butanol isomers were calculated with high level quantum chemical methods. Then the temperature-and pressure-dependent rate constants of these reactions were calculated by using the RRKM/Master equation method within the range of800-2000K and5-76000Torr. Secondly, the H-abstraction reactions of butanols lead to the production of C4H8OH radicals which are crucial intermediates in combustion of butanols. The kinetics of the p-scission reactions of C4H8OH radicals and their temperature and pressure dependence were also studied theoretically, which helps to optimize the sub-mechanism of C4H8OH radicals. Thirdly, enols are important intermediates in combustion of butanols. The sub-mechanism of enols were developed and optimized based on recent experimental and theoretical studies on elementary reactions of enols.
     The present model was fully validated and optimized by using the experimental data measured in this work and the literature data from shock tube pyrolysis, laminar premixed flames, jet-stirred reactor (JSR) oxidation, ignition delay times and laminar flame speeds. By using the Chemkin-PRO software, the simulation, rate of production (ROP) analysis and sensitivity analysis were performed to do this work. Furthermore, the simulations with enough accuracy enable us to deeply investigate the combustion chemistry of butanols.
     The butanols pyrolysis experiments performed in both flow reactor (this work) and shock tube (Hanson's work) were simulated by the present model. Generally, the present model predicts most pyrolysis species within the experimental uncertainties. It is conclude that the mole fractions of pyrolysis species have high sensitivities to the rate constants of unimolecular decomposition reactions of butanols. In a word, the accuracy of the calculated rate constants in this work is well validated by the comparison between the experimental and simulated results. On the other hand, we also simulated the pyrolysis experiments by previous models, as a result, significant discrepancies on the simulated mole fractions of important pyrolysis intermediates were found by using various models. Significant simulation errors were found for most previous models comparing with our measurements. The ROP analysis and the comparison of the rate constants of unimolecular decomposition reactions in various models indicates that the discrepancies were mainly caused by the rough estimations on these rate constants in the previous models.
     It is found that the pyrolysis of butanols at all investigated pressures was mainly induced by unimolecular decomposition reactions (including H2O elimination and C-C bond fission) and H-abstraction reactions by H, OH and other small radicals. The dominant decomposition channels change with pressures. Unimolecular decomposition reactions play significant roles at low pressure, while H-abstraction reactions become more and more important as the pressure increases. Significant deviations on the simulated results were observed by changing the rate constants of unimolecular decomposition reaction by a factor of2. It indicates that the pressure-dependent pyrolysis experiment in the flow reactor is very sensitive to the unimolecular decomposition reactions of the studied fuels, especially at low pressure. Consequently it is very suitable to validate the sub-mechanisms of fuels and primary products. The simulated results become much more sensitive to the unimolecular decomposition reactions at low pressure due to the decrease of resident time and molecular density. The H2O elimination reactions have great contributions to the decomposition of all four butanols, and their kinetics clearly reflects the isomeric effects of butanols. In this thesis, we found that the contribution of H2O elimination was highest in tert-butanol pyrolysis, while it was lowest in iso-butanol pyrolysis. The reason is that tert-butanol has nine p-H atoms, while iso-butanol only has one. As seen from the structures of the four butanol isomers, the H2O elimination of n-butanol forms1-butene, and that of sec-butanol produces1-butene and2-butene, while those of iso-butanol and tert-butanol generate i-butene. Our measurements were exactly in accordance with this prediction. Furthermore, the maximum mole fraction of i-butene in tert-butanol was very much higher than those in the pyrolysis of other three isomers.JSR oxidation at atmospheric pressure and higher pressures and low-pressure laminar premixed flames were also simulated by the present model. The simulated mole fractions of most species agree well with the experimental results. The ROP analysis shows that H-abstraction reactions are the most important reactions for the decomposition of butanols under oxidation and flame conditions due to the large amount of H, OH and other small radicals. Thus these oxidation and flame experiments were used to validate the H-abstraction reactions of butanols and the further decomposition reactions of their C4H8OH products. Besides, the low-temperature oxidation chemistry was also validated by the JSR oxidation experiments. The simulation indicates that enols play crucial roles in the decomposition of butanols and the production of aldehyde and ketone pollutants under oxidation and flame conditions. Therefore, the role of enols must be considered to solve the trade-off problem of soot emissions and emissions of aldehyde and ketone pollutants in butanols combustion. Finally, the ignition delay times and laminar flame speeds were used to test the performance of the present model in predicting global combustion parameters.
     It is concluded that the present model is suitable for combustion simulations under wide range conditions with the temperatures ranging from800to2000K, the pressures varying from5to7600Torr and the equivalence ratios of0.5to∞. It has better performance than previous models on the simulation of the concentrations of pyrolysis/flame species and global combustion parameters such as ignition delay times and laminar flame speeds. This model presents much better accuracy and applicability comparing with previous models, which provides great opportunities to numerically simulate the combustion behaviors of bio-butanols in engines
引文
[1].刘娅;刘宏娟;张建安,et a1.,新型生物燃料——丁醇的研究进展.现代化工2008,28(6),28-33.
    [2].刘力强;杨丽萍;李立强,et a1.,生物丁醇燃料产业化制造中的问题及发展趋势.生物产业技术2008,5,36-44.
    [3]. Woods, D. R., The Genetic-Engineering of Microbial Solvent Production. Trends Biotechnol.1995,13 (7),259-264.
    [4]. Atsumi, S.; Hanai, T.; Liao, J. C, Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels. Nature 2008,451(7174),86-U13.
    [5]. Gevo公司投运全球首套生物异丁醇工业化生产装置.石油炼制与化工2012,43,28.
    [6].王风芹;楚乐然;谢慧,et a1.,纤维燃料丁醇研究进展.生物加工过程2009,7(1),1-6.
    [7].纤维素丁醇项目通过可行性评审.石油化工技术与经济2013,1,27.
    [8]. Mu, Y. J.; Mellouki, A., Temperature Dependence for the Rate Constants of the Reaction of Oh Radicals with Selected Alcohols. Chem. Phys. Lett.2001,333 (1-2),63-68.
    [9]. Yang, B.; Osswald, P.; Li, Y. Y, et al., Identification of Combustion Intermediates in Isomeric Fuel-Rich Premixed Butanol-Oxygen Flames at Low Pressure. Combustion and Flame 2007,148 (4),198-209.
    [10]. Moss, J. T.; Berkowitz, A. M; Oehlschlaeger, M. A., et al., An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J Phys Chem A 2008,112 (43),10843-10855.
    [11]. Dagaut, P.; Sarathy, S. M.; Thomson, M. J., A Chemical Kinetic Study of N-Butanol Oxidation at Elevated Pressure in a Jet Stirred Reactor. P Combust Inst 2009,32,229-237.
    [12]. Gu, X. L.; Huang, Z. H.; Li, Q. Q., et al., Measurements of Laminar Burning Velocities and Markstein Lengths of N-Butanol-Air Premixed Mixtures at Elevated Temperatures and Pressures. Energy & Fuels 2009,23,4900-4907.
    [13]. Sarathy, S. M.; Thomson, M. J.; Togbe, C., et al., An Experimental and Kinetic Modeling Study of N-Butanol Combustion. Combustion and Flame 2009,156 (4), 852-864.
    [14]. Black, G.; Curran, H. J.; Pichon, S., et al., Bio-Butanol:Combustion Properties and Detailed Chemical Kinetic Model. Combustion and Flame 2010,157 (2), 363-373.
    [15]. Gu, X. L.; Huang, Z. H.; Wu, S., et al., Laminar Burning Velocities and Flame Instabilities of Butanol Isomers-Air Mixtures. Combustion and Flame 2010,157 (12),2318-2325.
    [16]. Noorani, K. E.; Akih-Kumgeh, B.; Bergthorson, J. M., Comparative High Temperature Shock Tube Ignition of C1-C4 Primary Alcohols. Energy & Fuels 2010,24,5834-5843.
    [17]. Togbe, C.; Mze-Ahmed, A.; Dagaut, P., Kinetics of Oxidation of 2-Butanol and Isobutanol in a Jet-Stirred Reactor:Experimental Study and Modeling Investigation. Energy & Fuels 2010,24,5244-5256.
    [18]. Veloo, P. S.; Egolfopoulos, F. N., Flame Propagation of Butanol Isomers/Air Mixtures. P Combust Inst 2010,33,987-993.
    [19]. Hansen, N.; Harper, M. R.; Green, W. H., High-Temperature Oxidation Chemistry of N-Butanol-Experiments in Low-Pressure Premixed Flames and Detailed Kinetic Modeling. Phys. Chem. Chem. Phys.2011,13 (45), 20262-20274.
    [20]. Harper, M. R.; Van Geem, K. M.; Pyl, S. P., et al., Comprehensive Reaction Mechanism for N-Butanol Pyrolysis and Combustion. Combustion and Flame 2011,158(1),16-41.
    [21]. Heufer, K. A.; Fernandes, R. X.; Olivier, H., et al., Shock Tube Investigations of Ignition Delays of N-Butanol at Elevated Pressures between 770 and 1250 K. P Combust Inst 2011,33,359-366.
    [22]. Karwat, D. M. A.; Wagnon, S. W.; Teini, P. D., et al., On the Chemical Kinetics of N-Butanol:Ignition and Speciation Studies. J Phys Chem A 2011,115 (19), 4909-4921.
    [23]. Osswald, P.; Guldenberg, H.; Kohse-Hoinghaus, K., et al., Combustion of Butanol Isomers-a Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry. Combustion and Flame 2011,158 (1),2-15.
    [24]. Vranckx, S.; Heufer, K. A.; Lee, C., et al., Role of Peroxy Chemistry in the High-Pressure Ignition of N-Butanol-Experiments and Detailed Kinetic Modelling. Combustion and Flame 2011,158 (8),1444-1455.
    [25]. Weber, B. W.; Kumar, K.; Zhang, Y., et al., Autoignition of N-Butanol at Elevated Pressure and Low-to-Intermediate Temperature. Combustion and Flame 2011,158(5),809-819.
    [26]. Cai, J. H.; Zhang, L. D.; Zhang, F., et al., Experimental and Kinetic Modeling Study of N-Butanol Pyrolysis and Combustion. Energy & Fuels 2012,26,5550-5568.
    [27]. Rosado-Reyes, C. M.; Tsang, W., Shock Tube Study on the Thermal Decomposition of N-Butanol. J Phys Chem A 2012,116 (40),9825-9831.
    [28]. Rosado-Reyes, C. M.; Tsang, W., Shock Tube Studies on the Decomposition of 2-Butanol. J. Phys. Chem. A 2012,116 (39),9599-9606.
    [29]. Stranic, I.; Chase, D. P.; Harmon, J. T., et al., Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers. Combustion and Flame 2012,159 (2),516-527.
    [30]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 1-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2012,159 (11),3242-3250.
    [31]. Yasunaga, K.; Mikajiri, T.; Sarathy, S. M., et al., A Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanols. Combustion and Flame 2012,159 (6),2009-2027.
    [32]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 2-Butanol and I-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2013,160 (6),1012-1019.
    [33]. Galano, A.; Alvarez-Idaboy, J. R.; Bravo-Perez, G., et al., Gas Phase Reactions of C-1-C-4 Alcohols with the Oh Radical:A Quantum Mechanical Approach. Phys. Chem. Chem. Phys.2002,4 (19),4648-4662.
    [34]. Simmie, J. M.; Curran, H. J., Energy Barriers for the Addition of H, (C) over Doth(3), and (C) over Dot(2)H(5) to Ch(2)=Chx X= H, Ch(3), Oh and for H-Atom Addition to Rch=O R= H, Ch(3), (C) over Dot(2)H(5), N-C(3)H(7) Implications for the Gas-Phase Chemistry of Enols. J Phys Chem A 2009,113 (27),7834-7845.
    [35]. Liu, W; Kelley, A. P.; Law, C. K., Non-Premixed Ignition, Laminar Flame Propagation, and Mechanism Reduction of N-Butanol, Iso-Butanol, and Methyl Butanoate. P Combust Inst 2011,33,995-1002.
    [36]. Zhou, C. W.; Simmie, J. M.; Curran, H. J., Rate Constants for Hydrogen-Abstraction by Oh from N-Butanol. Combustion and Flame 2011,158 (4),726-731.
    [37]. Lefkowitz, J. K.; Heyne, J. S.; Won, S. H., et al., A Chemical Kinetic Study of Tertiary-Butanol in a Flow Reactor and a Counterflow Diffusion Flame. Combustion and Flame 2012,159 (3),968-978.
    [38]. Pang, G. A.; Hanson, R. K.; Golden, D. M., et al., Experimental Determination of the High-Temperature Rate Constant for the Reaction of Oh with Sec-Butanol. J. Phys. Chem. A 2012,116 (39),9607-9613.
    [39]. Pang, G. A.; Hanson, R. K.; Golden, D. M., et al., High-Temperature Rate Constant Determination for the Reaction of Oh with Iso-Butanol. J Phys Chem A 2012,116 (19),4720-4725.
    [40]. Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers. Combustion and Flame 2012,159 (6),2028-2055.
    [41]. Zhou, C. W.; Simmie, J. M.; Curran, H. J., Rate Constants for Hydrogen Abstraction by H(O) over Dot (2) from N-Butanol. Int. J. Chem. Kinet.2012,44 (3),155-164.
    [42]. Zhou, C. W.; Klippenstein, S. J.; Simmie, J. M., et al., Theoretical Kinetics for the Decomposition of Iso-Butanol and Related (Ch3)(2) (C) over Doth Plus (C) over Doth(2)Oh Reactions. P Combust Inst 2013,34,501-509.
    [43]. Grana, R.; Frassoldati, A.; Faravelli, T, et al., An Experimental and Kinetic Modeling Study of Combustion of Isomers of Butanol. Combustion and Flame 2010,157(11),2137-2154.
    [44]. Van Geem, K. M.; Pyl, S. P.; Marin, G. B., et al., Accurate High-Temperature Reaction Networks for Alternative Fuels:Butanol Isomers. Ind. Eng. Chem. Res. 2010,49 (21),10399-10420.
    [1]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B., et al., Gaussian, Inc., Wallingford CT2010.
    [2]. Becke, A. D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys Rev A 1988,38 (6),3098-3100.
    [3]. Jasper, A. W.; Klippenstein, S. J.; Harding, L. B., et al., J. Phys. Chem. A 2007,111,3932.
    [4]. Hegarty, D.; Robb, M. A., Application of Unitary Group-Methods to Configuration-Interaction Calculations. Mol Phys 1979,38 (6),1795-1812.
    [5]. Bernardi, F.; Bottom, A.; Olivucci, M., et al., Do Supra Antara Paths Really Exist for 2+2 Cyclo-Addition Reactions-Analytical Computation of the Mc-Scf Hessians for Transition-States of C2h4 with C2h4, Singlet O-2 and Ketene. J Am Chem Soc 1988,110 (18),5993-5995.
    [6]. Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C., et al., Variflex; version 1.0 ed.; Argonne National Laboratory 1999.
    [7]. Mourits, F. M.; Rummens, F. H. A., Can. J. Chem.1977,55,3007-3020.
    [8]. Welty, J. R.; Wicks, C. E.; Wilson, R. E., et al., Fundamentals of Momentum, Heat and Mass Transfer.4th ed.; John Wiley and Sons Ltd:New York,2001.
    [9]. da Silva, G.; Bozzelli, J. W., Variational Analysis of the Phenyl+O-2 and Phenoxy Plus O Reactions. JPhys Chem A 2008,112 (16),3566-3575.
    [10]. CHEMKIN-PRO15092, Reaction Design:San Diego (2009).
    [1]. Gheshlaghi, R.; Scharer, J. M.; Moo-Young, M., et al., Metabolic Pathways of Clostridia for Producing Butanol. Biotechnol. Adv.2009,27 (6),764-781.
    [2]. Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A., et al., An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J Phys Chem A 2008,112 (43),10843-10855.
    [3]. Cai, J. H.; Zhang, L. D.; Zhang, F., et al., Experimental and Kinetic Modeling Study of N-Butanol Pyrolysis and Combustion. Energy & Fuels 2012,26,5550-5568.
    [4]. Harper, M. R.; Van Geem, K. M.; Pyl, S. P., et al., Comprehensive Reaction Mechanism for N-Butanol Pyrolysis and Combustion. Combustion and Flame 2011,158(1),16-41.
    [5]. Rosado-Reyes, C. M.; Tsang, W., Shock Tube Study on the Thermal Decomposition of N-Butanol. J Phys Chem A 2012,116 (40),9825-9831.
    [6]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 1-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2012,159(11),3242-3250.
    [7]. Yasunaga, K.; Mikajiri, T.; Sarathy, S. M., et al., A Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanols. Combustion and Flame 2012,159 (6),2009-2027.
    [8]. Dagaut, P.; Sarathy, S. M.; Thomson, M. J., A Chemical Kinetic Study of N-Butanol Oxidation at Elevated Pressure in a Jet Stirred Reactor. P Combust Inst 2009,32,229-237.
    [9]. Sarathy, S. M.; Thomson, M. J.; Togbe, C., et al., An Experimental and Kinetic Modeling Study of N-Butanol Combustion. Combustion and Flame 2009,156 (4), 852-864.
    [10]. Black, G.; Curran, H. J.; Pichon, S., et al., Bio-Butanol:Combustion Properties and Detailed Chemical Kinetic Model. Combustion and Flame 2010,157 (2), 363-373.
    [11]. Noorani, K. E.; Akih-Kumgeh, B.; Bergthorson, J. M., Comparative High Temperature Shock Tube Ignition of C1-C4 Primary Alcohols. Energy & Fuels 2010,24,5834-5843.
    [12]. Heufer, K. A.; Fernandes, R. X.; Olivier, H., et al., Shock Tube Investigations of Ignition Delays of N-Butanol at Elevated Pressures between 770 and 1250 K. P Combust Inst 2011,33,359-366.
    [13]. Vranckx, S.; Heufer, K. A.; Lee, C., et al., Role of Peroxy Chemistry in the High-Pressure Ignition of N-Butanol-Experiments and Detailed Kinetic Modelling. Combustion and Flame 2011,158 (8),1444-1455.
    [14]. Karwat, D. M. A.; Wagnon, S. W.; Teini, P. D., et al., On the Chemical Kinetics of N-Butanol:Ignition and Speciation Studies. J Phys Chem A 2011,115 (19), 4909-4921.
    [15]. Weber, B. W.; Kumar, K.; Zhang, Y., et al., Autoignition of N-Butanol at Elevated Pressure and Low-to-intermediate Temperature. Combustion and Flame 2011,158(5),809-819.
    [16]. Stranic, I.; Chase, D. P.; Harmon, J. T., et al., Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers. Combustion and Flame 2012,159 (2),516-527.
    [17]. Yang, B.; Osswald, P.; Li, Y. Y, et al., Identification of Combustion Intermediates in Isomeric Fuel-Rich Premixed Butanol-Oxygen Flames at Low Pressure. Combustion and Flame 2007,148 (4),198-209.
    [18]. Osswald, P.; Guldenberg, H.; Kohse-Hoinghaus, K., et al., Combustion of Butanol Isomers-a Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry. Combustion and Flame 2011,158 (1),2-15.
    [19]. Hansen, N.; Harper, M. R.; Green, W. H., High-Temperature Oxidation Chemistry of N-Butanol-Experiments in Low-Pressure Premixed Flames and Detailed Kinetic Modeling. Phys. Chem. Chem. Phys.2011,13 (45), 20262-20274.
    [20]. Veloo, P. S.; Egolfopoulos, F. N., Flame Propagation of Butanol Isomers/Air Mixtures. P Combust Inst 2010,33,987-993.
    [21]. Gu, X. L.; Huang, Z. H.; Wu, S., et al., Laminar Burning Velocities and Flame Instabilities of Butanol Isomers-Air Mixtures. Combustion and Flame 2010,157 (12),2318-2325.
    [22]. Gu, X. L.; Huang, Z. H.; Li, Q. Q., et al., Measurements of Laminar Burning Velocities and Markstein Lengths of N-Butanol-Air Premixed Mixtures at Elevated Temperatures and Pressures. Energy & Fuels 2009,23,4900-4907.
    [23]. Veloo, P. S.; Wang, Y. L.; Egolfopoulos, F. N., et al., A Comparative Experimental and Computational Study of Methanol, Ethanol, and N-Butanol Flames. Combustion and Flame 2010,157 (10),1989-2004.
    [24]. Gu, X. L.; Li, Q. Q.; Huang, Z. H., Laminar Burning Characteristics of Diluted N-Butanol/Air Mixtures. Combust Sci Technol 2011,183 (12),1360-1375.
    [25]. Grana, R.; Frassoldati, A.; Faravelli, T., et al., An Experimental and Kinetic Modeling Study of Combustion of Isomers of Butanol. Combustion and Flame 2010,157 (11),2137-2154.
    [26]. Van Geem, K. M.; Pyl, S. P.; Marin, G. B., et al., Accurate High-Temperature Reaction Networks for Alternative Fuels:Butanol Isomers. Ind. Eng. Chem. Res. 2010,49(21),10399-10420.
    [27]. Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers. Combustion and Flame 2012,159 (6),2028-2055.
    [28]. Zhang, Y. J.; Cai, J. H.; Zhao, L., et al., An Experimental and Kinetic Modeling Study of Three Butene Isomers Pyrolysis at Low Pressure. Combustion and Flame 2012,159 (3),905-917.
    [29]. Wang, H.; You, X.; Joshi, A. V., et al., High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC_Mech_Ⅱ.htm 2007.
    [30]. E. Goos; A. Burcat; B. Ruscic, Ideal Gas Thermochemical Database with updates from Active Thermochemical Tables; ftp://ftp.technion.ac. il/pub/supported/aetdd/thermodynamics 2005.
    [31]. Zhou, C. W.; Simmie, J. M.; Curran, H. J., Rate Constants for Hydrogen Abstraction by H(O) over Dot (2) from N-Butanol. Int. J. Chem. Kinet.2012,44 (3),155-164.
    [32]. Vasu, S. S.; Davidson, D. F.; Hanson, R. K., et al., Measurements of the Reaction of Oh with N-Butanol at High-Temperatures. Chem. Phys. Lett.2010, 497 (1-3),26-29.
    [33]. Zador, J.; Fernandes, R. X.; Georgievskii, Y., et al., The Reaction of Hydroxyethyl Radicals with 02:A Theoretical Analysis and Experimental Product Study. P Combust Inst 2009,32,271-277.
    [34]. da Silva, G.; Kim, C.-H.; Bozzelli, J. W., Thermodynamic Properties (Enthalpy, Bond Energy, Entropy, and Heat Capacity) and Internal Rotor Potentials of Vinyl Alcohol, Methyl Vinyl Ether, and Their Corresponding Radicals. J Phys Chem A 2006,110 (25),7925-7934.
    [35]. da Silva, G.; Bozzelli, J. W., Role of the Alpha-Hydroxyethylperoxy Radical in the Reactions of Acetaldehyde and Vinyl Alcohol with Ho(2). Chem. Phys. Lett. 2009,483 (1-3),25-29.
    [1]. Christensen, E.; Yanowitz, J.; Ratcliff, M., et al., Renewable Oxygenate Blending Effects on Gasoline Properties. Energy & Fuels 2011,25 (10),4723-4733.
    [2]. Rosado-Reyes, C. M.; Tsang, W., Shock Tube Studies on the Decomposition of 2-Butanol. J. Phys. Chem. A 2012,116(39),9599-9606.
    [3]. Yasunaga, K.; Mikajiri, T.; Sarathy, S. M., et al., A Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanols. Combustion and Flame 2012,159 (6),2009-2027.
    [4]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 2-Butanol and I-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2013,160 (6),1012-1019.
    [5]. Togbe, C.; Mze-Ahmed, A.; Dagaut, P., Kinetics of Oxidation of 2-Butanol and Isobutanol in a Jet-Stirred Reactor:Experimental Study and Modeling Investigation. Energy & Fuels 2010,24,5244-5256.
    [6]. Yang, B.; Osswald, P.; Li, Y. Y., et al., Identification of Combustion Intermediates in Isomeric Fuel-Rich Premixed Butanol-Oxygen Flames at Low Pressure. Combustion and Flame 2007,148 (4),198-209.
    [7]. Osswald, P.; Guldenberg, H.; Kohse-Hoinghaus, K., et al., Combustion of Butanol Isomers-a Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry. Combustion and Flame 2011,158 (1),2-15.
    [8]. Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A., et al., An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J Phys Chem A 2008,112 (43),10843-10855.
    [9]. Stranic, I.; Chase, D. P.; Harmon, J. T., et al., Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers. Combustion and Flame 2012,159 (2),516-527.
    [10]. Veloo, P. S.; Egolfopoulos, F. N., Flame Propagation of Butanol Isomers/Air Mixtures. P Combust Inst 2010,33,987-993.
    [11]. Grana, R.; Frassoldati, A.; Faravelli, T., et al., An Experimental and Kinetic Modeling Study of Combustion of Isomers of Butanol. Combustion and Flame 2010,757(11),2137-2154.
    [12]. Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers. Combustion and Flame 2012,159 (6),2028-2055.
    [13]. Zhang, Y. J.; Cai, J. H.; Zhao, L., et al., An Experimental and Kinetic Modeling Study of Three Butene Isomers Pyrolysis at Low Pressure. Combustion and Flame 2012,159 (3),905-917.
    [14]. Wang, H.; You, X.; Joshi, A. V., et al., High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC_Mech Il.htm 2007.
    [15]. El-Nahas, A. M.; Mangood, A. H.; Takeuchi, H., et al., Thermal Decomposition of 2-Butanol as a Potential Nonfossil Fuel:A Computational Study. J Phys Chem A 2011,115 (13),2837-2846.
    [16]. Jasper, A. W.; Klippenstein, S. J.; Harding, L. B., et al., J. Phys. Chem. A 2007,111,3932.
    [17]. Harper, M. R.; Van Geem, K. M.; Pyl, S. P., et al., Comprehensive Reaction Mechanism for N-Butanol Pyrolysis and Combustion. Combustion and Flame 2011,158 (1),16-41.
    [18]. Pang, G. A.; Hanson, R. K.; Golden, D. M., et al., Experimental Determination of the High-Temperature Rate Constant for the Reaction of Oh with Sec-Butanol. J. Phys. Chem. A 2012,116 (39),9607-9613.
    [19]. da Silva, G.; Kim, C.-H.; Bozzelli, J. W., Thermodynamic Properties (Enthalpy, Bond Energy, Entropy, and Heat Capacity) and Internal Rotor Potentials of Vinyl Alcohol, Methyl Vinyl Ether, and Their Corresponding Radicals. J Phys Chem A 2006,110 (25),7925-7934.
    [20]. CHEMKIN-PRO 15092, Reaction Design:San Diego (2009).
    [21]. Hartlieb, A. T; Atakan, B.; Kohse-Hoinghaus, K., Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame. Combustion and Flame 2000,121 (4),610-624.
    [1]. Atsumi, S.; Hanai, T.; Liao, J. C., Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels. Nature 2008,451 (7174),86-U13.
    [2]. Al-Hasan, M. I.; Al-Momany, M., The Effect of Iso-Butanol-Diesel Blends on Engine Performance. Transport 2008,23 (4),306-310.
    [3]. Ozsezen, A. N.; Turkcan, A.; Sayin, C., et al., Comparison of Performance and Combustion Parameters in a Heavy-Duty Diesel Engine Fueled with Iso-Butanol/Diesel Fuel Blends. Energy Explor. Exploit.2011,29 (5),525-541.
    [4]. Yasunaga, K.; Mikajiri, T.; Sarathy, S. M., et al., A Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanols. Combustion and Flame 2012,159 (6),2009-2027.
    [5]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 2-Butanol and I-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2013,160 (6),1012-1019.
    [6]. Togbe, C.; Mze-Ahmed, A.; Dagaut, P., Kinetics of Oxidation of 2-Butanol and Isobutanol in a Jet-Stirred Reactor:Experimental Study and Modeling Investigation. Energy & Fuels 2010,24,5244-5256.
    [7]. Yang, B.; Osswald, P.; Li, Y. Y., et al., Identification of Combustion Intermediates in Isomeric Fuel-Rich Premixed Butanol-Oxygen Flames at Low Pressure. Combustion and Flame 2007,148 (4),198-209.
    [8]. Osswald, P.; Guldenberg, H.; Kohse-Hoinghaus, K., et al., Combustion of Butanol Isomers-a Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry. Combustion and Flame 2011,158 (1),2-15.
    [9]. Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A., et al., An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. JPhys Chem A 2008,112 (43),10843-10855.
    [10]. Stranic, I.; Chase, D. P.; Harmon, J. T., et al., Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers. Combustion and Flame 2012,159 (2),516-527.
    [11]. Veloo, P. S.; Egolfopoulos, F. N., Flame Propagation of Butanol Isomers/Air Mixtures. P Combust Inst 2010,33,987-993.
    [12]. Liu, W.; Kelley, A. P.; Law, C. K., Non-Premixed Ignition, Laminar Flame Propagation, and Mechanism Reduction of N-Butanol, Iso-Butanol, and Methyl Butanoate. P Combust Inst 2011,33,995-1002.
    [13]. Grana, R.; Frassoldati, A.; Faravelli, T., et al., An Experimental and Kinetic Modeling Study of Combustion of Isomers of Butanol. Combustion and Flame 2010,157(11),2137-2154.
    [14]. Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers. Combustion and Flame 2012,159 (6),2028-2055.
    [15]. Jasper, A. W.; Klippenstein, S. J.; Harding, L. B., et al., J. Phys. Chem. A 2007,111,3932.
    [16]. Pang, G. A.; Hanson, R. K.; Golden, D. M., et al., High-Temperature Rate Constant Determination for the Reaction of Oh with Iso-Butanol. J Phys Chem A 2012,116 (19),4720-4725.
    [17]. Atkinson, R., A Structure-Activity Relationship for the Estimation of Rate Constants for the Gas-Phase Reactions of Oh Radicals with Organic-Compounds. Int. J. Chem. Kinet.1987,19 (9),799-828.
    [18]. Van Geem, K. M.; Pyl, S. P.; Marin, G. B., et al., Accurate High-Temperature Reaction Networks for Alternative Fuels:Butanol Isomers. Ind. Eng. Chem. Res. 2010,49(21),10399-10420.
    [19]. Yasunaga, K.; Kuraguchi, Y.; Ikeuchi, R., et al., Shock Tube and Modeling Study of Isobutene Pyrolysis and Oxidation. P Combust Inst 2009,32,453-460.
    [20]. Zhang, Y. J.; Cai, J. H.; Zhao, L., et al., An Experimental and Kinetic Modeling Study of Three Butene Isomers Pyrolysis at Low Pressure. Combustion and Flame 2012,159 (3),905-917.
    [21]. Dias, V.; Vandooren, J., Experimental and Modeling Study of a Lean Premixed Iso-Butene/Hydrogen/Oxygen/Argon Flame. Fuel 2010,89 (9),2633-2639.
    [22]. da Silva, G.; Kim, C.-H.; Bozzelli, J. W., Thermodynamic Properties (Enthalpy, Bond Energy, Entropy, and Heat Capacity) and Internal Rotor Potentials of Vinyl Alcohol, Methyl Vinyl Ether, and Their Corresponding Radicals. J Phys Chem A 2006,110 (25),7925-7934.
    [23]. Hansen, N.; Harper, M. R.; Green, W. H., High-Temperature Oxidation Chemistry of N-Butanol-Experiments in Low-Pressure Premixed Flames and Detailed Kinetic Modeling. Phys. Chem. Chem. Phys.2011,13 (45), 20262-20274.
    [24]. CHEMKIN-PRO 15092, Reaction Design:San Diego (2009).
    [25]. Hartlieb, A. T.; Atakan, B.; Kohse-Hoinghaus, K., Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame. Combustion and Flame 2000,121 (4),610-624.
    [1]. Grana, R.; Frassoldati, A.; Faravelli, T., et al., An Experimental and Kinetic Modeling Study of Combustion of Isomers of Butanol. Combustion and Flame 2010,157 (11),2137-2154.
    [2]. Yasunaga, K.; Mikajiri, T.; Sarathy, S. M., et al., A Shock Tube and Chemical Kinetic Modeling Study of the Pyrolysis and Oxidation of Butanols. Combustion and Flame 2012,159 (6),2009-2027.
    [3]. Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A., et al., An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J Phys Chem A 2008,112 (43),10843-10855.
    [4]. Stranic, I.; Chase, D. P.; Harmon, J. T., et al., Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers. Combustion and Flame 2012,159 (2),516-527.
    [5]. Lefkowitz, J. K.; Heyne, J. S.; Won, S. H., et al., A Chemical Kinetic Study of Tertiary-Butanol in a Flow Reactor and a Counterflow Diffusion Flame. Combustion and Flame 2012,159 (3),968-978.
    [6]. Yang, B.; Osswald, P.; Li, Y. Y, et al., Identification of Combustion Intermediates in Isomeric Fuel-Rich Premixed Butanol-Oxygen Flames at Low Pressure. Combustion and Flame 2007,148 (4),198-209.
    [7]. Osswald, P.; Guldenberg, H.; Kohse-Hoinghaus, K., et al., Combustion of Butanol Isomers-a Detailed Molecular Beam Mass Spectrometry Investigation of Their Flame Chemistry. Combustion and Flame 2011,158 (1),2-15.
    [8]. Veloo, P. S.; Egolfopoulos, F. N., Flame Propagation of Butanol Isomers/Air Mixtures. P CombustInst 2010,33,987-993.
    [9]. Sarathy, S. M.; Vranckx, S.; Yasunaga, K., et al., A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers. Combustion and Flame 2012,159 (6),2028-2055.
    [10]. Stranic, I.; Pyun, S. H.; Davidson, D. F., et al., Multi-Species Measurements in 2-Butanol and I-Butanol Pyrolysis Behind Reflected Shock Waves. Combustion and Flame 2013,160(6),1012-1019.
    [11]. CHEMKIN-PRO15092, Reaction Design:San Diego (2009).
    [12]. Hartlieb, A. T.; Atakan, B.; Kohse-Hoinghaus, K., Effects of a Sampling Quartz Nozzle on the Flame Structure of a Fuel-Rich Low-Pressure Propene Flame. Combustion and Flame 2000,121 (4),610-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700