几种过渡金属磷酸盐功能材料的合成及其热分解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属磷酸盐是一类重要的无机功能材料,能够用作离子交换、吸附、分离材料,离子导体,非均相催化剂,缓释微肥,磁性和光学器件,阻燃剂,具有优异防腐蚀性能的涂料。固相反应具有高选择性、高产率和工艺过程简单等优点,目前已经越来越广泛地应用于固体无机功能材料的合成领域中。本文第一章综述了金属磷酸盐、固相反应的研究进展。对物质进行热分解动力学分析不仅具有理论上的意义,也有实际的应用价值,而选择一个合理的分析方法对进行动力学分析是非常重要的,只有使用合理的分析方法才能得到可靠的计算结果,本文第一章同时对热化学反应动力学分析领域所用到的一些主要理论和分析方法进行了阐述,此外,对本文研究的内容及其意义也进行了说明。
     以LiH2PO4·H2O, ZnSO4·7H2O和Na2CO3为原料,经过室温条件下的固相反应直接合成得到棱柱状的、单相的LiZnPO4·H2O。XRD的分析结果表明LiZnPO4·H2O是正交晶系结构的化合物。以K3PO4·3H2O、K2HPO4·3H2O和ZnSO4·7H2O为反应物,经80℃下的固相反应合成了单相的KZn2(PO4)(HPO4)。利用固相反应在60℃下分别制备了单相的层状NH4CoPO4·H2O、层状水合磷酸锌镁、NH4ZnPO4-ABW(Ⅱ)和(NH4)2Ce(P04)2·H2O。并通过ICP-AES和XRD分析确定了水合磷酸锌镁的化学式为MgZn2(PO4)2·4H2O。
     用模型相关法和模型无关法分别计算得到LiZnPO4·H2O热分解反应的动力学三参数,并比较了两种方法的准确性。LiZnPO4·H2O脱水反应的活化能的平均值用等转化率的迭代计算过程求解得到,该值为86.59kJ mol-1。不同转化率对应的活化能的数值表明LiZnPO4·H2O的脱水过程是单步反应机理,该机理属于圆柱收缩机理。LiZnPO4·H2O脱水阶段的指前因子A由活化能和反应机理计算得到。热分解反应的过渡态络合物的一些热力学函数(△S≠,△H≠,△G≠)也同时求解了出来。
     KZn2(PO4)(HPO4)热分解反应的表观活化能Eα用七种等转化率的方法计算得到,并将各种方法之间的计算精度进行了比较。结果显示活化能Eα的平均值为411.57kJmol-1,并说明了KZn2(PO4)(HPO4)的热分解反应是一个单步的动力学过程,该过程能用唯一的一对动力学三参数[Ea, A, g(a)]来描述。热分解反应的最可能反应机g(α)分别用线性法和比较法来确定。热分解反应的指前因子A由Eα和g(α)计算得到。热分解反应过渡态络合物的一些热力学函数(△S≠,△H≠,△G≠)也同时求解了出来。
     用等转化率的迭代计算过程求解得到了NH4CoPO4·H2O热分解反应三个阶段和(NH4)2Ce(PO4)2·H2O热分解过程两个阶段的活化能Eα的值,计算结果表明NH4CoPO4·H2O的三个热分解阶段以及(NH4)2Ce(PO4)2·H2O第一阶段的热分解都为单步的动力学过程,都能用各自唯一的一对动力学三参数来描述过程的动力学;而(NH4)2Ce(PO4)2·H2O第二阶段热分解是一个复杂的动力学过程。通过将实验曲线和模型曲线进行比较而推导得到单步动力学过程的热分解反应的最可能反应机理。单步动力学过程的热分解反应的指前因子A由Eα和g(α)计算得到,过渡态络合物的一些热力学函数(△S≠,△H≠,△G≠)也同时求解了出来。
     MgZn2(PO4)2·4H2O热分解反应两个阶段和NH4ZnPO4-ABW(Ⅱ)热分解反应区域1和区域2的活化能Eα的值用先进等转化率的计算过程求解得到,计算结果表明MgZn2(PO4)2·4H2O两个热分解阶段以及NH4ZnPO4-ABW(Ⅱ)区域1的热分解反应都是单步的动力学过程,都能用各自唯一的一对动力学三参数来描述过程的动力学;而NH4ZnPO4-ABW(Ⅱ)区域2的热分解是一个复杂的动力学过程。单步热分解反应的最可能反应机理通过实验曲线和模型曲线的比较而推导得到。单步动力学过程的热分解反应的指前因子A由Eα和g(α)计算得到。
     对于复杂热分解反应的动力学过程,本文使用了两种不同的分析方法对其进行了探讨:运用分布活化能模型(DAEM)来研究NH4ZnPO4-ABW(Ⅱ)区域2热分解阶段的复杂动力学过程;运用非线性模型相关法来研究(NH4)2Ce(PO4)2·H2O第二阶段热分解反应的复杂动力学过程。
     将低热固相反应合成得到的(NH4)2Ce(PO4)2·H2O通过负载H2S04形成H+/(NH4)2Ce(PO4)2·H2O。并考察了H+/(NH4)2Ce(PO4)2·H2O对乙酸异丁酯合成反应的催化活性。在实验中采用均匀设计方案以及数据挖掘技术研究了反应时间、酸醇摩尔比和催化剂用量对酯化率的影响。实验结果表明,当异丁醇用量为0.10mol时,在反应时间为330min,酸醇摩尔比为2.2,催化剂用量为1.4g时,反应的酯化率可达到95.36%。
As a kind of very important inorganic function materials, transition metal phosphate can be used for ion exchange, absorption, separation, ionic conductivity, heterogeneous catalyst, fertilizers, magnetic and optical devices, fire retardants and pigments which have good anticorrosion properties. Solid-state reaction is of good selectivity, high output and simplicity, so, this preparation technique is become more and more used extensively in synthesis of inorganic function solid materials. Research progress of the transition metal phosphate and solid-state reaction were summarized in the first chapter. Kinetic analysis of thermal decomposition can have either a practical or theoretical application. And choosing a reliable method plays an impotant role in kinetic analysis of thermal decomposition. The calculations are reliable only when sound kinetic analysis methods, which are showed in the first chapter, are used. Besides, the works about this paper and meaning of this research were demonstrated in the first chapter.
     The prism-shaped single phase LiZnPO4·H2O was directly synthesized via solid-state reaction at room temperature using LiH2PO4·H2O, ZnSO4·7H2O and Na2CO3as raw materials. XRD analysis showed that LiZnPO4·H2O was a compound with orthorhombic structure. The single phase KZn2(PO4)(HPO4) was synthesized via solid-state reaction at80℃using K3PO4·3H2O, K2HPO4·3H2O and ZnSO4·7H2O as raw materials. Besides, the layered single phase NH4CoPO4·H2O and magnesium zinc phosphate hydrate whose chemical formula was determined as MgZn2(PO4)2·4H2O with ICP-AES and XRD, the single phase NH4ZnPO4-ABW(Ⅱ) and (NH4)2Ce(PO4)2·H2O were prepared via solid-state reaction at60℃.
     The model-fitting and model-free methods were used to study non-isothermal kinetics of the thermal decomposition reaction of LiZnPO4·H2O, and reliable of this two methods was tested by comparison between their calculated results. Based on the iterative iso-conversional procedure, the average values of the activation energy associated with the thermal dehydration of LiZnPO4·H2O, was determined to be86.59kJ mol-1. Dehydration of the crystal water molecule of LiZnPO4·H2O is single-step reaction that is controlled by contracting cylinder mechanism. The pre-exponential factor A was obtained on the basis of Ea and g(a). Besides, some thermodynamic functions (△S≠,△H≠,△G≠) of the transition state complex of the dehydration reaction of LiZnPO4·H2O were determined.
     The apparent activation energy Ea associated with the thermal decomposition reaction of KZn2(PO4)(HPO4) was estimated with seven comparative isoconversional procedures. The average value of the apparent activation energy Ea was determined to be411.57kJ mol-1. The thermal decomposition of KZn2(PO4)(HPO4) is a single-step kinetic process and can be described by a unique kinetic triplet [Ea, A, g(a)]. Linear and comparison methods were used to define the most probable reaction mechanism g(a) of the thermal decomposition reaction. The value of pre-exponential factor A was obtained on the basis of Ea and g(a). Besides, some thermodynamic functions (△S≠,△H≠,△G≠) of the transition state complex were also calculated.
     Based on the iterative isoconversional calculation procedure, the values of activation energy Eα associated with the thermal decomposition stages of NH4CoPO4·H2O and (NH4)2Ce(PO4)2·H2O were obtained, which demonstrate that the three thermal decomposition stages of NH4CoPO4·H2O and the first thermal decomposition stage of (NH4)2Ce(PO4)2·H2O are all single-step kinetic process and can be adequately described by unique kinetic triplets; However, the second stage of the thermal decomposition of (NH4)2Ce(PO4)2·H2O is a kinetically complex process. The most probable reaction mechanisms of the single-step stages were estimated by comparisons between experimental plots and modeled plots. The values of pre-exponential factor A of the single-step stages were obtained on the basis of Ea and the reaction mechanisms, when some thermodynamic functions (△S≠,△H≠,△C≠) of the transition state complexes of the single-step decomposition reaction were calculated.
     The values of activation energy Eα associated with the thermal decomposition reaction of NH4ZnPO4-ABW(Ⅱ) as well as the two thermal decomposition stages of MgZn2(PO4)2·4H2O were obtained by using the advanced isoconversional calculation procedure, which demonstrate that the two stages of MgZn2(PO4)2·4H2O and the region1of NH4ZnPO4-ABW(Ⅱ) are all a single-step kinetic process and can be adequately described by unique kinetic triplets; but, the region2of NH4ZnPO4-ABW(Ⅱ) is a kinetically complex process. The most probable reaction mechanisms of the single-step processes were estimated by comparisons between experimental plots and modeled results. The values of pre-exponential factor A of the single-step stages were obtained on the basis of Eα and g(a).
     In this paper, different kinetically complex processes were researched by using two methods:the distributed activation energy model (DAEM) and the nonlinear model-fitting method were applied to study the region2of the thermal decomposition reaction of NH4ZnPO4-ABW(Ⅱ) and the second stage of the thermal decomposition reaction of (NH4)2Ce(PO4)2·H2O in which kinetically complex processes took place, respectively.
     The (NH4)2Ce(PO4)2·H2O synthesized by using solid-state reaction at low-heating temperature and H2SO4were mixed to obtain H+/(NH4)2Ce(PO4)2·H2O. The synthesis of isobutyl acetate was carried out with H+/(NH4)2Ce(PO4)2·H2O as catalyst, and uniform experimental design as well as data mining technology was applied to the catalytic experiments, in which the effect of the reaction time, the molar ratio of acid to alcohol and the amount of catalyst on the conversion yield of esterification were studied. When the amonnt of isobutyl alcohol was0.10mol, under the optimal reaction conditions, i.e. reaction time of330min,2.2of molar ratio of acid to alcohol and1.4g of catalyst, the conversion yield of esterification was95.36%.
引文
[1]Huang S, Lin C, Wu W, et al. Network Topology of a Hybrid Organic Zinc Phosphate with Bimodal Porosity and Hydrogen Adsorption[J]. Angewandte Chemie,2009,121(33): 6240-6243.
    [2]Boontima S, Danvirutai C, Srithanratana T. Thermal decomposition kinetics and reversible hydration study of the Li2Zn(HPO4)2-H2O[J]. Solid State Sciences,2010,12(7): 1226-1230.
    [3]Yuan H, Chen J, Zhu G, et al. The First Organo-Templated Cobalt Phosphate with a Zeolite Topology[J]. Inorganic Chemistry,2000,39(7):1476-1479.
    [4]Natarajan S, Neeraj S, Choudhury A, et al. Three-Dimensional Open-Framework Cobalt(Ⅱ) Phosphates by Novel Routes[J]. Inorganic Chemistry,2000,39(7):1426-1433.
    [5]Cheetham A K, Ferey G, Loiseau T. Open-Framework Inorganic Materials[J]. Angewandte Chemie International Edition,1999,38(22):3268-3292.
    [6]Gier T E, Stucky G D. Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves[J]. Nature,1991,349(6309):508-510.
    [7]Harrison W T A, Gier T E, Nicol J M, et al. Tetrahedral-Framework Lithium Zinc Phosphate Phases:Location of Light-Atom Positions in LiZnPO4·H2O by Powder Neutron Diffraction and Structure Determination of LiZnPO4 by ab initio Methods [J]. Journal of Solid State Chemistry,1995,114(1):249-257.
    [8]Bu X, Feng P, Gier T E, et al. Structural and chemical studies of zeolite ABW type phases:Syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure[J]. Zeolites,1997,19(2-3):200-208.
    [9]Feng P, Bu X, Tolbert S H, et al. Syntheses and Characterizations of Chiral Tetrahedral Cobalt Phosphates with Zeolite ABW and Related Frameworks [J]. Journal of the American Chemical Society,1997,119(10):2497-2504.
    [10]Rajic N, Gabrovsek R, Kaucic V. Dehydration behavior of some microporous zincophosphates[J]. Thermochimica Acta,1996,278:157-164.
    [11]Chan T, Liu R, Baginskiy I. Synthesis, Crystal Structure, and Luminescence Properties of a Novel Green-Yellow Emitting Phosphor LiZn1-xPO4:Mnx for Light Emitting Diodes[J]. Chemistry of Materials,2008,20(4):1215-1217.
    [12]Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks:multifunctional open-framework materials[J]. Chemical Society Reviews,2007,36:770-818.
    [13]Boonchom B, Thongkam M, Kongtaweelert S, et al. Flower-like microparticles and novel superparamagnetic properties of new binary Co1/2Fe1/2(H2PO4)2-2H2O obtained by a rapid solid state route at ambient temperature[J]. Materials Research Bulletin,2009,44(12): 2206-2210.
    [14]Raj C J, Mangalam G, Navis Priya S M, et al. Growth and characterization of nonlinear optical zinc hydrogen phosphate single crystal grown in silica gel[J]. Crystal Research and Technology,2007,42(4):344-348.
    [15]Lu Z, Chen H, Robert R, et al. Citric Acid-and Ammonium-Mediated Morphological Transformations of Olivine LiFePO4 Particles[J]. Chemistry of Materials,2011,23(11): 2848-2859.
    [16]Hasegawa G, Ishihara Y, Kanamori K, et al. Facile Preparation of Monolithic LiFePO4/Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery [J]. Chemistry of Materials,2011,23(23):5208-5216.
    [17]Lee K T, Ramesh T N, Nan F, et al. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries[J]. Chemistry of Materials,2011,23(16):3593-3600.
    [18]Masuyama Y, Sugioka Y, Chonan S, et al. Palladium(Ⅱ)-exchanged hydroxyapatite-catalyzed Suzuki-Miyaura-type cross-coupling reactions with potassium aryltrifluoroborates[J]. Journal of Molecular Catalysis A:Chemical,2012,352:81-85.
    [19]Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Diels-Alder and Aldol Reactions[J]. Journal of the American Chemical Society,2003,125(38):11460-11461.
    [20]Rakap M, Ozkar S. Hydroxyapatite-supported cobalt(O) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane[J]. Catalysis Today,2012,183(1):17-25.
    [21]Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation[J]. Journal of the American Chemical Society,2000,122(29):7144-7145.
    [22]Lazrek H B, Rochdi A, Kabbaj Y, et al. Zinc Chloride Doped Natural Phosphate as 1,3-Dipolar Cycloaddition Catalyst[J]. Synthetic Communications,1999,29(6): 1057-1063.
    [23]Sebti S. Rhihil A. Saber A. Heterogeneous Catalysis of the Friedel-Crafts Alkylation by Doped Natural Phosphate and Tricalcium Phosphate[J]. Chemistry Letters,1996,25(8): 721.
    [24]Bazi F, E1 Badaoui H, Tamani S, et al. Catalysis by phosphates:A simple and efficient procedure for transesterification reaction[J]. Journal of Molecular Catalysis A:Chemical, 2006,256(1-2):43-47.
    [25]Sebti S, Boukhal H, Hanafi N. et al. Catalyse de la reaction de Michael par le fluorure de potassium supporte sur le phosphate naturel[J]. Tetrahedron Letters,1999,40(34): 6207-6209.
    [26]Sebti S, Smahi A, Solhy A. Natural phosphate doped with potassium fluoride and modified with sodium nitrate:efficient catalysts for the Knoevenagel condensation[J]. Tetrahedron Letters,2002,43(10):1813-1815.
    [27]Macquarrie D J, Nazihb R, Sebti S. KF/natural phosphate as an efficient catalyst for synthesis of 2'-hydroxychalcones and flavanones[J]. Green chemistry,2002,4:56-59.
    [28]Frailea J M, Garciaa J I, Mayoral J A, et al. Modified natural phosphates easily accessible basic catalysts for the epoxidation of electron-deficient alkenes[J]. Green Chemistry, 2001,3:271-274.
    [29]Zahouily M, Charki H, Abrouki Y, et al. Natural Phosphate Modified with Sodium Nitrate:New Efficient Catalyst for the Construction of a Carbon-Sulfur and Carbon-Nitrogen Bonds[J]. Letters in Organic Chemistry,2005,2(4):354-359.
    [30]Sebti S, Solhy A, Tahir R, et al. Calcined sodium nitrate/natural phosphate:an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media[J]. Tetrahedron Letters,2001,42(45):7953-7955.
    [31]Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society,1982,104(4):1146-1147.
    [32]Parise J B. Some gallium phosphate frameworks related to the aluminium phosphate molecular sieves:X-ray structural characterization of{(PriNH3)[Ga4(PO4)4·OH]}·H2O[J]. Journal of the Chemical Society, Chemical Communications,1985,9:606-607.
    [33]West A R. Solid State Chemistry and its Applications[M]. John Wiley & Sons,1984.
    [34]忻新泉.低热固相化学反应[M].高等教育出版社,2010.
    [35]周益明,忻新泉.低热固相合成化学[J].无机化学学报,1999,15(3):273-292.
    [36]Stein A, Keller S W, Mallouk T E. Turning Down the Heat:Design and Mechanism in Solid-State Synthesis[J]. Science,1993,259(5101):1558-1564.
    [37]蔡艳华.中低热固相反应研究进展[J].化工技术与开发,2009,38(6):22-28.
    [38]Chen J, Tang X, Chen Y, et al. Formation of Four Different [MoOS3Cu3]-Based Coordination Polymers from the Same Components via Four Synthetic Routes [J]. Crystal Growth & Design,2009,9(3):1461-1469.
    [39]Yao X, Zheng L, Xin X. Synthesis and Characterization of Solid-Coordination Compounds Cu(AP)2Cl2[J]. Journal of Solid State Chemistry,1995,117(2):333-336.
    [40]Yu H, Xu Q, Sun Z, et al. Unique formation of two different W/Ag/S clusters from the same components via a low heating temperature solid state reaction and a solution reaction and their third-order NLO properties in solution[J]. Chemical Communications, 2001,2001:2614-2615.
    [41]Ya-Li C, Lang L, Dian-Zeng J, et al. One-step Solid-state Synthesis and Characterization of Two Kinds of ZnC2O4·2H2O Hollow Nanostructures[J]. Chinese Journal of Chemistry, 2005,23(5):539-542.
    [42]Xiao-Lu L, Yong-Mei W, Bing T, et al. A novel solid state Michael addition reaction of N-heterocyclic compounds containing active C-H bond[J]. Chinese Journal of Chemistry, 1996,14(5):421-427.
    [43]Du D, Meng S, Wang Y, et al. Solid state reaction of aromatic ketones with heteroaromatics[J]. Chinese Journal of Chemistry,1995,13(6):520-524.
    [44]Toda F, Takumi H, Akehi M. Efficient solid-state reactions of alcohols dehydration, rearrangement, and substitution[J]. Journal of the Chemical Society. Chemical Communications,1990,1990:1270-1271.
    [45]Morey J, Frontera A. Solid-State Redox Chemistry:Preparation of 1,4-Naphthoquinone, Hydroquinone, and the Corresponding Mixed Quinhydrone in the Solid State[J]. Journal of Chemical Education,1995,72(1):63.
    [46]He Y, Liao S, Chen Z, et al. Nonisothermal Kinetics Study with Isoconversional Procedure and DAEM:LiCoPO4 Synthesized from Thermal Decomposition of the Precursor[J]. Industrial & Engineering Chemistry Research,2013,52(5):1870-1876.
    [47]Chai Q, Chen Z, Liao S, et al. Preparation of LiZn0.9PO4:Mn0.1·H2O via a simple and novel method and its non-isothermal kinetics using iso-conversional calculation procedure[J]. Thermochimica Acta,2012,533:74-80.
    [48]Liao S, Chen Z, Liu G, et al. Preparation of Ammonium Cerium Phosphate via Low-heating Solid State Reaction and Its Catalysis for Benzyl Acetate Synthesis[J]. Chinese Journal of Chemistry,2010,28(3):378-382.
    [49]Liao S, Liu G, Tian X, et al. Selective Synthesis of a Hexagonal Co(Ⅱ)-Substituted Sodium Zincophosphate via a Simple and Novel Route[J]. Chinese Journal of Chemistry, 2010,28(1):50-54.
    [50]Huang J, Su P, Wu W, et al. Preparation of nanocrystalline BiFeO3 and kinetics of thermal process of precursor [J]. Journal of Thermal Analysis and Calorimetry,2013, 111(2):1057-1065.
    [51]Wu X, Wu W, Cui X, et al. Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization[J]. Journal of Thermal Analysis and Calorimetry, 2012,107(2):625-632.
    [52]Wu X, Wu W, Zhou K, et al. Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O[J]. Journal of Thermal Analysis and Calorimetry, 2012,110(2):781-787.
    [53]Wu W, Cai J, Wu X, et al. Nanocrystalline ZrO2 preparation and kinetics research of phase transition[J]. Rare metals,2012,31(1):51-57.
    [54]Flynn J H. Thermal analysis kinetics-past, present and future[J]. Thermochimica Acta, 1992,203:519-526.
    [55]Vyazovkin S, Wight C A. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids[J]. International Reviews in Physical Chemistry,1998,17(3):407-433.
    [56]Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids:A view from a historical perspective[J]. International Reviews in Physical Chemistry,2000,19(1): 45-60.
    [57]Nong W, Chen X, Wang L, et al. Nonisothermal Decomposition Kinetics of Abietic Acid in Argon Atmosphere[J]. Industrial & Engineering Chemistry Research,2011,50(24): 13727-13731.
    [58]Seo D K, Park S S, Kim Y T, et al. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species[J]. Journal of Analytical and Applied Pyrolysis,2011,92(1):209-216.
    [59]Genieva S D, Vlaev L T, Atanassov A N. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure [J]. Journal of Thermal Analysis and Calorimetry,2010,99(2):551-561.
    [60]Boonchom B, Puttawong S. Thermodynamics and kinetics of the dehydration reaction of FePO4-2H2O[J]. Physica B:Condensed Matter,2010,405(9):2350-2355.
    [61]Noisong P, Danvirutai C. Kinetics and Mechanism of Thermal Dehydration of KMnPO4·H2O in a Nitrogen Atmosphere[J]. Industrial & Engineering Chemistry Research,2010,49(7):3146-3151.
    [62]Seo D K, Park S S, Hwang J, et al. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species[J]. Journal of Analytical and Applied Pyrolysis,2010,89(1):66-73.
    [63]Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta,2011,520(1-2):1-19.
    [64]Boonchom B, Vittayakorn N. Simple fabrication of polyhedral grain-like microparticle Cu0.5Zn0.5HPO4·H2O and porous structure CuZnP2O7[J]. Ceramics International,2012, 38(1):411-415.
    [65]Boonchom B, Danvirutai C, Vittayakorn N. A simple synthesis and characterization of binary Co0.5Fe0.5(H2PO4)2-2H2O and its final decomposition product CoFeP4O12[J]. Solid State Sciences,2011,13(1):77-81.
    [66]Boonchom B, Vittayakorn N. Synthesis and ferromagnetic property of new binary copper iron pyrophosphate CuFeP2O7[J]. Materials Letters,2010,64(3):275-277.
    [67]Brown M E, Brown R E. Kinetic aspects of the thermal stability of ionic solids[J]. Thermochimica Acta,2000,357-358:133-140.
    [68]Paik P, Kar K K. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles:Effects of particle size[J]. Polymer Degradation and Stability, 2008,93(1):24-35.
    [69]Vyazovkin S, Wight C A. Kinetics in solids [J]. Annual Review of Physical Chemistry, 1997,48(1):125-149.
    [70]Jiang H, Wang J, Wu S, et al. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry[J]. Carbon,2010,48(2):352-358.
    [71]Vlaev L T, Georgieva V G, Genieva S D. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds [J]. Journal of Thermal Analysis and Calorimetry,2007,88(3):805-812.
    [72]Madhusudanan P M, Krishnan K, Ninan K N. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data[J]. Thermochimica Acta,1986,97: 189-201.
    [73]Madhusudanan P M, Krishnan K, Ninan K N. New equations for kinetic analysis of non-isothermal reactions[J]. Thermochimica Acta,1993,221(1):13-21.
    [74]Tang W, Liu Y, Zhang H, et al. New approximate formula for Arrhenius temperature integral[J]. Thermochimica Acta,2003,408(1-2):39-43.
    [75]樊艳金.低热固相法合成磷酸盐系列纳米材料及其性能研究[D].广西大学,2008.
    [76]侯生益.低热固相合成铁酸盐粉末及其性能研究[D].广西大学,2008.
    [77]袁爱群,吴健,陈杰,等.纳米十二面体磷酸锌铵的热化学性质及分解动力学[J].应用化学,2007,24(1):12-16.
    [78]廖森,种丽娜,柴倩,等.磷酸钴铵的合成及热分解动力学研究[J].广西科学,2010,17(4):349-352.
    [79]李妹妹.低热固相法合成系列纳米二元磷酸盐及其性能研究[D].广西大学,2010.
    [80]Flynn J H. The'Temperature Integral'-Its use and abuse[J]. Thermochimica Acta, 1997,300(1-2):83-92.
    [81]Starink M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica Acta,2003, 404(1-2):163-176.
    [82]Jankovic B, Mentus S, Jelic D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere [J]. Physica B:Condensed Matter,2009, 404(16):2263-2269.
    [83]Senum G I, Yang R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis and Calorimetry,1977,11(3):445-447.
    [84]Jankovic B, Adnadevic B, Jovanovic J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel:Thermogravimetric analysis[J]. Thermochimica Acta,2007,452(2): 106-115.
    [85]Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis[J]. Journal of Thermal Analysis and Calorimetry,2004,78(1):283-293.
    [86]Georgieva V, Vlaev L, Gyurova K. Non-isothermal degradation kinetics of CaCO3 from different origin[J]. Journal of Chemistry,2013, http://dx.doi.org/10.1155/2013/872981.
    [87]Gao Z, Amasaki I, Nakada M. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model[J]. Thermochimica Acta,2002,385:95-103.
    [88]Vlaev L, Nedelchev N, Gyurova K, et al. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate[J]. Journal of Analytical and Applied Pyrolysis,2008,81(2):253-262.
    [89]Miura K, Maki T. A Simple Method for Estimating f(E) and ko(E) in the Distributed Activation Energy Model[J]. Energy & Fuels,1998,12(5):864-869.
    [90]Jensen T R. A new polymorph of LiZnPO4·H2O; synthesis, crystal structure and thermal transformation [J]. Journal of the Chemical Society, Dalton Transactions,1998,1998: 2261-2266.
    [91]Carling S G, Day P, Vissen D. Crystal and Magnetic Structures of Layer Transition Metal Phosphate Hydrates[J]. Inorganic Chemistry,1995,34(15):3917-3927.
    [92]Echavarria A, Simon-Masseron A, Paillaud J L, et al. Synthesis and characterisation of the layered zinc phosphate KZn2(PO4)(HPO4)[J]. Inorganica Chimica Acta,2003,343: 51-55.
    [93]Tang M, Carter W C, Chiang Y. Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries:Examples in Lithium Metal Phosphate Olivines[J]. Annual Review of Materials Research,2010,40(1):501-529.
    [94]龙德良,梁斌,忻新泉.室温和低热固相反应在合成化学中的应用[J].应用化学,1996,13(6):1-6.
    [95]王天顺.金属磷酸盐材料的低热固相合成及其催化有机合成活性研究[D].广西大学,2008.
    [96]Wu W, Jiang Q. Preparation of nanocrystalline zinc carbonate and zinc oxide via solid-state reaction at room temperature[J]. Materials Letters,2006,60(21-22): 2791-2794.
    [97]Liu C, Wu X, Wu W, et al. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization[J]. Journal of Materials Science,2011,46(8):2474-2478.
    [98]Wu W, Wu X, Lai S, et al. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O[J]. Journal of Thermal Analysis and Calorimetry,2011,104(2): 685-691.
    [99]Wu X, Wu W, Li S, et al. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O[J]. Journal of Thermal Analysis and Calorimetry,2011,103(3): 805-812.
    [100]柴倩.新法合成过渡金属磷酸盐发光材料及其性能研究[D].广西大学,2012.
    [101]田晓珍.低热固相法合成金属磷酸盐及其有机反应催化活性研究[D].广西大学,2009.
    [102]Liao S, Wu W, Sun Y, et al. A Simple and Novel Route for The Preparation of Chiral Sodium Zincophosphate[J]. Chinese Journal of Chemistry,2008,26(2):281-285.
    [103]王金霞.磷酸锌化合物的低热固相合成与表征[D].中北大学,2005.
    [104]Boonchom B, Danvirutai C. Synthesis of MnNiP2O7 and Nonisothermal Decomposition Kinetics of a New Binary Mn0.5Ni0.5HPO4·H2O Precursor Obtained from a Rapid Coprecipitation at Ambient Temperature[J]. Industrial & Engineering Chemistry Research,2008,47(16):5976-5981.
    [105]Boonchom B, Danvirutai C, Maensiri S. Soft solution synthesis, non-isothermal decomposition kinetics and characterization of manganese dihydrogen phosphate dihydrate Mn(H2PO4)2·2H2O and its thermal transformation products[J]. Materials Chemistry and Physics,2008,109(2-3):404-410.
    [106]Vyazovkin S, Linert W. Kinetic analysis of reversible thermal decomposition of solids[J]. International Journal of Chemical Kinetics,1995,27(1):73-84.
    [107]Ikotun O F, Ouellette W, Lloret F, et al. Synthesis, Structural, Thermal and Magnetic Characterization of a Pyrophosphato-Bridged Cobalt(Ⅱ) Complex[J]. European Journal of Inorganic Chemistry,2008,2008(17):2691-2697.
    [108]Wen H, Cao M, Sun G, et al. Hierarchical Three-Dimensional Cobalt Phosphate Microarchitectures:Large-Scale Solvothermal Synthesis, Characterization, and Magnetic and Microwave Absorption Properties[J]. The Journal of Physical Chemistry C,2008,112(41):15948-15955.
    [109]Rajic N, Logar N Z, Kaucic V. A novel open framework zincophosphate:Synthesis and characterization[J]. Zeolites,1995,15(8):672-678.
    [110]Bramnik N. Bramnik K. Buhrmester T, et al. Electrochemical and structural study of LiCoPO4-based electrodes[J]. Journal of Solid State Electrochemistry,2004,8(8): 558-564.
    [111]Bensalem A, Garcia V, Yahiouche M. Synthesis and characterization of a new layered magnesium zinc phosphate hydrate[J]. Materials Research Bulletin,2007,42(1): 165-170.
    [112]徐家宁,袁宏明,史苏华,等.NH4ZnPO4的非水合成与晶体结构[J].高等学校化学学报,1998,19(11):1707-1710.
    [113]Harrison W T A, Sobolev A N, Phillips M L F. Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K[J]. Acta Crystallographica Section C,2001,57:508-509.
    [114]Le S N, Navrotsky A. Energetics of formation of alkali and ammonium cobalt and zinc phosphate frameworks[J]. Journal of Solid State Chemistry,2008,181(1):20-29.
    [115]Alahiane A, Rochdi A, Taourirte M, et al. Natural phosphate as Lewis acid catalyst:a simple and convenient method for acyclonucleoside synthesis[J]. Tetrahedron Letters, 2001,42(21):3579-3581.
    [116]Salvad6 M A, Pertierra P, Trobajo C, et al. Crystal Structure of a Cerium(IV) Bis(phosphate) Derivative[J]. Journal of the American Chemical Society,2007,129(36): 10970-10971.
    [117]Xu Y, Feng S, Pang W, et al. Hydrothermal synthesis and characterization of (NH4)2Ce(PO4)2·H2O[J]. Chemical Communications,1996,1996:1305-1306.
    [118]王龙飞,邵东旭,屈军艳,等.羟基磷灰石负载固体酸的制备及其催化酯化反应性能[J].石油化工,2012,41(7):778-783.
    [119]隆金桥,谢宇奇.硫酸氢钠催化合成乙酸异丁酯[J].广州化工,2010,38(12):152-153.
    [120]赵仑,王晓菊,白鹤龙,等.活性炭负载磷钨酸催化合成香料乙酸异丁酯[J].长春师范学院学报(自然科学版),2009,28(4):32-35.
    [121]陈平.合成乙酸异丁酯的催化剂研究进展[J].应用化工,2004,33(2):4-6.
    [122]廖森.试验设计与数据挖掘技术[M].中国教育文化出版社,2006.
    [123]贾树勇,任玉荣,张秀梅,等.磷酸二氢钠催化合成乙酸异丁酯的研究[J].化学试剂,2004,26(1):50,56.
    [124]刘承先,文艺.硫酸高铈催化合成乙酸异丁酯[J].安徽化工,2007,33(5):27-29.
    [125]邵景景,赵桂红,钟乃良.煤基活性炭负载硫酸铈催化合成乙酸异丁酯[J].黑龙江科技学院学报,2009,19(2):87-89,112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700