异三聚体G蛋白在生长素介导的拟南芥侧根发育中的作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根系是植物体的重要组成部分,主要执行着吸收土壤养分和水分的功能。侧根的发育及形态与根系建成密切相关,生长素对侧根的发育具有重要的调节作用。有研究表明,异三聚体G蛋白在生长素介导的拟南芥侧根发育过程中发挥作用,但是其作用机理尚不明晰。本文以拟南芥异三聚体G蛋白相关亚基突变体及过表达的转基因植株与悬浮培养细胞系为材料,应用植物解剖学、植物生理学、分子遗传学等研究手段,探讨了异三聚体G蛋白在生长素介导侧根发育中的作用机理。研究结果表明:
     1. G蛋白相关亚基突变显著影响根系发育表型。agb1-2及gpa1agb1幼苗的侧根发生数均极显著多于野生型(Col),主根长度也显著长于Col。gpa1-3与Col间主根长度无显著性差异,但是gpa1-3幼苗的侧根发生数显著少于Col。
     2. G蛋白突变体的侧根发生依赖于生长素途径的调节。抑制生长素极性运输条件下,外源生长素可显著增加突变体及野生型的侧根发生数。但各基因型对生长素诱导侧根发生的敏感性存在差异,与Col相比,gpa1-3侧根发生对生长素低敏感,agb1-2及gpa1agb1对生长素超敏感。
     3.对种子萌发后2-4d内各基因型侧根原基发育时期统计结果表明,萌发后2d,各基因型侧根原基开始发生,gpa1-3与agb1-2的侧根原基数差异不明显,但均显著高于Col。萌发后4d,当茎端生长素开始向根部运输时,gpa1-3幼苗的侧根及侧根原基总数与Col类似,但是显著低于agb1-2和gpa1agb1。对侧根原基分布时期观察表明,gpa1-3的侧根及侧根原基约70%处于侧根发生的第3-5期,而agb1-2和gpa1agb1的侧根原基主要集中于第5-7期(agb1-2,55%;gpa1agb1,72%),Col的侧根原基在侧根发育的各个阶段均匀分布。
     4.种子萌发4d时去除根茎交界处以上部分处理显著抑制各基因型的侧根发生,且各基因型间侧根发生数无显著差异,说明各基因型的侧根发生均依赖于地上部茎端合成的生长素。侧根发生早期(萌发后4d)去根尖处理促进了各基因型的侧根发生,但对agb1-2侧根发生影响较小,侧根发生数的增加显著低于Col。种子萌发后7d对幼苗去根尖处理的效应则相反,gpa1-3侧根发生数的增加显著低于Col。根据影响侧根发生的根部生长素运输特征分析,根部生长素的向基运输是影响G蛋白突变体侧根发生差异的主要因素。
     5.对GPA1和AGB1过表达转基因幼苗G蛋白亚基定位和侧根发育特征的研究结果表明,GPA1主要定位在根尖顶端及中柱部位,而AGB1在整个根部均有分布。GPA1过表达植株的侧根发生数目较野生型显著增加,AGB1过表达植株的侧根发生数与野生型相比无显著性差异。结合G蛋白突变体根系发育特征,根据G蛋白信号转导模式,推测AGB1在侧根发育过程中具有负调节作用。对种子萌发4d内过表达株系及野生型的侧根发育时期分布规律分析表明,在萌发第4d时AGB1过表达幼苗的侧根原基主要分布于第3-4期,GPA1过表达幼苗的侧根原基总数高于Col野生型,其增加的侧根原基主要集中在第3-5期,说明GPA1过表达有利于促进侧根原基的早期形成及分裂过程。
     6.不同基因型悬浮培养细胞对2,4-D和NAA的响应存在显著的差异。用2μM 2,4-D/NAA处理悬浮培养细胞系,agb1-2和GPA1过表达悬浮细胞对2,4-D促进的细胞分裂不敏感,对NAA诱导的细胞伸长过程超敏感。RT-PCR结果表明,在无外源生长素处理条件下,agb1-2悬浮细胞中细胞分裂周期素基因AtCYCD4;1的表达量相对较高。NAA处理促进了agb1-2和GPA1过表达悬浮细胞中与细胞伸长相关的ABP1的表达。根据2,4-D和NAA进出细胞机制的不同,可以推测AGB1突变体及GPA1过表达细胞系具有较强的生长素极性输出能力。
     7.对不同基因型的根系向重性反应研究表明:突变体agb1-2和过表达GPA1植株对向重性刺激的反应显著强于Col和gpa1-3,而过表达AGB1植株的向重性反应显著低于Col。
     8. Real-time PCR研究结果表明,agb1-2及GPA1过表达植株根部生长素极性输出载体PIN1的表达量显著增加。
     根据以上研究结果,认为G蛋白突变体的侧根发生差异是由于影响了根部生长素的向基运输途径,AGB1对这一过程具有负调节作用。AGB1突变促进了根系中生长素极性输出载体PIN1转录水平的表达,从而负调节根系中生长素的向基极性输出途径,促进侧根大量发生。
Roots systems, as one of the major organs of plant, perform essential tasks of absorbing water and nutrients from soil, and anchoring plants. The development and morphology of lateral roots play a crucial role in the construction of root systems. A lot of studies have shown that plant hormone auxin plays vital roles in the development of lateral roots. Recent studies showed that the heterotrimeric G-protein (G protein) is involved in auxin-dependent lateral root development. However, at present, the physiological and molecular mechanisms concerning G protein-mediated auxin-dependent lateral root development are largely unknown. In present study, we investigated the mechanisms of Arabidopsis heterotrimeric G-protein in the regulation of auxin-dependent lateral root development by using heterotrimeric G-proteinα/βsubunit null mutants and the transgenic cells and plants of overexpressed GPA1 /AGB1 plants as experimental materials with different approaches. The results showed that
     1. Mutation of the heterotrimeric G-proteinαsubunit andβsubunit affected significantly lateral root development of Arabidopsis. The lateral root numbers (LRNs) and the primary root length of G-proteinβsubunit mutant (agb1-2) and double mutant (gpa1agb1) were greater significantly than those of Col. No obvious difference was observed in main root length between G-proteinαsubunit mutant (gpa1-3) and wildtype, while the LRNs of gpa1-3 mutant were significantly lower than those of Col.
     2. The lateral root development was markedly affected by auxin. Under the condition of inhibiting auxin polar transport by using TIBA, an auxin polar transport inhibitor, exogenous IAA significantly increased the number of emerging lateral roots in heterotrimeric G protein mutants and wild type, which means that lateral roots formation in G protein mutants is also auxin-depend. However, significant differences were observed in the responses of lateral roots formation to auxin treatment among different genotypes investigated. As compared with Col, the lateral roots formation of gpa1-3 mutant was relatively insensitive and agb1-2 and gpa1agb1double mutant super-insensitive to auxin treatment
     3. The initiation of lateral roots occurred about at day 2 after seed germination and no obvious difference was detected in the numbers of lateral root primordia (LRP) between gpa1-3 and agb1-2 mutant, but all were significantly higher than that of Col. After 4 days of germination, when the auxin formed in the shoots began to transport to roots, the total number of lateral roots (LRs) and LRPs of gpa1-3 mutant was similar to that of Col, but significantly lower than that of gpa1agb1. Furthermore, About 70% of LRPs of gpa1-3 after 4 days germination were at 3-5 stages, while most of LRPs of agb1-2 and gpa1agb1 were at 5-7stages in agb1-2 and gpa1agb1.
     4. In the case of aerial tissue removal at 4 days after germination (DAG), the relative number of emerging and fully developed LRs decreased drastically compared to the intact seedlings, and no differences were observed among genotypes investigated. At the earlier stage of lateral root development (about 4 days after seed germination), excision of root tips (primary roots) significantly increased LRs except agb1-2 mutant. However, when root tips were excised after 7 days of germination, the increased LRs of mutant gpa1-3 was significantly lower than Col and other genotypes.
     5. Protein localization analysis using GFP fusion protein technique showed that GPA1 was mainly located in root apical and pericycle parts while AGB1 was distributed through the whole root. The density of LRs in GPA1 overexpressed seedlings was significantly higher than that of wild type plants, while no significant difference in LRNs was observed between AGB1 overexpressed seedlings and Col. The development of LRs of AGB1 overexpressed seedlings were less response to exogenous auxin and hypersensitive to TIBA while the response to auxin and TIBA in GPA1 overexpressed seedlings was similar to Col. The LRPs of AGB1 overexpressed seedlings at 4 days after germination were mainly distributed at stages 3-4, while LRPs in GPA1 overexpressed seedlings were mainly distributed at stages 3-5.
     6. There were significantly differences in cell division and cell elongation responses to 2,4-dichlorophenoxyacetic acid (2,4-D) andα-naphthalene acetic acid (NAA). The division of agb1-2 and GPA1-overexpressed cells was insensitive to 2,4-D (2μM) treatment and cell elongation of those genotypes was super-sensitive to NAA (2μM) treatment. RT-PCR result showed that, cell cyclin gene AtCYCD4;1 was highly expressed in agb1-2 suspension cells without exogenous auxin treatment. Gene ABP1, which was related to cell elongation, was highly expressed in agb1-2 and GPA1-overexpressed suspension cells treated with NAA. According to the different transport patyway of 2,4-D and NAA, it could be concluded that agb1-2 mutate and GPA1-overexpressed promoted auxin export capacity and enhanced the cell mitosis ability.
     7. Responsive to gravistimulation shown that agb1-2, GPA1-overexpressed seedlings were more responsive to gravistimulation than Col and gpa1-3 while AGB1- overexpressed seedlings were less responsive than the wild type Col.
     8. Real-time PCR analysis showed that the expression of PIN1 was significantly stimulated in roots of agb1-2 and GPA1 overespressed seedlings.
     Based on the results above, it was suggested that G protein-mediated lateral root development was largely through affecting auxin basipetal transport in roots. AGB1 negatively regulated this process by inhibiting the expression of PIN1, as a result, more lateral roots were formed in agb1-2 mutant.
引文
江玲,周燮(2000).水杨酸对莴苣初生根侧根原基的形成和根内激素含量的影响.植物生理学通讯, 36: 401-403.
    苏丽媛,周索,杨建伟,梁宗锁(2007).异三聚体G蛋白在2,4-D诱导的拟南芥根生长发育中的作用.西北林学院学报, 22: 92-95.
    王友华,段留生,卢孟柱,李召虎,王敏杰,翟志席(2006). NAC1上游调控区表达特征及其与侧根激素诱导的关系.中国科学C辑, 36: 217-222.
    周君莉,马力耕,孙大业(1998). G-蛋白和cGMP在光敏色素介导的尾穗苋苋红素合成中的作用.中国科学C辑. 28: 143-147.
    周索,余晓丽,杨建伟,尚忠林(2006).异三聚体G蛋白在NAA诱导的拟南芥根生长发育中的作用.西北植物学报, 26: 1617-1620.
    Anderson DJ and Botella JR (2007). Expression analysis and subcellular localization of the Arabidopsis thaliana G-proteinβ-subunit AGB1. Plant Cell Reports, 26: 1469-1480.
    Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura (1999). A rice gibberellin-insensitive dwarf mutant gene dwarf 1 encodes theα-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 96: 10284-10289.
    Assman SM (2002). Heterotrimeric and unconvention GTP binding proteins in plant cell signaling. Plant Cell (Supplement), S355-S373.
    Azpiazu I and Gautam N (2002). Role of G proteinβγcomplex in receptor-G protein interaction. Methods in Enzymology, 344: 112-125.
    Balcueva EA, Wang Q, Hughes H, Kunsch C, Yu ZH, Robishaw JD (2000). Human G protein γ(11) andγ(14) subtypes define a new functional subclass. Experimental Cell Research, 257: 310-319.
    Bao F, Shen JJ, Brady SR, Muday GK, Asami T, Yang ZB (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology, 134: 1624-1631.
    Barbier-Brygoo H, Ephritkhine G, Klambt D, Maurel C, Palme K, Schell J, Guern J (1991). Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant Journal, 1: 83-93.
    Bauly JM, Sealy MA, Macdonald H (2000). Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiology, 124: 1229-1238.
    Beeckman T, Burssens S, InzéD (2001). The peri-cell-cycle in Arabidopsis. Journal of Experimental Botany, 52: 403-411.
    Benkova′E, Michniewicz M, Sauer M, Teichmann T, Seifertova′D, Ju¨rgens G, Friml J (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115: 591–602.
    Berleth T, Krogan NT and Scarpella E (2004). Auxin signals—turning genes on and turning cells around. Current Opinion in Plant Biology, 7: 553- 563.
    Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant Journal, 29: 325-332.
    Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy A (2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell, 19: 131-147.
    Blakely LM, Durham M, Evans TA, Blakely RM (1982). Experimental studies on lateral rootformation in radish seeding roots. I General methods, developmental stages, spontaneous formation of laterals. Botanical Gazette, 143: 341-352.
    Blakely LM and Evans TA (1979). Cell dynamics studies on the pericycle of radish seedling roots. Plant Science Letters, 14:79-83.
    Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433: 39-44.
    Bourne HR, David AS, Frank MI (1990). The GTPase super family; a conserved switch for diverse cell functions. Nature, 348: 125-132.
    Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995). superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell, 7: 1405-1419.
    Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, InzéD, Sandberg G, Casero PL, Bennett M (2001 ). Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13: 843-852.
    Celenza JL, Grisafi PL, Fink GR (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development, 9: 2131-2142.
    Chang Y, Guo JJ, Gao YJ, Chen JG (2007). Modulation of Root Cell Division by the Heterotrimeric G-proteins in Arabidopsis. Dynamic Cell Biology, 1: 72-77.
    Charlton WA (1996). Lateral root initiation in plant roots: the Hidden Half. 2nd edn (ed. Y. Waisel, A. Eshel and U. Kafkafi), New York: Marcel Dekker:149-173.
    Chakravorty D and Botella JR (2007). Over-expression of a truncated Arabidopsis thaliana heterotrimeric G proteinγsubunit results in a phenotype similar toαandβsubunit knockouts. Gene, 393: 163-170.
    Chen JG, Gao Y, Jones AM (2006). Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiology, 141: 887-897.
    Chen JG (2004a). Dual auxin signaling pathways control cell elongation and division. Journal of Plant Growth Regulation, 20: 255-264.
    Chen JG, Pandey S, Huang JR, Alonso JM, Ecker JR, Assmann SM, and Jones AM (2004b). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and Gibberellins in Arabidopsis Seed Germination. Plant Physiology, 135: 907-915.
    Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science, 301: 1728-1731.
    Chen JG, Ullah H, Young JC, Sussman MR and Jones AM (2001). ABP1 is required fororganized cell elongation and division in Arabidopsis embryogenesis. Genes & Development, 5: 902-911.
    Chen Y,Ji FF,Xie H,Liang JS,Zhang JH (2006). The regulator of G protein signaling (RGS) proteins involve in sugar and abscisic acid signaling in Arabidopsis Thaliana seed germination. Plant Physiology, 140: 302-310.
    Clapham D and Neer E (1997). G proteinβγsubunits. Annual Review of Pharmacology and Toxicology, 37: 167-203.
    Clapham D and Neer E (1993). New roles for G-proteinβγ-dimers in transmembrane signalling. Nature, 365: 403-406.
    Clark GB, Memon AR, Tong CG, Thompson GA, Roux SJ (1993) Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei. Plant Journal, 4: 399-402.
    Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002). GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proceedings of the National Academy of Sciences of the United States of America, 99: 4736-4741.
    Davies PJ and Rubery PH (1978). Components of auxin transport in stem segments of Pisum sativum. Planta, 142: 211-219.
    Deak KI and Malamy J (2005). Osmotic regulation of root system architecture. Plant Journal, 43: 17-28.
    Debi BR, Taketa S, Ichii M (2005). Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). Journal of Plant Physiology, 162: 507-515.
    Dharmasiri N, Dharmasiri S, Estelle M (2005a). The F-box protein TIR1 is an auxin receptor. Nature, 435: 441-445.
    Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Juergens G, Estelle M (2005b). Plant development is regulated by a family of auxin receptor F-box proteins. Developmental Cell, 9: 109-119.
    Duan H(2002). The role of ethylene in auxin-mediated root development and isolation and characterization of Arabidopsis mutants with altered auxin-responsive gene expression. Doctorial thesis.
    Dubrovsky JG, Gambetta GA, Hernández-Barrera A, Shishkova S, González I (2006). Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Annuals of Botany, 97: 903-915.
    Dubrovsky JG, Rost TL, Colón-Carmona A, Doerner P (2001). Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta, 214: 30-36.
    Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Ju¨rgens G(2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426: 147-153.
    Friml J, Wisniewska J, BenkováE, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415: 806-809.
    Fukaki H, Yoko Okushima, Masao Tasaka(2005). Regulation of lateral root formation by auxin signaling in Arabidopsis. Plant Biotechnology, 22: 393-399.
    Fukaki H, Tameda S, Masuda H, Tasaka M (2002). Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant Journal, 29: 153-168.
    Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999). Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proceedings of the National Academy of Sciences of the United States of America, 96: 7575-7580.
    Gautam N, Downes GB, Yan K, Kisselev O (1998). The G-proteinβγcomplex. Cell Signal, 10: 447-455.
    Gazzarrini S, McCourt P (2003).Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us? Annuals of Botany, 91: 605-612.
    Galweiler L, Guan CH, Muller A, Wisman E, Mendgen K,Yephremov A, Palme K (1998): Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282: 2226-2230.
    Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C,
    Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS and Martinoia E (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant Journal, 44: 179-194.
    Gotor C, Lam E, Cejudo FJ, Romero LC (1996). Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers. Plant Molecular Biology, 32: 1227-1234.
    Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001). Auxin regulates SCFTIR1 dependent degradation of Aux/IAA proteins. Nature, 414: 271-276.
    Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998). How does auxin turn on genes? Plant Physiology, 118: 341-347.
    Hayashi K, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, Kondo H, Nozaki H(2003). Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. Journal of Biological Chemistry, 278: 23797-23806.
    Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Venis MA, Napier RM (1997). Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta, 202: 313-323.
    Hertel R, Thomson K, Russo VE (1972). In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta, 107: 325-340.
    Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Montagu MV, In?e D, Beeckman T (2004). Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 101: 5146-5151.
    Imhoff V, Muller P, Guern J, Delbarre A (2000). Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta, 210: 580-588.
    Ishikawa A, Iwasaki Y, Asahi T (1996). Molecular cloning and characterization of a cDNA for theβsubunit of a G protein from rice. Plant Cell Physiology, 37: 223-228.
    Ishikawa A, Tsubouchi H, Iwasaki Y, Asahi T (1995). Molecular cloning and characterization of a cDNA for theα-subunit of a G-protein from rice. Plant Cell Physiology, 36: 353-359.
    Iwasaki Y, Kato T, Kaidoh T, Ishikawa A, Asahi T (1997). Characterization of the putativeαsubunit of a heterotrimeric G protein in rice. Plant Molecular Biology, 34: 563-572.
    Jones AM, Ecker JR, Chen JG (2003). A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiology, 131: 1623-1627.
    Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H, Iwasaki Y (2004). Characterisation of heterotrimeric G protein complexes in rice plasma membrane. Plant Journal, 38: 320-331.
    Kawakita K and Doke N (1994). Involvement of a GTP-binding protein in signal transduction in potato tubes treated with the fugal elicitor from Phytophthora infestans. Plant Cell,10: 245-254.
    Kepinski S and Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435: 446- 451.
    King JJ, Stimart DP, Fisher RH, Bleecker AB (1995). A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell, 7: 2023-2037.
    Kim WY, Cheong NE, Lee DC, Je DY, Bahk JD, Cho MJ, Lee SY (1995). Cloning and sequencing analysis of a full-length cDNA-encoding a G-protein alpha-subunit, SGA1, from soybean. Plant Physiolgy, 108: 1315-1316.
    Kong H, Leebens-Mack J, Ni W, Pamphilis CW, Ma H (2004). Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications . Molecular Biology and Evolution, 21: 117-128.
    Kutz A, Muller A, Henning P, Kaiser WM, Piotrowsky M,Weiler EW (2002). A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant Journal, 30: 95-106.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995). Formation of lateral root meristems is a two-stage process. Development, 121: 3303-3310.
    Lease KA, Wen JQ, Jia L, Doke JT, Liscum E, and Walker JC (2001). A mutant Arabidopsis heterotrimeric G proteinβsubunit affects leaf, flower and fruit development. Plant Cell, 13: 2631-2641.
    Legendre L, Heinstein PF, Low PS (1992). Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. Journal of Biological Chemistry, 267: 20140-20147.
    Li Dong, Wang L, Zhang Y, Zhang YS, Deng XW, Xue YB (2006). An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Molecular Biology, 60: 599-615.
    Little YD, Hongyu Rao, Sabrina Oliva, Fran?oise Daniel-Vedele, Krapp A, Malamy JE (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America, 102: 13693-13698.
    Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 5819: 1712-1726.
    Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Go¨ran Sandberg (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 17: 1090-1104.
    Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 50: 309-332.
    Lobler M and Klambt D (1985). Auxin-binding proteins of corm(Zea mays L.)II. Localization of a putative receptor. Journal of Biological Chemistry, 260: 9854-9859.
    Ma H, Yanofsky MF, Meyerowitz EM (1990). Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 87: 3821-3825.
    Malamy JE and Ryan KS (2001). Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiology, 127: 899-909.
    Malamy JE and Benfey PN (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 124: 33-44.
    Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot‐Rechenmann C, Bennett MJ(1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO Journal, 18: 2066-2073.
    Marsh JF and Kaufman LS (1999). Cloning and characterisation of PGA1 and PGA2: Two G proteinα-subunits from pea that promote growth in the yeast Saccharomyces cerevisiae. Plant Journal, 19: 237-247.
    Mason MG and Botella JR (2001). Isolation of a novel G-proteinγ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochimica et Biophysica Acta, 1520: 147-153.
    Mason MG and Botella JR (2000). Completing the heterotrimer: Isolation and characterization of an Arabidopsis thaliana G proteinγ-subunit cDNA. Proceedings of the National Academy of Sciences of the United States of America , 97: 14784-14788.
    McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005). G-protein signaling: back to the future. CMLS-Cellular and Molecular Life Sciences, 62: 551-577.
    Michniewicz M, Brewer PB, Friml J (2007). Polar auxin transport and asymmetric auxin distribution. American Society of Plant Biologists: The Arabidopsis Book.
    Mitchell EK and Davies PJ (1975) Evidence for three different systems of movement of indoleacetic acid in intact roots of haseolus coccineus. Plant Physiology, 33: 290-294.
    Millner PA (1995). The auxin signaling. Current Biology, 7: 224-231.
    Muschietti JP, Martinetton HE, Coso OA (1993). G-protein from Medicago sativa: functional association to photoreceptors. Biochemical Journal, 73: 973-952.
    Muday GK and Murphy AS (2002). An emerging model of auxin transport regulation. Plant Cell, 14: 293-299.
    Myung CS, Lim WK, DeFilippo JM, Yasuda H, Neubig RR, Garrison JC (2006). Regions in the G proteinγsubunit important for interaction with receptors and effectors. Molecular Pharmacology, 69: 877-887.
    Myung CS and Garrison JC (2000). Role of C-terminal domains of the G proteinβsubunit in the activation of effecters. Proceedings of the National Academy of Sciences of the United States of America, 97: 9311-9316.
    Napier RM, David KM, Perrot-Rechenmann C (2002). A short history of auxi-binding proteins. Plant Molecular Biology, 49: 339-348.
    Nonhebel HM, Cooney TP, Simpson R (1993). The route control and compartmentation of auxin synthesis. Australia Journal of Plant Physiology, 20: 527-539.
    Okamota H, Matsui M, Deng XW (2001). Overexpression of the heterotrimeric G-protein alpha subunit enhances phytochrome-mediated inhibition of hypocotyl elongation. Plant Cell, 13: 1639-1652.
    Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B,
    Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 17: 444-463.
    Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003). p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiology, 133: 1135-1147.
    Palme K, Hesse T, Campos N, Garbers C,Yanofsky MF, Schell J (1992). Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell, 4: 193-201.
    Pandey S, Chen JG, Jones AM, Assmann SM (2006). G-Protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiology, 141: 243-256.
    Pandey S and Assmann SM (2004). The Arabidopsis putative G protein–coupled receptor GCR1 interacts with the G proteinαsubunit GPA1 and regulates abscisic acid signaling. The Plant Cell, 16:1616-1632.
    Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001). Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal, 25: 399-406.
    Peskan T and Oelmuller R (2000). Heterotrimeric G-protein beta subunit is localized in the plasma membrane and nuclei of tobacco leaves. Plant Molecular Biology, 42: 915-922.
    Petrá?ek J, Mravec J, Bouchard R, Blakeslee JJ,Abas M, SeifertováD, Wisniewska J, Tadele Z,Kube? M, CovanováM, Dhonukshe P, Skupa P,BenkováE, Perry L, Krecek P, Lee OR, Fink GR,Geisler M, Murphy AS, Luschnig C, Za?ímalováE, Friml J (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312: 914-918.
    Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000). Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiology, 122: 481-490.
    Rashotte A, Delong A, Muday G (2001). Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell, 13: 1683-1697.
    Razem FA, EI-Kereamy A, Abrams SR, Hill RD (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature, 439: 290-294.
    Reed RC, Brady SR, Muday GK (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology, 118: 1369-1378.
    Rogg LE, Lasswell J, Bartel B (2001). A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 13: 465-480.
    Rubery PH and Sheldrake AR (1974).Carrier-mediated auxin transport. Planta, 188:101-121.
    Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes & Development, 12: 198-207.
    Smet DI, Tetsumura T, Rybel BD, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, InzéD, Bennett MJ, Beeckman T (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development, 134: 681-690.
    Smet DI, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM (2003). An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant Journal, 33: 543-555.
    Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443: 823-826.
    Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17: 616-627.
    Steffens B, Feckler, Palme K,Christian M, B?ttger M, Lüthen H (2001). The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant Journal, 27:591-599.
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes & Development, 15: 2648-2653.
    Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004). MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of LRs in Arabidopsis thaliana. Plant Cell, 16: 379-393.
    Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant Journal , 37: 801-814.
    Trusov Y,Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson DJ, Chen JG, Jones AM, Botella JR (2007). Heterotrimeric G proteinγ-subunits provide functional selectivity in Gβγdimer signaling in Arabidopsis. Plant Cell, 19: 1235-1250.
    Tsurumi S, Ohwaki Y (1978) Transport of 14C-labeled indoleacetic acid in Vicia root segments. Plant Cell Physiology,19: 1195-1206.
    Tan X, Irina LA. Calderon-Villalobos,Sharon M, Zheng C, Robinson CV, Estelle M,Zheng N (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446: 640-645
    Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001). Modulation of cell proliferation by heterotrimeric G-protein in Arabidopsis. Science, 292: 2066-2069.
    Ullah H, Chen JG, Wang S, and Jones AM (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology, 129: 897-907.
    Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003). Theβ-subunit of the Arabidopsis G-protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell, 15l: 393-409.
    Wang S, Narendra S, Fedoroff N (2007). Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 104: 3817-3822.
    Wang XQ, Ullah H, Jones AM, Assmann SM (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 5524: 2070-2072.
    Warpeha KM, Hamm HE, Rasenick MM, Kaufman LS (1991). A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proceedings of the National Acadecy of Science in the United State of America, 88: 8925-8929.
    Weijers D and Jürgens G (2004). Funeling auxin action: Specificity in signal transduction. Current Opinion in Plant Biology, 7: 687-693.
    Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed J (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 43:18-130.
    Weiss C, Garnaat C, Mukai K, Hu Y, Ma H (1994). Isolation of cDNAs encoding guanine nucleotide-binding proteinβ-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proceedings of the National Academy of Sciences of the United States of America, 91: 9554-9558.
    Weiss CA, Huang H, Ma H (1993). Immunolocalization of the G proteinαsubunit encoded by the GPA1 gene in Arabidopsis. Plant Cell, 5: 1513-1528.
    Xing T, Higgins VJ, Blumwald E (1997). Identification of G protein mediating fungal elicitor- induced dephosphorylation of host plasma membrane H+-ATPase. Journal of Experimental Botany, 48: 229-237.
    Yamazaki D, Yoshida S, Asami T,Kuchitsu K (2003). Visualization of abscisic acid perception sites on the plasma membrane of stomatal guard cells. Plant Journal, 35: 129-139.
    Zaina S, Mapelli S, Reggiani R, Bertani A (1991). A auxin and GTPase activity in membranes from aerobic and anaerobic rice coleoptile. Journal of Plant Physiology, 138: 760-762.
    Zaina S, Reggiani R, Bertani A (1990). A Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.) coleoptile. Journal of Plant Physiology, 136: 653-658.
    Zbell B, Hohenadel I, Schwendemann I, Walter-Back C (1990). Is a GTP binding protein involved in the auxin-mediated phosphoinositide response on plant cell membranes? Nato ASA Series H 44. In: Konijn TM; Houslay MD; Van Haarstert; P.J.M.(Eds.) Heidelberg, Springer-Verlag, 255-266.
    Zhang LY, Fang KF, Lin JX (2005). Heterotrimeric G proteinα-subunit is localized in the plasma membrane of pinus bungeana pollen tubes. Plant Science, 169: 1066-1073.
    Beemster GTS, Fiorani F, Inze′D (2003). Cell cycle: the key to plant growth control? Trends in Plant Science, 8:154-159.
    Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant Journal, 29: 325-332.
    Blakely LM, Durham M, Evans TA, Blakely RM (1982). Experimental studies on lateral root formation in radish seeding roots. I. General methods, developmental stages, spontaneous formation of laterals. Botanical Gazette, 143: 341-352.
    Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, van Onckelen H, van Montagu M, Inze D (1995). superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell, 7: 1405-1419.
    Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant Journal, 29: 325-332.
    Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, InzéD, Sandberg G, Casero PL, Bennett M (2001 ). Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell, 13: 843-852.
    Casimiro I, Beeckman T, Graham N (2003) Dissecting Arabidopsis lateral root development. Trends in Plant Science, 8: 165-171.
    Celenza JL, Grisafi PL, Fink GR (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development, 9: 2131-2142.
    Chen JG, Gao Y, Jones AM (2006). Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiology, 141: 887-897.
    Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science, 301: 1728-1731.
    Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Montagu MV, In?e D, Beeckman T (2004). Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 101: 5146-5151.
    Himanen K, Boucheron E, Vanneste S (2002). Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell, 14: 2339-2351
    Ishikawa A, Tsubouchi H, Iwasaki Y, Asahi T (1995). Molecular cloning and characterization of a cDNA for theα-subunit of a G-protein from rice. Plant Cell Physiology, 36: 353-359.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995). Formation of lateral root meristems is a two-stage process. Development, 121: 3303-3310.
    Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Go¨ran Sandberg (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell, 17: 1090-1104. Malamy JE and Benfey PN (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 124: 33-44.
    Murashige T and Skoog F (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
    Okamota H, Matsui M, Deng XW (2001). Overexpression of the heterotrimeric G-protein alpha subunit enhances phytochrome-mediated inhibition of hypocotyl elongation. Plant Cell, 13: 1639-1652.
    Reed RC, Brady SR, Muday GK(1998). Inhibition of auxin movement from the shoot into theroot inhibits lateral root development in Arabidopsis. Plant Physiology, 118:1369-1378.
    Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001).Modulation of cell proliferation by heterotrimeric G-protein in Arabidopsis. Science, 292: 2066-2069.
    Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003). Theβ-subunit of the Arabidopsis G-protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell, 15l: 393-409.
    高本波,韩启德(2000).G蛋白βγ单位介导的信号转导途径。生理科学进展,31: 57-60.
    Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995). superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell, 7: 1405-1419.
    Celenza JL, Grisafi PL, Fink GR (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development, 9:2131–2142.
    Chen JG, Gao Y, Jones AM (2006). Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiology, 141: 887-897.
    Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Montagu MV, In?e D, Beeckman T (2004). Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 101: 5146-5151.
    King JJ, Stimart DP, Fisher RH, Bleecker AB (1995). A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell, 7: 2023-2037.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995). Formation of lateral root meristems is a two-stage process. Development, 121: 3303-3310.
    Reed RC, Brady SR, Muday GK (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology, 118: 1369-1378.
    Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003). Theβ-subunit of the Arabidopsis G-protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell, 15l: 393-409.
    DR马歇尔, JT门永, RR布格斯等著,朱厚础等译(1999).蛋白质纯化与鉴定实验指南.北京:科学出版社,53-56.
    F奥斯伯,RE金斯顿,JG塞德曼等著,颜子颖,王海林等译(1998).精编分子生物学实验指南.北京:科学出版社,366-372.
    韩玉波,张飞雄(2003). 2,4-D对小麦种子萌发和根尖细胞分裂的影响,首都师范大学学报(自然科学版), 24: 64-66.
    李建安、胡芳名(2006).拟南芥悬浮细胞生长特性及其继代培养条件。经济林研究,24:624-29.
    Bauly JM, Sealy IM,Macdonald H, Brearley J,Droge S, Hillmer S,Robinson DG, Venis MA, Lazarus CM, Napier RM (2001).Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiology, 124:1229-1238.
    Campanoni P and Nick P (2005). Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology, 137: 939-948.
    Chen JG, Shimomura S, Sitbon F, Sandberg G, Jones AM (2001a). The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant Journal, 28: 607-617
    Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001b) .ABP1 is required for organised cell elongation and division in Arabidopsis embryogenesis. Genes & Development, 15: 902-911.
    Chen JG (2001).Dual auxin signaling pathways control cell elongation and division. Journal of Plant growth regulation, 20:255-264.
    Ellis BE and Miles GP (2001). One for all? Science, 292:2022-2023.
    Estelle M (1998). Polar Auxin Transport: New Support for an Old Model. Plant Cell, 10: 1775-1778.
    Hasezawa S and Sy no K (1983). Hormonal control of elongation of tobacco cells derived from protoplasts . Plant and Cell Physiology, 24: 127-132.
    Jones AM (1994). Auxin binding proteins. Annual Review of Plant Physiology and Plant Molecular Biology, 45: 393-420.
    Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998). Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science, 282: 1114-1117.
    Kono A, Umeda-C Hara, Lee JK, Ito M, Uchimiya H, Umeda M (2003). Arabidopsis D-type cyclin CYCD4;1 is a novel cyclin partner of B2-type cyclin-dependent kinase1. Journal of Plant Physiology, 132: 1315-1321.
    Loper MT. and Spanswick RM (1991). Auxin Transport in suspension-cultured soybean root cells. Plant Physiology, 96: 184-191.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995). Formation of lateral root meristems is a two-stage process. Development, 121: 3303-3310.
    Nishi A, Kato K, Takahashi M, Yoshida R (1977).Partial synchronization of carrot cell cultures by auxin deprivation. Plant Physiology, 39: 9-12.
    Okamoto H, Matsui M, Deng XW (2001). Overexpression of the heterotrimeric G-protein α-subunit enhances phytochromemediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell, 13:1639-1651.
    Rubery PH (1977). The specificity of carrier-mediated auxin transport by suspension-cultured crown gall cells. Planta, 8: 275-283.
    Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001).Modulation of cell proliferation by heterotrimeric G-protein in Arabidopsis. Science, 292: 2066-2069.
    Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003). Theβ-subunit of the Arabidopsis G-protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell, 15l: 393-409.
    Weber K, Osborn M(1969). The reliability of molecular weight determinations by dodecylsulfate-polyacrylamide gel electrophoresis. Journal of Biology Chemitry, 244: 4406-4412
    Yanagishima N (1963). Effect of auxin and antiauxin antiauxin on cell elongation in yeast. Plant and Cell Physiology, 4: 257-264.
    Za?ímalováE, Petrá?ek J, DA Morris (2003). The dynamics of auxins dynamics of auxin transport in tobacco cells. Bulgaria Journal of Plant Physiology, Special issue: 207-224.
    Benkova′E, Michniewicz M, Sauer M, Teichmann T, Seifertova′D, Ju¨rgens G, Friml J (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115: 591-602.
    Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, InzéD, Sandberg G, Casero PL, and Bennett M (2001). Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 13: 843-852.
    Hobbie L and Estelle MA (1994). Genetic approaches to auxin action. Plant Cell Environment, 17: 525-540.
    Kono A, Umeda-Hara C, Lee F, Ito M, Uchimiya H, Umeda M (2003). Arabidopsis D-Type Cyclin CYCD4;1 Is a Novel Cyclin Partner of B2-Type Cyclin-Dependent Kinase. Plant Physiology, 132: 1315-1321.
    Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Go¨ran Sandberg (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 17: 1090-1104.
    Marchant A, Kargul J, T. May S, Muller P, Delbarre A, Perrot-Rechenmann G, J. Bennett M (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO Journal,18: 2066-2073.
    Morris DA (2004). The Role of Auxin in the Apical Regulation of Leaf Abscission in Cotton (Gossypium hirsutum L.). Journal of Experimental Botany, 44: 807-814.
    Petrá?ek J, Mravec J, Bouchard R, Blakeslee JJ,Abas M, SeifertováD, Wisniewska J, Tadele Z, Kube? M, CovanováM, Dhonukshe P, Skupa P,BenkováE, Perry L, Krecek P, Lee OR,Fink GR,Geisler M, Murphy AS, Luschnig C, Za?ímalováE, Friml J (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312: 914-918.
    Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000). Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiology, 122: 481-490.
    Reed RC, Brady SR, Muday GK (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology, 118: 1369-1378.
    Smet ID, Signora L, Beeckman T, Inze D, Foyer CH (2003). An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant Journal, 33: 543-555.
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes & Development, 15: 2648-2653.
    Yamamoto M and Yamamoto KT (1998). Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, auxl . Plant and Cell Physiology, 39: 660-664.
    Veylder LD, Engler JA, Burssens S,Manevski A, Lescure B, Montagu MV, Engler G, In?e D (1999). A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta, 208: 453-462.
    周索,余晓丽,杨建伟,尚忠林(2006).异三聚体G蛋白在NAA诱导的拟南芥根生长发育中的作用.西北植物学报, 26: 1617-1620.
    Assman SM (2002) Heterotrimeric and unconvention GTP binding proteins in plant cell signaling. Plant Cell, Supplement: S355-S373.
    Chakravorty D and Botella JR (2007). Over-expression of a truncated Arabidopsis thaliana heterotrimeric G proteinγsubunit results in a phenotype similar toαandβsubunit knockouts. Gene, 393: 163-170.
    Calenberg M, Brohsonn V, Zedlacher M, Kreimer G (1998). Light- and Ca2+-modulated heterotrimeric GTPase in the eyespot apparatus of a flagellate green alga. Plant Cell, 10: 91-103.
    Dharmasiri N, Dharmasiri S and Estelle M (2005a). The F-box protein TIR1 is an auxin receptor. Nature, 435: 441-445.
    Kepinski S and Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435: 446-451.
    Lease KA, Wen JQ, Jia L, Doke JT, Liscum E, and Walker JC (2001). A mutant Arabidopsis heterotrimeric G proteinβsubunit affects leaf, flower and fruit development. Plant Cell, 13: 2631-2641.
    Mason MG and Botella JR (2001). Isolation of a novel G-proteinγ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochimica et Biophysica Acta, 1520: 147-153.
    Millner PA(2001). Heterotrimeric G-proteins in plant cell signaling. New Phytologist, 151:165-174.
    Trusov Y,Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson DJ, Chen JG, Jones AM, Botella JR (2007). Heterotrimeric G proteinγsubunits provide functional selectivity in Gβγdimer signaling in Arabidopsis. Plant Cell, 19: 1235-1250.
    Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001).Modulation of cell proliferation by heterotrimeric G-protein in Arabidopsis. Science, 292: 2066-2069.
    Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003). Theβ-subunit of the Arabidopsis G-protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell, 15l: 393-409.
    Weiss C, Garnaat C, Mukai K, Hu Y, Ma H (1994). Isolation of cDNAs encoding guanine nucleotide-binding proteinβ-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proceedings of the National Academy of Sciences of the United States of America, 91: 9554-9558.
    Weiss CA, Huang H, Ma H (1993). Immunolocalization of the G proteinαsubunit encoded by the GPA1 gene in Arabidopsis. Plant Cell, 5: 1513-1528.
    Wang XQ, Ullah H, Jones AM, Assmann SM (2001). G protein regulation of iIon channels and abscisic acid signaling in Arabidopsis guard cells. Science, 5524: 2070-2072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700