利用反向Ras拯救恢复系统筛选拟南芥G蛋白互作因子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异三聚体G蛋白是在从酵母到人的所有真核生物中都高度保守的信号转导蛋白。它与偶联的膜受体蛋白和效应器蛋白合作,接受外界信息,并经过调整、集合与放大,准确无误地传递到细胞内,从而调控基本的生命过程,是细胞与环境信息交换必不可少的分子开关。异三聚体G蛋白属于GTPase,由α,β,γ三个亚基组成。研究表明,异三聚体G蛋白与含有七次跨膜结构域的质膜受体密切偶联(GPCRs)。目前哺乳动物中已发现大于20个Gα亚基,多于5个Gβ亚基,至少20个Gγ亚基。
     与哺乳动物相反,植物异三聚体G蛋白含有一个Gα亚基(GPA1),一个Gβ亚基(AGB1)和两个Gγ亚基(AGG1和AGG2)。研究表明,植物G蛋白参与许多激素、发育及环境信号的应答,从而调控植物生长、器官发育及病害及逆境抗性等。对于拟南芥和水稻研究表明,异三聚体G蛋白能够直接地,间接地组织特异性地影响生长素、ABA、GA、油菜素内酯(brassinosteroid)、鞘脂(sphingolipid )、D-葡萄糖信号、感受蓝光和病原菌信号传导等。虽然植物异三聚体G蛋白涉及广泛的信号转导过程,但已知的与Gα亚基或Gβγ二聚体相互作用的下游效应器还很少。但传统的方法,包括生物数据分析、遗传学与药理学等方法,对于筛选、鉴定植物G蛋白信号转导途径中的其它效应因子并不十分有效,因而寻找新的改良方法是必须的。
     在本项研究中,作者构建了拟南芥cDNA文库,借助酵母反向Ras恢复系统(reverse Ras Recruitment system,rRRS)来筛选、鉴定与拟南芥GPA1相互作用的蛋白因子,如ADL1C,ACC1,AtXB31等,并以AtXB31作为进一步的研究对象,通过Pull down,BiFC和CoIP等体外与体内蛋白结合实验证明了AtXB31同GPA1的互作。生物化学分析与异位过量表达,病原菌接种等遗传学研究进一步验证它们之间的相互作用。分离GPA1相互作用蛋白的突变体以及与包括gpa1在内的其它信号蛋白突变基因构成的双突变体。通过鉴定这些突变体对已知G蛋白介导的信号转导事件产生的效应与表型性状,揭示G蛋白信号转导途径的机理。取得的结果如下:
     1.提取拟南芥2星期和三星期幼苗,成熟的叶片、茎、花的总RNA,以随即引物为反转录引物,表达载体为pUra-Ras,构建了cDNA文库,1×105个克隆。
     2.构建pMet-WtGPA1,pMet-Q222L两种诱饵,借助反向Ras拯救恢复系统,筛选得到若干GPA1推论的互作因子,如:ADL1C,ACC1,AtXB31等。
     3.通过酵母双杂交,Pull down,BiFC,CoIP等体内体外蛋白互作实验,进一步证明AtXB31同GPA1的互作。其中酵母双杂交的互作发现,AtXB31的N-末端膜定位序列对于二者的互作是必需的。
     4.对于AtXB31结构分析表明,该基因具有三个保守domain,分别为:N-末端的膜定位序列,将蛋白定位在质膜上;锚定重复序列(ankyrin repeats),参与蛋白互作;C3HC4的环形锌指结构,具有潜在的E3连接酶的活性。生物信息学预测该蛋白不具有跨膜结构。RT-PCR检测,该基因在植物的重要组织中均有表达,其中在花中表达较高。GFP亚细胞定位在质膜上。经ABA和病原菌处理之后,AtXB31表达量提高。
     5.AtGPA1同AtXB31有可能共同调控病原菌Xcc8004信号途径。通过对AtXB31的异位过表达和RNAi敲除转基因植株同野生型col-o形态学比较发现,基本没有差别。分别对GPA1的无义突变体gpa1-4和AtXB31过表达以及RNAi敲除植株接种病原菌,野生型作为对照。结果表明,gpa1-4和AtXB31RNAi敲除植株均出现了疑似感病症状。并且已经证明AtXB31在转录水平上响应该病原菌。因此推论AtGPA1和AtXB31很有可能参与Xcc8004病原菌的信号调控。
     黄单胞菌是可造成植物严重病害的细菌,如黑腐病。因此研究该病原菌同植物之间的信号传递途径,找出关键调控基因,对于防治该病原菌可提供重要理论依据。
     筛选、鉴定植物G蛋白相互作用因子,并剖析其生理功能和在G蛋白信号转导中的作用,从而揭示植物G蛋白信号转导过程中的分子运转机制,这不但具有深远的理论意义,而且具有现实的生产指导意义,为提作物高光合效率,改良作物品质,提高作物抗逆性等品种改良工作提供理论依据。
Heterotrimeric G proteins are signal transducers which are conserved in eukaryotes ranging from yeast to humans. Heterotrimeric G proteins are GTPases, composed ofα,βandγsubunits. Studies with mammalian cells established that heterotrimeric G proteins associated with plasma membrane receptors which contain 7 transmembrane domains (GPCRs). In mammals, more than 20 Gα,5 distinct Gβand at least 12 Gγsubunits have been identified.
     In contrast, our understanding to the molecular mechanisms of activation, signaling and regulation of plant heterotrimeric G proteins is rudimentary. It is currently thought that plant heterotrimeric G proteins contain a single Gα-subunit (GPA1), a single Gβ(AGB1) and two Gγ-subunits (AGG1&2). Both GPA1 and AGB1 have been shown to be located at the plant plasma membrane. A wide range of biochemical, pharmacological, and genetic studies conducted over the last 20 years have shown that plant G proteins are involved in responses to a number of hormone, developmental and environmental signals. The involvement of heterotrimeric G proteins in plant hormone signaling is complex. In particular, recent genetic studies with Arabidopsis have revealed direct, indirect, tissue specific effects on auxin, ABA, GA, brassinosteroid, sphingolipid and D-glucose, Blue light, pathogen signaling. Although plant heterotrimeric G proteins are involved in this wide range of signaling events, there are only few known downstream effectors that physically interact with either the plant Gα, or the Gβγdimmer. Attempts to identify other components of plant G protein signaling by database mining, genetics and pharmacology have not been conclusive. Because conventional methods have not provided answers to these important questions, an innovative approach is required.
     In this subject, the yeast two-hybrid reverse Ras Recruitment system (rRRS) had been used to identify proteins that interact with GPA1. The putative ineracrors is ADLC1, ACC1, AtXB31 and so on. We focused on the AtXB31. Interactions had been confirmed by Pull down, BiFC, CoIP. AtXB31 mutants will be isolated and double mutants generated with gpa1. The phenotype and response of these to known G protein mediated events will be determined. The main results are as follow:
     1. Constructing an Arabidopsis cDNA library of 2-week seedling, 3-weekseedling, leaf, stem, flower, which is 1×105 colonines.
     2. Constructing two kind of bait, which is pMet-WtGPA1 and pMet-Q222L, through reverse Ras Recruitment system, we got some putative interactors.
     3. The interaction is confirmed by yeast two hybridization, Pull down, BiFC, CoIP in vitro and in vivo. The N-Myristoylation site of AtXB31 is necessary for the interaction of GPA1 and AtXB31.
     4. The strcture analysis of AtXB31 suggests that, there is three conserved domain, such as N-Myristoylation site, ankyrin repeats, ring type Zinc figure of C3HC4. There is no transmembrane motif by Tmhmm software. The expression of AtXB31 can be detected in all major tissue of plant by RT-PCR.. Subcellular localization of the transiently expressed pBI121-AtXB31-GFP fusion protein in tobacco epidermal cells shows AtXB31-GFP fluorescence is concentrated to the intracellular membrane of cell. The expression of AtXB31 is enhanced treated with ABA and Xcc pathogen.
     5.AtXB31 and AtGPA1 may coregulate the signal transduction of Xcc8004 pathogens. From morphology, ectopic over-expression and RNA interference plants of AtXB31 showed no difference comparing with wild type. The mutant gpa1-4 and AtXB31RNAi is susceptible to the infection of Xcc8004. In other hand,we had proved AtXB31 response to the Xcc on transcription. So, AtXB31 and AtGPA1 may coregulate the signal transduction of Xcc8004 pathogens.
     As a bacterial pathogen, Xanthomonas campestris could cause serious disease to plant, such as black rot. Therefore, investigating the signaling pathways between palnt and pathogen and detecting the key regulary genes, will generate important theory against the pathogens.
     In conclusion, it would have tremendous potential for identifying components of plant GPA signaling pathways and, in combination with the use of biochemistry and the genetic screens, will generate novel information that will enhance our understanding of signal transduction mechanisms in plants. It would do a great good to upgrade of crops.
引文
1.孙大业,郭艳林等。细胞信号转导.北京:科学出版社,2001:1-9
    2 Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., and Parker J.E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene mediated signalling pathways in Arabidopsis. Proc. Natl. Acad. Sci. 95, 10306–10311.
    3 Abramovitch, R.B., and Martin, G.B. (2004). Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol. 7, 356-64.
    4 Abramovitch, R.B., Janjusevic, R., Stebbins, C. E., and Martin, G. B. (2006). Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cel death and immunity. Proc. Natl Acad. Sci. 103, 2851–2856.
    5 AC. R. da Silva1, J. A. Ferro, F. C. Reinach1, C. S. Farah1, L. R. Furlan, R. B. Quaggio1, C. B. Monteiro-Vitorello, M. A. Van Sluys, N. F. Almeida6, L. M. C. Alves, A. M. do Amaral, M. C. Bertolini8, L. E. A. Camargo, G. Camarotte4, F. Cannavan, J. Cardozo, F. Chambergo1, L. P. Ciapina, R. M. B. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos1, H. El-Dorry1, J. B. Faria1, A. J. S. Ferreira1, R. C. C. Ferreira, M. I. T. Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite14, E. G. M. Lemos, M. V. F. Lemos, E. C. Locali, M. A. Machado, A. M. B. N. Madeira, N. M. Martinez-Rossi11, E. C. Martins, J. Meidanis, C. F. M. Menck, C. Y. Miyaki, D. H. Moon, L. M. Moreira1, M. T. M. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi1, J. A. D. Sena1, C. Silva1, R. F. de Souza1, L. A. F. Spinola1,M. A. Takita, R. E. Tamura1, E. C. Teixeira, R. I. D. Tezza, M. Trindade dos Santos1, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal & J. P. Kitajima1. (2002). Comparison of the genomes of twoXanthomonas pathogens withdiffering host specificities. Nature 417, 459-63
    6 Aderem, A. and Ulevitch, R.J. Toll-like receptors in the induction of innate immune response. (2000). Nature 406, 782-787.
    7 Alexander Christmann1 and Erwin Grill1. (2009). Are GTGs ABA’s Biggest Fans? Cell 136, 21-23.
    8 Alfano, J.R., and Collmer, A. (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385.
    9 Alpert, K.B., and Tanksley, S.D. (1996). High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2, a major fruit weight quantitative traitlocus in tomato. Proc. Natl. Acad. Sci. USA. 93, 15503–15507.
    10 Andersen-Nissen, E., Smith, K.D., Strobe, K.L., Rassoulian Barrett, S.L., Cookson, B.T., Logan, S.M., and Aderem, A. (2005). Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. 102, 9247–9252.
    11 Ando, S., Takumi, S., Ueda, Y., Ueda, T., Mori, N., and Nakamura, C.. (2000). Nicotiana tabacum cDNAs encodingαandβsubunits of a heterotrimeric GTP-binding protein isolated from hairy root tissues. Genes Genet. Syst. 75, 211–221.
    12 Apone F, Alyeshmerni N, Wiens K, Chalmers D, Chrispeels MJ, Colucci G. (2003). The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositolspecific phospholipase C. Plant Physiol. 133, 571-579.
    13 Armstrong, F., Blatt, M.R. (1995). Evidence for K+channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor mimetic. Plant J. 8, 187–198.
    14 Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L.,Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983.
    15 Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. (1999). Rice gibberellins -insensitive dwarf mutant gene Dwarf 1 encodes theα-subunit of GTP-binding protein. Proc Natl Acad Sci USA. 96, 10284-10289.
    16 Assmann SM. (2002). Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14,S355-S373.
    17 Assmann, S.M., and Wang, X.Q.. (2001). From milliseconds to millions of years: Guard cells and environmental responses. Curr. Opin. Plant Biol. 4, 421–428.
    18 Audigier, Y., Nigam, S.K., and Blobel, G.. (1988). Identification of a G protein in rough endoplasmic reticulum of canine pancreas. J. Biol. Chem. 263, 16352–16357.
    19 Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat. Immunology. 6, 973-979.
    20 BACHARACH E, GOFF S P. (1998 ). Binding of human immunodeficiency virus type , Gag protein to via ,RNA encapsidation fignal in the yeast three hybrid system. 72(8), 763 - 797.
    21 Beffa, R., Szell, M., Meuwly, P., Pay, A., Voegeli-Lange, R.,Metraux, J., Neuhaus, G., Meins, F., Jr., and Nagy, F. (1995). Cholera toxin elevates pathogen resistance and induces pathogenesis- related gene expression in tobacco. EMBO. 14, 5753– 5761.
    22 Bernard, M.L., Peterson, Y.K., Chung, P., Jourdan, J., and Lanier, S.M. (2001). Selective interaction of AGS3 with G-proteins and the influence of AGS3 on theactivation state of G-proteins. J. Biol. Chem.. 276, 1585–1593.
    23 Bischoff, F., Molendijk, A., Rajendrakumar, C.S.V., and Palme, K.. (1999). GTP-binding proteins in plants. Cell. Mol. Life Sci. 55, 233–256.
    24 Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., and Innes, R.W. (1994). A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes.Plant Cell 6, 927-933.
    25 Bockaert, J., and Pin, J.P. (1999). Molecular tinkering of G proteincoupled receptors: An evolutionary success. EMBO J. 18, 1723– 1729.
    26 Boelker, M.. Sex and crime, (1998). Heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet. Biol. 25, 143–156.
    27 Booker FL, Burkey KO, Overmyer K, Jones AM. (2004). Differentialresponse of G-protein Arabidopsis thaliana mutants to ozone.New Phytol. 162, 633-641.
    28 Bossen, M.E., Kendrick, R.E., and Vredenberg, W.J. (1990). The involvement of a G-protein in phytochrome-regulated, Ca2+ dependent swelling of etiolated wheat protoplasts. Physiol. Plant. 80, 55–62.
    29 Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349, 117–127.
    30 Bowler, C., Yamagata, H., Neuhaus, G., and Chua, N.H. (1994b). Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev. 8, 2188–2202.
    31 Braun, M., Baluska, F., von Witsch, M., and Menzel, D. (1999). Redistribution of actin, profilin and phosphatidylinositol-4,5- bisphosphate in growing and maturing root hairs. Planta 209, 435–443.
    32 Brenda R. S. Temple and Alan M. Jones. (2007). The Plant Heterotrimeric G-Protein Complex Annu. Rev. Plant Biol. 58, 249–66
    33 Brown, A.M., and Birnbaumer, L. (1990). Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol. 52, 197–213.
    34 Calenberg, M., Brohsonn, U., Zedlacher, M., and Kreimer, G. (1998). Light- and Ca2+modulated heterotrimeric GTPases in the eyespot apparatus of a flagellate green alga. Plant Cell 10, 91–103.
    35 Casey, P.J. (1994). Lipid modifications of G proteins. Curr. Opin. Cell Biol. 6, 219–225.
    36 Ceserani, Teresa, Trofka, Anna, Gandotra, Neeru, Nelson, Timothy. (2008). VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation. Plant J. 57, 1000-14.
    37 Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM. (2004). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol. 135, 907-915.
    38 Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP. (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301, 1728-1731.
    39 Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2005). The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. Plant Cell 18, 465-476.
    40 Cismowski, M.J., Takesono, A., Bernard, M.L., Duzic, E., and Lanier, S.M. (2001). Receptor-independent activators of heterotrimeric G-proteins. Life Sci. 68, 2301–2308.
    41 Coaker, G., Falick, A. and Staskawicz, B. (2005). Activation of aphytopathogenic bacterial effector protein by aeukaryotic cyclophilin. Science 308, 548–550.
    42 Coca, M.A., Damsz, B., Yun, D.J., Hasegawa, P.M., Bressan, R.A., and Narasimhan, M.L. (2000). Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J. 22, 61–69.
    43 Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ, (2002). GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci USA. 99, 4736-4741.
    44 Cook, L.A., Schey, K.L., Cleator, J.H., Wilcox, M.D., Dingus, J., and Hildebrandt, J.D.. (2001). Identification of a region in G proteinαsubunits conserved across species but hypervariable among subunit isoforms. Protein Sci. 10, 2548–2555.
    45 Cornelis, G.R. (2006). The typeⅢsecretion injectisome. Nature. 4, 811-825.
    46 Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM, (2003). Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423, 651-654.
    47 Dangl, J.L., and Jones, D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833.
    48 Day RB, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi-Tanaka M, Matsuoka M, Kaku H, Shibuya N, Minami E. (2004). Two rice GRAS family genes responsive to Nacetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol Biol, 54,
    261-272.
    49 De Vries, L., Zheng, B., Fischer, T., Elenko, E., and Farquhar, M.G. (2000b). The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271.
    50 De Waard, M., Liu, H., Walker, D., Scott, V.E., Gurnett, C.A., and Campbell, K.P. (1997). Direct binding of G-proteinβγcomplex to voltage-dependent calcium channels. Nature 385, 446–450.
    51 Del Pozo, O., Pedley, K.F., and Martin, G.B. (2004). MAPKKKa is a positiveregulator of cell death associated with both plant immunityand disease. EMBO Journal. 23, 3072-3082.
    52 Den Hartog, M., Musgrave, A., and Munnik, T. (2001). Nod factorinduced phosphatidic acid and diacylglycerol pyrophosphate formation: A role for phospholipase C and D in root hair deformation. Plant J. 25, 55–65.
    53 Devitt, M.L., Maas, K.J., and Stafstrom, J.P. (1999). Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis. Plant Mol. Biol. 39, 75–82.
    54 Dohlman, H.G., Thorner, J., Caron, M.G., and Lefkowitz, R.J. (1991). Model systems for the study of seven-transmembranesegment receptors. Annu. Rev. Biochem. 60, 653–688.
    55 Ecker K, Lorenz A, Wolf F, Ploner C, B?ck G, Duncan T, Geley S, Helmberg A. (2009). A RAS recruitment screen identifies ZKSCAN4 as a glucocorticoid receptor -interacting protein. J Mol Endocrinol. 42(2), 105-17.
    56 Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. (2003). Two MAPK cascades, NPR1, and TGA transcription factors play arole in Pto-mediated disease resistance in tomato. Plant J. 36, 905-917.
    57 Fabian KoE hler and Kristian M. MuE ller. (2003). Adaptation of the Ras-recruitment system to the analysis of interactions between membraneassociated proteins. Nucleic Acids Research, 31(6), e28
    58 Fairley-Grenot, K., and Assmann, S.M. (1991). Evidence for G-protein regulation of inward K+ channel current in guard cells of fava bean. Plant Cell 3, 1037–1044.
    59 Fan LM, Zhao Z, Assmann SM, (2004). Guard cells: a dynamic signaling model. Curr Opin Plant Biol, 7, 537-546.
    60 Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant J. 18(3), 265-276.
    61 Ferguson, S.S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: Therole in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24.
    62 Fujisawa Y, Kato H, Iwasaki Y, (2001), Structure and function ofheterotrimeric G proteins in plants. Plant Cell Physiol. 42, 789-794.
    63 Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T,Iwasaki Y. (1999). Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA. 96, 7575-7580.
    64 Fujisawa, Y., Kato, H., and Iwasaki, Y. (2001). Structure and function of heterotrimeric G proteins in plants. Plant Cell Physiol. 42, 789–794.
    65 Fujisawa, Y., Kato, T., Ohki, S., Ishikawa, A., Kitano, H., Sasaki, T., Asahi, T., and Iwasaki, Y. (1999). Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc. Natl. Acad. Sci. USA. 96, 7575–7580.
    66 Gabriel, D.W., and Rolfe, B.G. (1990). Working models of specific recognition in plant-microbe interactions. Ann. Rev.Phytopathol. 8, 365-391.
    67 Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., and Grimont, P.A. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. Int. J. Syst. Bacteriol 49, 469-478.
    68 Goldberg J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-248.
    69 Gómez-Gómez, and Boller, T. (2000). FLS2, An LRR Receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5, 1003-1011.
    70 Gómez-Gómez, L., Bauer, Z., and Boller, T. (2001). Both the extracellular leucine-rich repeat domain and the kinase kctivity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155–1163.
    71 Gómez-Gómez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to baterial flagellin in Arabidopsis thaliana. Plant J. 18(3), 277-284.
    72 Gotor, C., Lam, E., Cejudo, F.R., and Romero, L.C. (1996). Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers. Plant Mol. Biol. 32, 1227–1234.
    73 Hanakam F, Gerisch G, Lotz S, Alt T. (1996). Seelig A: Binding of hisactophilin I and II to lipid membranes is controlled by a pHdependentmyristoyl-histidine switch. Biochemistry. 35, 11036-11044.
    74 He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., and Sheen,J. (2006). Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell 125, 563-575.
    75 Higashijima, T., Uzu, S., Nakajima, T., and Ross, E.M. (1988). Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem. 263, 6491–6494.
    76 Hinsch, M., and Staskawicz, B.J. (1996). Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of thecorresponding avirulence gene, avrRps4, from Pseudomonassyringae pv. pisi. Mol. Plant-Microbe Interact. 9, 55-61.
    77 Hoffmann, J.A., and Reichhart, J. (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunology 3, 121-126.
    78 Holley, S.R., Yalamanchil, R.D., Moura, D.S., Ryan, C.A., and Stratmann, J.W. (2003). Convergence of signaling pathways induced by systemin,oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersiconperuvianum suspension-cultured cells. Plant Physiol. 132, 1728-1738.
    79 Hooley, R. (1998). Plant hormone perception and action: A role for G-protein signal transduction? Philos. Trans. R. Soc. Lond. Ser. B 353, 1425–1430.
    80 Hotson, A., Chosed, R., Shu, H., Orth, K., and Mudgett, M. B. (2003). Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol..50, 377–389.
    81 Hubsman,M., Yudkovsky,G. and Aronheim,A. (2001). A novel approach for the identication of protein-protein interaction with integral membrane proteins. Nucleic Acids Res. 29, e18.
    82 Humphrey, T.V., and Botella, J.R.. (2001). Re-evaluation of the cytokinin receptor role of the Arabidopsis gene GCR1. Plant Physiol. 158, 645–653.
    83 Ishikawa A, Iwasaki Y, Asahi T. (1996). Molecular cloning and characterization of a cDNA for theβsubunit of a G protein from rice. Plant Cell Physiol. 27, 223-228..
    84 Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 12, 1667-1678.
    85 Iwasaki Y, Fujisawa Y, Kato H. (2002). Function of heterotrimeric G protein in gibberellin signaling. J Plant Growth Regul. 22, 126-133.
    86 Jacob T, Ritchie S, Assmann SM, Gilroy S. (1999). Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA. 96, 12192-12197.
    87 Janjusevic, R., Abramovitch, R.B., Martin, G.B., and Stebbins, C.E. (2006). Abacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311, 222–226.
    88 Jelsema, C.L., and Axelrod, J. (1987). Stimulation of phospholipase A2 activity in bovine rod outer segments by theβγsubunits of transducin and its inhibition by theαsubunit. Proc. Natl. Acad. Sci. USA. 84, 3623–3627.
    89 Jones AM, Assmann SM. (2004). Plants: the latest model system for G-protein research. EMBO Rep,.5, 572-578.
    90 Jones AM, Ecker JR, Chen JG. (2003). A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131,1623-1627.
    91 Jones, H.D., Smith, S.J., Desikan, R., Plakidou-Dymock, S., Lovegrove, A., and Hooley, R. (1998). Heterotrimeric G proteins are implicated in gibberellin induction ofα-amylase gene expression in wild oat aleurone. Plant Cell 10, 245–253.
    92 Josefsson LG, Rask L. (1997). Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem, 249, 415-420.
    93 Karin Ecker, Andreas Lorenz, Frank Wolf, Christian Ploner, Guenther Boeck, Tod Duncan, Stephan Geley and Arno Helmberg. (2009). A Ras recruitment screen identifies Znf307 as a glucocorticoid receptor-interacting protein Journal of Molecular Endocrinology. 42, 105.
    94 Kaydamov, D., Tewes, A., Adler, K., and Manteuffel, R. (2000). Molecular characterization of cDNAs encoding G proteinαandβsubunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv. Biochim. Biophys. Acta. 149, 143–160.
    95 Kazuya I., et al. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308.
    96 Kim, H.S., Desveaux, D., Singer, A.U., Patel, P., Sondek, J., and Dangl, J.L. (2005). The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc. Natl Acad. Sci.. 102, 6496–6501.
    97 Kim, M.G., Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L., and Mackey, D. (2005). Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759.
    98 Kim, W.Y., Cheong, N.E., Lee, D.C., Je., D.Y., Bahk, J.D., Cho, M.J., and Lee, S.Y. (1995). Cloning and sequencing analysis of a full-length cDNA encoding a G proteinαsubunit, SGA1, from soybean. Plant Physiol. 108, 1315–1316.
    99 Klein, S., Reuveni, H., and Levitzki. A. (2000). Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc. Natl. Acad. Sci. USA. 97, 3219–3223.
    100 Koba,T. and Harada,K. (2003). Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein alpha subunits expressed differentially in wheat genome Genes Genet. Syst. 78 (2), 127-138
    101 Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998). p115RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 280, 2109–2111.
    102 Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496–3507.
    103 Kusnetsov, V.V., and Oelmueller, R. (1996a ). Isolation and characterization of cDNAs encoding the subunitβof heterotrimeric G proteins from N. tabacum (accession No. X98161). Plant Physiol. 111, 948.
    104 Kusnetsov, V.V., and Oelmueller, R. (1996b). Isolation of cDNAs encoding the subunitαof heterotrimeric G proteins from Lupinus luteus (accession No. X99485). Plant Physiol. 112, 1399.
    105 Lapik YR, Kaufman LS. (2003). The Arabidopsis cupin domain protein AtPirin1 interacts with the G proteinαsubunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15, 1578-1590.
    106 Lee YR, Assmann SM. (1999). Arabidopsis thaliana‘extra-large GTP-binding protein’(AtXLG1): a new class of G-protein. Plant Mol Biol, 40,55-64.
    107 Legendre, L., Yueh, Y.G., Crain, R., Haddock, N., Heinstein, P.F., and Low, P.S. (1993). Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J. Biol. Chem. 268, 24559–24563.
    108 Lei Ding, Sona Pandey and Sarah M. Assmann. (2008). Arabidopsis extra-large G proteins (XLGs) regulate root morphogenesis. Plant J. 53, 248–263
    109 Lein, W., and Saalbach, G. (2001). Cloning and direct G-protein regulation of phospholipase D from tobacco. Biochim. Biophys. Acta. 153, 172–183.
    110 Li, B., and Trueb, B. (2000). DRG represents a family of two closely related GTP-binding proteins. Biochim. Biophys. Acta 1491, 196–204.
    111 Li, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X., and Zhou, J.M. (2005). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc. Natl. Acad. Sci). 102, 12990-12995.
    112 Lílian S.T. Carmo1, Elizabete S. Candido1, Pollyanna F. Campos1, Alice Maria Quezado-Duval2,Eduardo Leonardecz1, Carlos A. Lopes2 & Betania F. Quirino1 (2007). Natural variability in Arabidopsis thaliana germplasm responseto Xanthomonas campestris pv. Campestris. Fitopatol. Bras. 32(2), mar - abr
    113 Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S., and Schulze-Lefert, P. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183.
    114 Lisa A. Nodzon, Wei-Hui Xu, Yongsheng Wang, Li-Ya Pi , Pranjib K. Chakrabarty and Wen-Yuan Song. (2004). The ubiquitin ligase XBAT32 regulates lateral rootdevelopment in Arabidopsis. Plant J. 40, 996–1006
    115 Liu, S., and Dean, R.A. (1997). G proteinαsubunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10, 1075–1086.
    116 Ma H, Yanofsky MF, Meyerowitz EM. (1990). Molecular cloning andcharacterization of GPA1, a G proteinαsubunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA. 87, 3821-3825.
    117 Ma H. (1994). GTP-binding proteins in plants: new members of an oldfamily. Plant Mol Biol. 26, 1611-1636.
    118 Ma H. (2001). Plant G proteins: the different faces of GPA1. Curr Biol. 21, R869-R871.
    119 Ma, H., Yanofsky, M.F., and Huang, H. (1991). Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G proteinαsubunit. Gene 107, 189–195.
    120 Ma, H., Yanofsky, M.F., and Meyerowitz, E.M. (1990). Molecular cloning and characterization of GPA1, a G proteinαsubunit gene from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 87, 3821– 3825.
    121 Ma, L., Xu, X., Cui, S., and Sun, D. (1999). The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11, 1351–1363.
    122 Manning DR, (2003). Evidence mounts for receptor-independent activation of heterotrimeric G proteins normally in vivo: positioning of the mitotic spindle in C. elegans. Sci STKE. 2003(196), pe35
    123 Marsh, J.F., III, and Kaufman, L.S. (1999). Cloning and characterization of PGA1 and PGA2: Two G proteinα-subunits from pea that promote growth in the yeast Saccharomyces cerevisiae. Plant J. 19, 237–247.
    124 Mason MG, Botella JR. (2000). Completing the heterotrimer: isolation andcharacterization of an Arabidopsis thaliana G proteinγ-subunit cDNA. Proc Natl Acad Sci USA. 97, 14784-14788. 19.
    125 Mason MG, Botella JR. (2001). Isolation of a novel Gγ-protein -subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim Biophys Acta, 1520, 147-153.
    126 Misra,S., Wu,Y., Venkataraman,G., Sopory,S.K. and Tuteja,N. (2007). Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J. 51 (4), 656-669 .
    127 Morello, J.P., and Bouvier, M. (1996). Palmitoylation: A post-translational modification that regulates signaling from G-protein coupled receptors. Biochem. Cell Biol. 74, 449–457.
    128 Morris, A.J., and Malbon, C.C. (1999). Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430.
    129 Munnik, T., Arisz, S.A., de Vrije, R., and Musgrave, A. (1995). G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7, 2197–2210.
    130 Nomura, K., Roy, S.D., Lee, Y.H., Pumplin, N., Jones, D.G., and He, S.Y. (2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313, 220-223.
    131 Nushe Nuhse, T.S., Peck, S.C., Hirt, H., and Boller, T. (2000). Microbial elicitorsinduce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275, 7521-7526.
    132 Okamoto H, Matsui M, Deng XW. (2001). Overexpression of the heterotrimeric G-proteinα-subunit enhances phytochromemediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell 13, 1639-1652.
    133 Okamoto, H., Matsui, M., and Deng, X.W. (2001). Overexpression of the heterotrimeric G-proteinα-subunit enhances phytochromemediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell 13, 1639–1651.
    134 Pandey S, Assmann SM. (2004). The Arabidopsis putative G proteincoupledreceptor GCR1 interacts with the G proteinαsubunitGPA1 and regulates abscisic acid signaling. Plant Cell 16, 1616-1632.
    135 Pandey,S., Nelson,D.C. and Assmann,S.M. (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136 (1), 136-148
    136 Pedley, K.F., and Martin, G.B. (2004). Identification of MAPKs and their possible MAPKK activators involved in the Pto-mediateddefense response of tomato. J Biol Chem.279, 49229-49235.
    137 Pedley, K.F., and Martin, G.B. (2005). Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol. 8, 541–547.
    138 Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan DL, Canlas PE, Ronald PC. (2008). OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. MolecularPlant. 1, 446–458
    139 Perroud, P.F., Diogon, T., Crevecoeur, M., and Greppin, H. 2000). Molecular cloning, spatial and temporal characterization of spinach SOGA1 cDNA, encoding anαsubunit of G protein. Gene 248, 191–201.
    140 Peskan, T., and Oelmueller, R. (2000). Heterotrimeric G-proteinβ-subunit is localized in the plasma membrane and nuclei of tobacco leaves. Plant Mol. Biol. 42, 915–922.
    141 Peterson, Y.K.K., Bernard, M.L., Ma, H., Hazard, S., 3rd, Graber, S.G., and Lanier, S.M. (2000). Stabilization of the GDP-bound conformation of Giαby a peptide derived from the G-protein regulatory motif of AGS3. J. Biol. Chem. 275, 33193–33196.
    142 Pierce, K.L., and Lefkowitz, R.J. (2001). Classical and new roles ofβ-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. 2, 727–733.
    143 Poulsen, C., Mai, X.M., and Borg, S. (1994). A Lotus japonicus cDNA encoding anαsubunit of a heterotrimeric G-protein. Plant Physiol. 105, 1453–1454.
    144 Reddy, M.M., Sun, D., and Quinton, P.M. (2001). Apical heterotrimeric G-proteins activate CFTR in the native sweat duct. J. Membr. Biol. 179, 51–61.
    145 Ritchie, S., and Gilroy, S. (2000). Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol. 124, 693–702.
    146 Roden, J., Eardley, L., Hotson, A., Cao, Y., and Mudgett, M. B. (2004). Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant Microbe Interact. 17, 633–643.
    147 Ross, E.M., and Wilkie, T.M.. (2000). GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827.
    148 Roy, S.D., Thilmony, R., Kwack, Y., Nomura, K., and He, S.Y. (2004). A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. 101, 9927–9932.
    149 Saalbach, G., Natura, B., Lein, W., Buschmann, P., Dahse, I., Rohrbeck, M., and Nagy, F. (1999). Theα-subunit of a heterotrimeric G-protein from tobacco, NtGPα1,functions in K+ channel regulation in mesophyll cells. J. Exp. Bot. 50, 53–61.
    150 Santagata, S., Boggon, T.J., Baird, C.L., Gomez, C.A., Zhao, J., Shan, W.S., Myszka, D.G., and Shapiro, L. (2001). G-protein signaling through tubby proteins. Science 292, 2041–2050.
    151 Schroeder, J.I., Kwak, J.M., and Allen, G.J. (2001). Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410, 327–330.
    152 Seo, H.-S., Kim, H.-Y., Jeong, J.-Y., Lee, S.-Y., Cho, M.-J., and Bahk, J.-D. (1995). Molecular cloning and characterization of RGA1 encoding a G proteinαsubunit from rice (Oryza sativa L. IR- 36). Plant Mol. Biol. 27, 1119–1131.
    153 Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y. (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270, 1988-1992.
    154 Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. and Dixon, J. E. (2002). A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteasesfunctioning in bacterial pathogenesis. Cell 109,575–588.
    155 Sheila Podell and Michael Gribskov. (2004). Predicting N-terminal myristoylation sites in plant proteins BMC Genomics. 5(1), 37
    156 Sona Pandey, David C. Nelson, and Sarah M. Assmann. (2009). Two Novel GPCR-Type G Proteins AreAbscisic Acid Receptors in Arabidopsis. Cell 136, 136–148,
    157 Sona Pandey, Gabriele B. Monshausen, Lei Ding and Sarah M. Assmann. (2008). Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant J. 55, 311–322
    158 Sona Pandey, Gabriele B. Monshausen, Lei Ding and Sarah M. Assmann. (2008). Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant J. 55, 311–322
    159 Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H,Shimamoto K. (2002). The heterotrimeric G protein a subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA. 99, 13307-13312.
    160 Tsukada K, Ishizaka M, Fujisawa Y, Iwasaki Y, Yamaguchi T, Minami E, Shibuya N. (2002). Rice receptor for chitin oligosaccharide elicitor does not couple to heterotrimeric G-protein: elicitor responses of suspension cultured rice cells from Daikoku dwarf (d1) mutants lacking a functional G-protein a subunit. Physiol Plant, 116, 373-382.
    161 Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H,MatsuokaM. (2000). Rice dwarf mutant d1, which is defective in the a subunit of theheterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA. 97, 11638-11643.
    162 Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR,Ecker JR, Jones AM. (2003). Theβ-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15, 393-409.
    163 Ullah H, Chen JG, Wang S, Jones AM. (2002). Role of a heterotrimeric Gprotein in regulation of Arabidopsis seed germination. Plant Physiol, 129, 897-907.
    164 Ullah, H., Chen, J.-G., Youg, J.C., Im, K.-H., Sussman, M.R., and Jones, A.M. (2001). Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292, 2066–2069.
    165 Van der Biezen, E.A., and Jones, J.D. (1998). Plant disease resistance proteins and the gene-for-gene concept. Trends Bio chem. Sci. 23, 454-456.
    166 Walker, S.A., Viprey, V., and Downie, J.A. (2000). Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl. Acad. Sci. USA. 97, 13413–13418.
    167 Wang XQ, Ullah H, Jones AM, Assmann SM. (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science. 292, 2070-2072.
    168 Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, Lopez De Leon A, LiuGL, Li L, Benny U, Oard J, et al. (2006). The rice XA21 binding protein 3 is a ubiquitin ligase and required for full Xa21-mediated disease resistance.Plant Cell 18, 3635–3646
    169 Wang, M., Sedee, N.J.A., Heideamp, F., and Snaar-Jagalska, B.E. (1993). Detection of GTP-binding proteins in barley aleurone protoplasts. FEBS Lett. 329, 245–248.
    170 Wang, X.Q., Ullah, H., Jones, A.M., and Assmann, S.M. (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292, 2070–2072.
    171 Warpeha, K.M.F., Hamm, H.E., Rasenick, M.M., and Kaufman, L.S. (1991). A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc. Natl. Acad. Sci. USA. 88, 8925–8929.
    172 Wei Zhang , Sheng Yang He and Sarah M. Assmann. (2008). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J. 56, 984–996
    173 Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H. (1994). Isolation of cDNAs encoding guanine nucleotide-binding proteinβ-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA. 91, 9554-9558.
    174 Wenxian Sun, F. Mark Dunning, Christine Pfund, Rebecca Weingarten, and Andrew F. Bent1. (2006). Within-Species Flagellin Polymorphism in Xanthomonas campestris pv campestris and Its Impact on Elicitation of Arabidopsis FLAGELLIN SENSING2–Dependent Defenses. Plant Cell 18, 764–779.
    175 Yang, Z. (2002). Small GTPases: Versatile signaling switches in plants. Plant Cell 14, S375–S388.
    176 Yang, Z., Cramer, C.L., and Watson, J.C. (1993). Protein farnesyltransferase in plants: Molecular cloning and expression of a homolog of theβsubunit from the garden pea. Plant Physiol. 101, 667–674.
    177 Yuri Trusov, James Edward Rookes, David Chakravorty, David Armour,Peer Martin Schenk, and Jose′Ramo′n Bot ella. (2006). Heterotrimeric G Proteins Facilitate Arabidopsis Resistance to Necrotrophic Pathogens and Are Involved in Jasmonate Signaling. Plant Physiology 140, 210–220
    178 Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. (2000). Posttranslational N-myristoylation of BID as a molecular switch for targetingmitochondria and apoptosis. Science 290, 1761-1765.
    179 Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48-kD MAPkinase in tobacco. Plant Cell 9, 809-824.
    180 Zhao J,Wang X. (2004). Arabidopsis phospholipase Da1 interacts with the heterotrimeric G-proteinα-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem, 279, 1794-1800.
    181 Zheng, B., de Vries, L., and Farquhar, M.G. (1999). Divergence of RGS proteins: Evidence for the existence of six mammalian RGS subfamilies. Trends Biochem. Sci. 24, 411–414.
    182 Zheng, B., Ma, Y.C., Ostrom, R.S., Lavoie, C., Gill, G.N., Insel, P.A., Huang, X.Y., and Farquhar, M.G. (2001). RGS-PX1, a GAP for G_s and sorting nexin in vesicular trafficking. Science 294, 1939–1942.
    183 Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, D.G., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 25, 749–760.
    184 Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, D.G., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700