关节腔注射用温敏性凝胶药物缓释制剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在最近十年的研究中,基于温敏性聚合物的可注射凝胶受到了越来越多的关注。在新型药物载体的应用方面,可注射的温敏性凝胶具备临床使用方便、载药量高、不含有机溶剂、良好的药物缓释性能及较低的全身毒性等优点。这种新型药物递送体系在给药前,呈可流动的水溶胶状态;在注射后,其会在生理条件下快速地发生凝胶转变,在局部形成药物缓释储库,从而延长药物在给药部位的滞留时间。
     类风湿性关节炎等关节炎疾病使众多患者致病,患者通常要忍受关节疼痛和关节功能减退,严重影响患者的活动能力和生活质量。目前,关节炎疾病的治疗主要通过口服、肌肉注射及关节腔内注射等给药方式。其中,在患病的关节处直接给药可以为在患处局部形成较高的药物浓度,同时降低全身性的副作用提供了可能。尽管如此,关节腔内注射给药的临床治疗效果并不理想,一方面是关节腔内给药后药物在关节腔内的清除速率极快,另一方面是关节腔反复给药将增加关节腔感染机率。很多研究对关节腔注射用缓释制剂进行了尝试性改进,如将治疗性药物包载入脂质体、聚合物微球以及纳米粒等。尽管这种新型的缓释制剂比传统剂型在效果上有了提高,但其自身仍存在一些明显的缺陷,比如,该剂型在注射给药后在关节腔内滞留时间较短;材料降解产物会破坏关节腔生理环境等。为了克服以上缺点,许多学者致力于更长效的关节腔药物递送体系的研究。
     本研究构建了一种基于生物可降解的聚己内酯—聚乙二醇—聚己内酯(PCL-PEG-PCL)温敏凝胶的注射用缓释药物递送体系,以期开发出新型关节腔注射用局部给药缓释制剂。
     本文的主要研究内容如下:
     1.合成具有不同PCL和PEG嵌段组成的温敏性PCL-PEG-PCL三嵌段共聚物
     本文合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL三嵌段共聚物,并通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征。核磁共振及凝胶渗透色谱测定结果表明合成的共聚物组成与初始投料比一致,符合设计的温敏性PCL-PEG-PCL嵌段聚合物结构。
     2.PCL-PEG-PCL温敏凝胶的温敏性能研究
     本文合成的所有PCL-PEG-PCL嵌段共聚物均具备良好的溶胶-凝胶转变能力。根据实验结果绘制的溶胶-凝胶转变相图,PCL-PEG-PCL温敏凝胶的溶胶-凝胶转变能力与聚合物本身的化学组成及凝胶的浓度密切相关。在相同的凝胶浓度条件下,固定亲水的PEG嵌段长度,增加疏水的PCL嵌段长度会降低PCL-PEG-PCL温敏凝胶的溶胶-凝胶相变温度;对于同一化学组成的PCL-PEG-PCL温敏凝胶来说,提高凝胶浓度可以降低其溶胶-凝胶相变温度。另外,PCL-PEG-PCL温敏凝胶所具备的良好的原位成胶能力及极短的体外成胶时间也在实验中得到了验证,从而为PCL-PEG-PCL温敏凝胶作为理想的注射用药物递送体系打下了基础。
     3. PCL-PEG-PCL温敏凝胶的药物体外释放行为研究
     本文分别考察了PCL-PEG-PCL温敏凝胶对亲水性蛋白药物牛血清白蛋白和疏水性抗肿瘤药物紫杉醇的体外释放行为。结果表明PCL-PEG-PCL温敏凝胶对两种类型的药物均显示了良好、可控的缓释性能,即可以通过改变聚合物中的PCL嵌段和PEG嵌段长度或凝胶浓度和初始载药量控制载药PCL-PEG-PCL温敏凝胶的药物体外缓释行为。此外,PCL-PEG-PCL温敏凝胶对蛋白药物活性的影响也得到了考察,模型蛋白辣根过氧化酶的活性实验证明蛋白活性不受药物载体的影响,在整个体外释放过程中保持了完好的生理活性。
     4. PCL-PEG-PCL温敏凝胶作为关节腔内注射用缓释制剂的初步探讨
     在PCL-PEG-PCL温敏凝胶的生物相容性实验中,证明了PCL-PEG-PCL温敏凝胶在关节腔滑膜中未引发炎症,具备理想的体内生物相容性。PCL-PEG-PCL温敏凝胶的体内生物降解实验中,PCL-PEG-PCL温敏凝胶可以在小鼠体内以凝胶状态存在约45天,并最终完全降解。考察了包载有甲氨喋呤的PCL-PEG-PCL温敏凝胶的体外释放行为;在动物实验中,考察了关节腔内注射包载有甲氨喋呤的PCL-PEG-PCL温敏凝胶后,大鼠的体内药代动力学。结果表明,载药PCL-PEG-PCL温敏凝胶在体外释放试验中对甲氨喋呤显示了良好的缓释性能;在体内实验中,载药PCL-PEG-PCL温敏凝胶可以减缓甲氨喋呤的清除速率,实现药物在关节腔内的缓释作用。
     由于具备理想的温敏性能、可控的药物缓释能力以及良好的生物降解性能和生物相容性,PCL-PEG-PCL温敏凝胶是一种极具潜力的关节腔内注射用药物缓释体系,从而为改善类风湿性关节炎等疾病的临床疗效发挥重大的作用。
During the last decade, thermosensitive polymers-based injectable thermosensitive hydrogels received an increasing attention as controlled drug carriers because of their many advantages such as the convenience of application, high drug loading, no organic solvents, sustained drug release behavior and less systemic toxicity. These drug delivery systems are flowable aqueous solution before administration, but once injected, they rapidly form gel under physiological conditions and hence an in situ "drug depot" forms. In situ gel formation after the topical injection of aqueous solutions of such thermosensitive polymers resulted in a significantly prolonged drug residence time.
     Inflammatory arthritis diseases such as rheumatoid arthritis (RA) affect an enormous number of individuals. Patients afflicted with the disease may experience pain and loss of joint function with associated deleterious effects on patient activity level and lifestyle habits. Treatment of arthritis disease is achieved through oral, parenteral or intra-articular drugs. The direct drug delivery to an affected joint offers the possibility of reaching high drug concentrations at the action site with limited systemic toxicity. However, the undeniable clinical efficacy of intra-articular injections is somehow restricted either by the rapid efflux of drugs from the joint cavity after injections or by the need of repeated injections, possibly causing joint instability and infections. Retention of drugs in the joints using controlled release delivery system offers an exciting option for intra-articular drug delivery. Researchers thus have tried to encapsulate the drugs into different drug delivery systems such as liposomes, nanoparticles and microparticles.Though more promising than drug suspensions, these systems also faced a major drawback of short retention in the joint due to synovial capillary and lymphatic drainage, which takes place within a few days after injection. To overcome these limitations, many researches have been carried out to find more controlled and prolonged drug delivery to the joint.
     In this study, we have constructed a biodegradable and injectable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogels, which offered a great potential to develop a kind of novel topical articular-administrated drug delivery system.
     The major contents of this paper are shown as follows:
     1. Synthesis, characterization of a series of thermosensitive PCL-PEG-PCL triblock copolymers with different PCL and PEG block lengths.
     A series of thermosensitive PCL-PEG-PCL copolymers with different molecular compositions were synthesized by ring-opening polymerization method, and their structure was characterized via 1H-NMR and GPC techniques. The results calculated from 1H-NMR and GPC indicated that EG/CL ratios were consistent with the initial feed ratios, which offered a strong proof to their compositions and molecular structure.
     2. Thermosensitivity characterization of PCL-PEG-PCL hydrogels.
     All synthesized PCL-PEG-PCL triblock copolymers in this study exhibited a temperature-dependent reversible sol-to-gel transition in water. The phase diagrams revealed that the sol-to-gel transition behavior of PCL-PEG-PCL triblock copolymers in aqueous solutions was highly dependent on their chemical compositions and copolymer concentrations:ⅰ) increasing the length of hydrophobic PCL block with a fixed PEG block length resulted in a lower sol-to-gel transition temperature at a given copolymer concentration.ⅱ) an increase in the copolymer concentration shifted sol-to-gel transitions to the lower temperature. Furthermore, both the short enough gelation time and in situ gel-forming ability of thermosensitive PCL-PEG-PCL hydrogels were confirmed, which were prerequisite for a promising injectable drug delivery system.
     3. In vitro drug release behavior of thermosensitive PCL-PEG-PCL hydrogels.
     In this chapter, the in vitro release behavior of both hydrophilic protein drug (BSA) and hydrophobic chemo drug (Paclitaxel) from thermosensitive PCL-PEG-PCL hydrogels were investigated. The results revealed that the in vitro drug release rate from the PCL-PEG-PCL hydrogels was controllable by altering either the PEG and PCL block lengths or the hydrogel concentrations and initial drug loadings. Besides, a suitable controlled delivery system should be able to release protein in its biologically active form. In protein activity test, the released model protein (HRP) was confirmed to conserve its biological activity by specific enzymatic activity assay. 4. Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate
     The in vivo biodegradability study suggested that the synthesized PCL-PEG-PCL hydrogels were able to persist about 45 days and provide an extended drug release period. The in vivo biocompatibility of PCL-PEG-PCL hydrogels was evaluated, indicating no obvious inflammatory infiltrattion occurred in the synovial membrane.
     Sustained drug release behaviors from thermosensitive methotrexate loaded PCL-PEG-PCL hydrogels in both in vitro and in vivo (intra-articular injection in rats) experiments were observed. The pharmacokinetics data suggested that the methotrexate loaded hydrogel was able to slow down the clearance of methotrexate and control the methotrexate release in the joint cavity.
     Owing to great thermosensitivity, controllable drug release behaviors, biocompatibility and biodegradability of these PCL-PEG-PCL copolymers, these developed PCL-PEG-PCL hydrogels can be applied as a promising in situ gel-forming controlled drug delivery system for the intra-articular injection and pave a way to improve the therapeutic efficacy of rheumatoid arthritis clinically.
引文
1.魏宏亮,王连才,张爱英,朱凯强,冯增国.可注射凝胶的制备与应用.化学进展,2004,16(6):1008-1016.
    2. Timothy, A., Becker, Daryl R, Kipke.J. Biomed. Mater. Res.,2002,61(4):533-540.
    3. Brown, R.Q., Andrew, M., Karen J.B. J. Biomed. Mater Res., Part A, 2005,74A(1):32-39.
    4.潘绵立,钱立,赵万忠.可注射原位交联海藻酸钙骨修复材料小鼠体内异位成骨研究.生物骨科材料与临床研究,2003(3):1-4.
    5. Westhaus, E., Messer, P.B.Biomaterials,2001,22:453-462.
    6. Behravesh, E., Zygourakis, K., Mikos, A.G. J. Biomed. Mater Res.,2003,65A (2):261-271.
    7. Shin, H., Jo, S., Mikos, A.G. J. Biomed. Mater Res.,2002,61(2):169-179.
    8. He, S., Timmer M.D., Yaszemski M.J., et al. Synthesis of biodegradable poly (propylene fumarate) networks with poly (propylene fumarate)-diaerylate macromers as crosslinking agents and characterization of their degradation products. Polymer, 2001,42:1251-1260.
    9. He, S., Yaszemski, M.J., Yasko, A.W., et al. Injectable polymer composites based on poly (propylene fumarate) crosslinked with poly (ethylene glycol)-diaerylate. Biomaterials,2000:2389-2394.
    10. Peter, S.J., Kim, P., Yasko, A.W., et al. Crosslinking characteristics of an injectable poly (propylene fumarate)/tricalcium phosphate paste and mechanical properties of the crosslinke composite for use as a biodegradable bone cement. Biomed. Mater. Res.,1999,44:314-321.
    11. Savas, H., Guven, O. Radiation Physics and Chemistry,2002,64:35-40.
    12. Ulanski, P., Kadlubowski, S., Rosiak, J.M. Radiation Physics and Chemistry,2002, 63:533-5372.
    13. Yoshii, F., Darwis, D., Mitomo, H., et al. Radiation Physics and Chemistry,2000, 57:417-420.
    14. Gopinathan, C., Balan, T.P. Immobilisation of the enzyme in radiation crosslinked polyvinyl alcohol gel. J. Microb Biotechnl,1989,4:80-83.
    15.倪靖滨,董伟,侯静,刘宇光.辐照法制备聚乙烯醇凝胶研究进展.化学工程师,2009,7:56-58.
    16. Hill-West, J.L., Chowdhury, S.M., Slepian, M.J., Hubbell, J.A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, PNAS,1994,91:5967-5971.
    17. Stile, R.A., Burghardt, W.R., Healy,K.E. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro, Macromolecules,1999,32:7370-7379.
    18. Jeong, B., Choi, Y.K., Bae, Y.H., Zentner,G., Kim, S.W. New biodegradable polymers for injectable drug delivery systems, J.Contro. Rel.,1999,63:109-114.
    19. Guenet, J.M.Thermoreversible gelation of polymers and biopolymers, Academic Press, London,1992.
    20. Finch, C.A. Chemistry and Technology of Water-soluble Polymers. Plenum Press, New York,1983:118-123.
    21. Jeong, B., Lee, D.S., Shon, J.I., Bae, Y.H., Kim, S.W. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, J. Polym. Sci.1999, 37:751-760.
    22. Yoshida, T., Takahashi, M., Hatakeyama, T., Hatakeyama, H. Annealing induced gelation of xanthan/water systems. Polymer,1998,39:1119-1122.
    23. Wanka, G., Hoffmann, H., Ulbricht, W. The aggregation behavior of poly (oxyethylene)-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution. Colloid Polym. Sci.,1990,268:101-117.
    24. Eve R.G., Leroux J.C. situ-forming hydrogels:review of temperaturesensitive systems. Eur. J. Pharm. Biopharm,2004(58):409-426.
    25. Hatefi, A., Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Controlled Release,2002(80):9-28.
    26. Jeong, B., Kim, S.W., Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev.,2002,54:37-51.
    27. Lin, H.H., Cheng, Y.L. In situ thermoreversible gelation of block and star copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide) of varying architectures. Macromolecules,2001,34:3710-3715.
    28. Brown, W., Schillen, K., Almgren, M., et al. Micelle and gel formation in a poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) triblock co-polymer in water solution. Dynamic and static light scattering and oscillatory shear measurements. J Phys Chem,1991,95:1850-1858.
    29. Qiao, MX., Chen, D.W., Ma, X.C., et al. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers:synthesis and effect of copolymer composition on the drug release from the copolymerbased hydrogels. Inter. J. Pharm,2005,294:103-112.
    30. Packhaeuser, C.B., Schnieders, J., Oster, C.G., et al. In situ forming parenteral drug delivery systems:an overview. Euro. J. Pharma.& Biopharm,2004,58:445-455.
    31. Bromberg, R.C., Ron, E.S. Temperature-reponsive gels and thermo gelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev.,1998,31:197-221.
    32. Fujiwara, T., Kimura, Y., Macromol. Bioscience,2002,2:11-13.
    33.高琳雁,李桂玲,邓丽娟等.中国抗生素杂志,2009,34(3):142-147.
    34. Wu, F., Jin, T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS Pharm. Sci. Technol.2008,9(4) 1218-1229.
    35. Mundargi, L.E., Babu, V.R., Rangaswamy, V., Patel, P., Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly (D,L-lactide-co-glycolide) and its derivatives, J. Control. Release 2008,125: 193-209.
    36. Johnson, O.F.L., Cleland, J.L., Lee, H.J., Charnis, M., Duenas, E., et al. A month-long effect from a single injection of micro encapsulated human growth hormone, Nat. Med.1996,2:795-798.
    37. Kim, H.K., Park, T.G. Microencapsulation of human growth hormone within biodegradable polyester microspheres:protein aggregation stability and incomplete release mechanism, Biotechnol. Bioeng.1999,65:659-667.
    38. Elbert, D.L., Pratt, A.B., Lutolf, M.P., Halstenberg, S., et al. Protein delivery from materials formed by self-selective conjugate addition reactions. J.Control. Release, 2001,76:11-25.
    39. Nakayama, M., Okano, T., Miyazaki, T., Kohori, F., et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release.J. Control. Release 2006,doi:10.1016/j.conrel.2006.07.007.
    40. Pei, Y., Chen, J., Yang, L., Shi, L., Tao, Q., et al. The effect of pH on the LCST of poly (N-isopropylacrylamide) and poly (N-isopropylacrylamide-co-acrylic acid).J. Biomater. Sci. Polym. Ed.,2004,15:585-594.
    41. Schild, H.G. Poly (N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.,1992,17:163-249.
    42. Zhang, X.Z.,Yang, Y.Y., Chung, T.S., Ma, K.X. Preparation and characterization of fast response macroporous poly (N-isopropyl-acrylamide) hydrogels, Langmuir 2001,17:6094-6099.
    43. Feil, H., Bae, Y.H., Feijen, J., Kim, S.W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules,1993,26:2496-2500.
    44. Liu, X.M., Wang, L.S., Wang, L., Huang, J., He, C. The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials,2004,25:5659-5666.
    45. Liu, Y.Y., Shao, Y.H., Lu, J. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials,2006,27:4016-4024.
    46. Yin, X., Ho(?)man, A.S., Stayton, P.S. Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules, 2006,7:1381-1385.
    47. Coughlan, D.C., Quilty, F.P., Corrigan, O.I. E(?)ect of drug physicho-chemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly (N-isopropylacrylamide) hydrogels. J. Control. Release,2006, 98:97-114.
    48. Na, K., Park, J.H., Kim, S.W., Sun, B.K., Woo, D.G., Chung, H.M., Park, K.H. Delivery of dexamethasone, ascorbate, and growth factor (TGF b-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials,2006,27:5951-5957.
    49. Hacker, M.C., Ma, B.B., Kretlow, J.B., Mikos, A.G. Novel macromers for the fabrication of injectable, calcium-binding hydrogels. Transactions of the 31st Annual Meeting of the Society for Biomaterials, Pittsburgh, USA, April 26-29,2006.
    50.胡雄林,周建平.温敏在体凝胶给药系统的研究与应用.药学进展,2005,29(12):535-540.
    51. Meyer, D.E., Shin, B.C., Kong, G.A., et al. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release,2001,74(1):213-224.
    52. Steinleitner, A., Lambert, H., Kazensky, C., Cantor, B. Poloxamer 407 as an intraperitoneal barrier material fort he prevention of postsurgical adhesion formation and reformation in rodent models for reproductive surgery, Obstet. Gynecol.1991,77: 48-52.
    53. Ahmed, F., Alexandridis, P., Shankaran, H., Neelamegham, S. The ability of poloxamers to inhibit platelet aggregation depends on their physicochemical properties, Thromb. Haemost,2001,86:1532-1539.
    54. Schmolka, I.R. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res.,1972,6:571-582.
    55. Nalbandian, R.M., Henry, R.L., Balko, K.W., Adams, D.V., Neuman, N.R. Pluronic F-127 gel preparation as an artificial skin in the treatment of third-degree burns in pigs. J. Biomed. Mater. Res.1987,21:1135-1148.
    56. Kabanov, A., Zhu, J., Alakhov, C. Pluronic block copolymers for gene delivery. Adv. Genet.2005,53:231-261.
    57. Higuchi, A., Sugiyama, K., Yoon, B.O., Sakurai, M., Hara, M., Sumita, M., et al. Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. Biomaterials,2003,24:3235-3245.
    58. Higuchi, A., Aoki, N., Yamamoto, T., Gomei, Y., Egashira, S., Matsuoka, Y., Miyazaki, T., et al. Bio-inert surface of Pluronic-immobilized flask for preservation of haematopoietic stem cells. Biomacromolecules,2006,7:1083-1089.
    59. Yin, X., Homan, A.S., Stayton, P.S. Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules, 2006,7:1381-1385.
    60. Weinand, C., Pomerantseva, I., Neville, C.M., Gupta, R., et al. Hydrogel-b-TCP scaffolds and stem cells for tissue engineering bone. Bone,2006,38:555-563.
    61. Cortiella, J., Nichols, J.E., Kojima, K., Bonassar, L.J., Dargon, P. Tissue-engineered lung:an in vivo and in vitro comparison of polyglycolic acid and Pluronic F-127 hydrogels/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng.,2006,12:1213-1225.
    62. D. Cohn, A. Sosnik, A. Levy, Improved reverse thermo-responsive polymeric systems, Biomaterials 24 (2003) 3707-3714.
    63.魏培,邓树海,李凌冰,徐丽洒,宋燕青,张四喜.凝胶控释注射给药系统研究进展.中国生化药物杂志,2007,28(5):356-359.
    64. Morikawa, K., Okada, F., Hosokawa, M., et al. Enhancement of therapeutic effects of recombinant interleukin-2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, Pluronic gel. Cancer,1987,47:37-41.
    65. Fults, K.A., Johnston, T.P. Sustained-release of urease from a poloxamer gel matrix J Parenter Sci Technl,1990,44(2):58-65.
    66.门晓媛,王一飞.几种药剂辅料的应用进展.中国医药工业杂志,2004,35(12):764-767.
    67. Katakam, M., Ravis, W.R., Banga, A.K. Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels. J Controlled Release,1997,49(1):21-26.
    68. Zhao, X., Yan, J., Battle, W., Allums, S. Bentley, M. Oligomers of poloxamer 407 as degradable thermal sensitive depot materials for sustained drug release, Proc. Int. Symp. Control. Rel. Bioact. Mater.2003,30,167-173.
    69. Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature,1997,388:860-862.
    70. Jeong, B., Bae, Y.H., Kim, S.W. Micellization of PEG-PLGA-PEG triblock copolymer aqueous solutions, Colloids Surfaces B:Biointerfaces,1999,16:185-193.
    71. Jeong, B., Bae, Y.H., Kim, S.W. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions, Macromolecules,1999,32:7064-7069.
    72. Jeong, B., Bae, Y.H., Kim, S.W. Drug release from biodegradable injectable thermo sensitive hydrogel of PEG- PLGA-PEG triblock copolymers. J Contr Rel,2000,63 (1-2):1155-1161.
    73. Qiao, M.X., Chen, D.W., Hao, T.N., et al. Effect of bee venom peptide-copolymer interactions on thermosensitive hydrogel delivery systems. Int. J. Pharmaceutics, 2007,345(1-2):116-124.
    74. Bea, S.J., Suh, J.M., Sohn, Y.S., Bae, Y.H., Kim, S.W., Jeong, B. Thermogelling poly (caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005,38:5260-5265.
    75. Miyazaki, S., Suisha, F., Kawasaki, N., Shirakawa, M., Yamatoya, K., Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery, J. Control. Release,1998,56:75-83.
    76.邓丽娟,李桂玲,李眉.注射用原位凝胶的研究进展.中国抗生素杂志,2009,34(9):513-519.
    77. Gao, Z.B., Ding, P.T., Zhang, L., et al. Study of a pingyangmycin delivery system: Zein/Zein-SAIB in situ gels. Int J Pharm,2007,328(1-2):57-64.
    78. Chenite, A., Chaput, C., Wang, D., et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials,2000,21 (1):2155-2161.
    79. Gariepy, E.R., Shive M., Bichara, A., et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel.Eur J Pharm Biopharm,2004, 57(1):53-63.
    80. Moreland, L.W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis:mechanisms of action, Arthritis Res. Ther.2003,5:54-67.
    81.Grassi, W., De Angelis R., Lamanna, G., Cervini, C. The clinical features of rheumatoid arthritis. Eur J Radiol,1998,27(Suppl 1):S18-S24.
    82. Wolfe, F. Comparative usefulness of C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis. J Rheumatol 1997, 24:1477-1485.
    83. Symmons, D.P., Jones. M.A., Scott, D.L., Prior, P. Long-term mortality outcome in patients with rheumatoid arthritis:early presenters continue to do well. J Rheumatol 1998,25:1072-1077.
    84. Goodson, N.J., Wiles, N.J., Lunt, M., Barrett, E.M., Silman, A.J., Symmons, DP. Mortality in early inflammatory polyarthritis:cardiovascular mortality is increased in seropositive patients. Arthritis Rheum 2002,46:2010-2019.
    85. Goodson, N. Coronary artery disease and rheumatoid arthritis. Curr Opin Rheumatol 2002,14:115-20.
    86. Derendorf, H., Mollmann, H., Gruner, A., et al. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharmacol Ther,1986 (39):313-317.
    87. Gerwin, N., Hops, C., Lucke, A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev,2006(58):226-242.
    88. Abramson, S. Drug delivery in degenerative joint disease:Where we are and where to go? Adv Drug Deliv Rev,2006 (58):125-127.
    89. Ravaud, P., Moulinier, L., Giraudeau, B., Ayral, X., Guerin, C., Noel, E., et al. Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial. Arthritis Rheum 1999,42: 475-482.
    90. X. Ayral, Injections in the treatment of osteoarthritis, Best Pract. Res.,Clin. Rheumatol.15 (2001) 609-626.
    91. Jones, A., Doherty, M. Intra-articular glucocorticoids and other injection therapies, in Osteoarthritis, Oxford University Press, New York,2003.
    92. Owen, S.G., Francis, H.W., Roberts, M.S. Disappearance kinetics of solutes from synovial fluid after intra-articular injection, Br. J. Clin. Pharmacol,1994,38: 349-355.
    93. Pendleton, A., Arden, N., Dougados, M., Doherty, M., et al. EULAR recommendations for the management of knee osteoarthritis:report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT), Ann. Rheum. Dis.2000,59:936-944.
    94. Fachinformation Lipotalon, BPI Service GmbH, Aulendorf,2003.
    95. Derendorf, H., Mollmann, H., Gruner, A., Haack, D., Gyselby, D. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration, Clin.Pharmacol.Ther.1986,36:313-317.
    96. Derendorf, H., Mollmann, H., Voortman, G., van den Ouweland, et al. Pharmacokinetics of rimexolone after intra-articular administration, J. Clin. Pharmacol.1990,30:476-479.
    97. Moreland L.W. Intra-articular hyaluronan (hyaluronic acid) and hyalans for the treatment of osteoarthritis:mechanism of action. Arthritis Res Ther 2003,5:54-67.
    98. Altman, R.D., Moskowitz, R. Intraarticular sodium hyaluronate (Hyalgan) in the treatment of patients with osteoarthritis of the knee:a randomized clinical trial. Hyalgan Study Group. J Rheumatol 1998,25:2203-2212.
    99. Guidolin, D.D., Pasquali, I., Lini, E., Guerra, D., Frizziero, L. Morphological analysis of articular cartilage biopsies from a randomized clinical study comparing the effects of 500-730 kDa sodium hyaluronate (Hyalgan) and methylprednisolone acetate on primary osteoarthritis of the knee. Osteoarthritis Cartilage 2001,9:371-381.
    100. Leardini, G., Mattara, L., Franceschini, M., Perbellini, A. Intra-articular treatment of knee osteoarthritis. A comparative study between hyaluronic acid and 6-methyl prednisolone acetate. Clin Exp Rheumatol 1991,9:375-381.
    101. De Gennaro, F., Piccioni, P.D., Caporali, R., Luisetti, M., Montecucco, C. Effect du traitement parle sulfate de galactosaminoglucuronoglycane surl'estase granulocytaire synovial de patients atteints d'osteoarthrose. Liter Rhumatologica 1992,14:53-60.
    102. Kirwan, J. Is there a place for intra-articular hyaluronate in osteoarthritis of the knee? Knee,2001,8:93-101.
    103. Peyron, J.G. Intraarticular hyaluronan injections in the treatment of osteoarthritis: state-of-the-art review, J. Rheumatol., Suppl.1993,39:10-15.
    104. Lopez-Garcia, F., Vazquez-Auton, J.M., Gil, F., et al. Intra-articular therapy of experimental arthritis with a derivative of triamcinolone acetonide incorporated in liposomes. J Pharm.Pharmacol,1993(45):576-578.
    105. Horisawa, E., Hirota, T., Kawazoe, S., et al. Prolonged anti-inflammatory action of D,L-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res,2002,19:403-410.
    106. Horisawa, E., Kubota, K., Tuboi, I., et al. Size-dependency of dl-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm Res,2002,19:132-139.
    107. Dingle, J.T., Gordon, J.L., Hazleman, B.L., Knight, C.G. et al. Novel treatment for joint inflammation, Nature 1978,271:372-373.
    108. Lopez-Garcia, F., Vazquez-Auton, J.M., Gil, F., Latoore, R., et al. Intra-articular therapy of experimental arthritis with a derivative of triamcinolone acetonide incorporated in liposomes, J. Pharm.Pharmacol.1993,45:576-578.
    109. Foong, W.C., Green, K.L. Retention and distribution of liposome-entrapped methotrexate injected into normal or arthritic rabbit joints, J. Pharm. Pharmacol.1988, 40:464-468.
    110. Talke, M., Krempien, W., Dexamethasonpalmitat i.a:Vergleich mit Dexamethason-Kristallsuspension im entzu "ndlichen Schub, Aktuelle Rheumatol. 1993,18:104-111.
    111. Horisawa, E., Hirota, T., Kawazoe, S., Yamada, J. Prolonged anti-inflammatory action of dl-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit, Pharm.Res.2002,19:403-410.
    112. Horisawa, E., Kubota, K., Tuboi, I., Sato, K. Size-dependency of dl-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium, Pharm. Res.2002,19:132-139.
    113. Ratcliffe, J.H., Hunneyball, I.M., Wilson, C.G., Smith, A., Davis, S.S. Albumin microspheres for intra-articular drug delivery:investigation of their retention in normal and arthritic knee joints of rabbits, J. Pharm. Pharmacol.1987,39:290-295.
    114. Ratcliffe, J.H., Hunneyball, I.M., Wilson, C.G., Smith, A., Davis, S.S. Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs, J. Pharm. Pharmacol.1984,36:431-436.
    115. Tuncay, M., Calis, S., Kas, H.S., Ercan, M.T., Peksoy, I., Hincal, A.A. In vitro and in vivo evaluation of diclofenac sodium loaded albumin microspheres, J. Microencapsul. 2000,17:145-155.
    116. Brown, K.E. Leong, K., Huang, C.H., Dalal, R., et al. Gelatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint, Arthritis Rheum. 1998,41:2185-2195.
    117. Holland, T.A., Mikos, A.G. Advances in drug delivery for articular cartilage, J. Control. Release,2003,86:1-14.
    118. Burgess, D.J., Davis, S.S., Tomlison, E. Potential use of albumin microspheres as a drug delivery system:I. Preparation and in vitro release of steroids, Int. J. Pharm. 1987,39:129-136.
    119. Burgess, D.J., Davis, S.S. Potential use of albumin microspheres as a drug delivery system:Ⅱ. In vivo deposition and release of steroids, Int. J. Pharm.1988,46:69-76.
    120. Liggins, R.T., Cruz, T., Min, W., et al. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel:biocompatibility and efficacy determinations in rabbits. Inflamm res,2004,53:363-372.
    121. Bromberg, L.E., Ron, E.S. Temprature-reponsive gels and thermo gelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev,1998,31:197-221.
    1. Gong, C.Y., Shi, S., Wu, L., et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: Sol-gel-sol transition and drug delivery behavior. Acta Biomaterialia,2009,5: 3358-3370.
    2. Gou, M.L., Zheng, L., Peng, X.Y., et al. Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. Int. J. Pharm.2009,375:170-176.
    3. Gou, M.L., Dai, M., Li, X.Y., Yang, L., et al, Preparation of mannan modified anionic PCL-PEG-PCL nanoparticles at one-step for bFGF antigen delivery to improve humoral immunity. Colloid Surf. B 2008b,64:135-139.
    4. Gou, M.L., Qian, Z.Y., Wang, H., Tang, Y.B., et al. Preparation and characterization of magnetic poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) microspheres. J. Mater. Sci. Mater. Med.2008c,19:1033-1041.
    5. Gou, M.L., Dai, M., Li, X.Y., Wang, X.H., et al. Preparation and characterization of honokiol nanoparticles. J.Mater. Sci. Mater. Med.2008d,19,2605-2608.
    6. Gou, M.L., Li, X.Y., Dai, M., Gong, C.Y., et al. A novel injectable local hydrophobic drug delivery system:biodegradable nanoparticles in thermo-sensitive hydrogel. Int. J. Pharm.2008e,359:228-233.
    7. Bogdanov, B., Vidts, A., Bulcke, V.D., Verbeeck, R., Schacht, E. Synthesis and thermal properties of poly(ethylene glycol)-poly(caprolactone) copolymers. Polymer 1998,39:1631-1636.
    8.苗博龙,马桂蕾,宋存先.温敏性PCL-PEG-PCL凝胶的合成、表征及蛋白药物的释放.高等学校化学学报,2009,12:2508-2513.
    9. Guilei, M., Bolong, M., Cunxian, S. Thermosensitive PCL-PEG-PCL hydrogels: Synthesis, Characterization, and Delivery of proteins. J Appl Poly Sci,2010, 116:1985-1993.
    10. Lundberg, R.D., Koleske, J.V., Wischmann, K..B. Lactone polymers.Ⅲ. Polymerization of e-caprolactone. J Polym Sci 1969,7:2915-2930.
    11. Liu, C.B., Gong, C.Y., Huang, M.J., Wang, J.W., Pan, Y.F., Zhang, Y.D., et al. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res, Part B.2008,84:165-175.
    12. Zhou, S.B., Deng, X.M., Yang, H. Biodegradable poly (e-caprolactone)-poly (ethylene glycol) block copolymers:characterization and their use as drug carriers for a controlled delivery system. Biomaterials,2003,24:3563-3570.
    13. Suzuki, A., Tanaka, T. Phase transition in polymer gels induced by visible-light. Nature,1990,346:345-347.
    14. Miyta, T., Asami, N., Uragami, T. A reversibly antigen-responsive hydrogel. Nature, 1999,399:766-769.
    15. Galaev, I.Y., Mattiasson, B.'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol 1999,17:335-40.
    16. Nanjawade, B.K., Manvi, F.V., Manjappa, A.S. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Rel 2007,122:119-134.
    17. Kamath, K.R., Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev.1993,11:59-84.
    18. Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature,1997,388:860-862.
    19. Yu, L., Chang, G.T., Zhang, H., et al. Temperature-Induced Spontaneous Sol-Gel Transitions of poly (D,L-lactic acid-co-glycolic acid)-b-poly (ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. polymer science part A:Polymer Chemistry,2007, 45(6):1122-1133.
    20. Lu, W.Q., Ding, J.D. Dynamic Monte Carlo Simulation of Polymerization of Amphiphilic Macromers in a Selective Solvent and Associated Chemical Gelation. Macromolecules,2006,39 (21):7433-7440.
    21. Ge, H. X., Hu, Y., Jiang, X.Q., Cheng, D.M., Yuan, Y.Y., Bi, H., Yang, C.H. Preparation,characterization, and drug release behaviors of drug nimodipine-loaded poly (epsilon-caprolactone)-poly (ethylene oxide)-poly (epsilon-caprolactone) amphiphilic triblock copolymer micelles. J. Pharm. Sci.2002,91:1463-1473.
    22. Ryu, J.G., Jeong, Y.I., Kim, I.S., Lee, J.H., Nah, J.W., Kim, S. H. Clonazepam release from core-shell type nanoparticles of poly (epsilon-caprolactone)-poly (ethylene glycol)-poly (epsilon-caprolactone) triblock copolymers. Int. J. Pharm. 2000,200:231-242.
    23. Tanodekaew, S., Godward, J., Heatley, F., Booth, C. Gelation of aqueous solutions of diblock copolymers of ethylene oxide and D, L-lactide.Macromol Chem Phys 1997, 198:3385-3395.
    24. Malmsten, M., Lindman, B. Water self-diffusion in aqueous block copolymer solutions. Macromolecules,1992,25:5446-5450.
    25. Wilhelm, M., Zhao, C.L., Wang, Y.C., et al. Poly (styrene-ethylene oxide) block copolymer micelle formation in water:a fluorescence probe study. Macromolecules, 1991,24:1033-1040.
    26. Alexandridis, P., Holzwarth, J. F., Hatton, T.A. Micellization of Poly (ethylene oxide)-Poly (propylene oxide)-Poly (ethylene oxide) Triblock Copolymers in Aqueous Solutions:Thermodynamics of Copolymer Association. Macromolecules, 1994,27:2414-2425.
    27. Gong, C.Y., Shi, S., Dong, P.W., Kan. B., Gou, M.L., Wang X.H., et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm,2009, 365:89-99.
    28. Bea, S.J., Suh, J.M., Sohn, Y.S., Bae, Y.H., Kim, S.W., Jeong, B. Thermogelling poly (caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005,38:5260-5265.
    29. Tanodekaew, S., Godward, J., Heatley, F., Booth, C. Gelation of aqueous solutions of diblock copolymers of ethylene oxide and D,L-lactide.Macromol. Chem Phys,1997, 198:3385-3395.
    30. Ma, G.L., Miao, B.L., Song C.X. Thermosensitive PCL-PEG-PCL Hydrogels: Synthesis, Characterization, and Delivery of Proteins. J. Appl. Polym.r Sci,2010,116: 1985-1993.
    31. Malmsten, M., Lindman, B. Water self-diffusion in aqueous block copolymer solutions. Macromolecules 1992,25:5446-5450.
    32. Sun, S.H., Cao, H., Su, H.J., Tan, T.W. Preparation and characterization of a novel injectable in situ cross-linked hydrogel Polym Bull 2009,62:699-711.
    33. Petrova, T., Manolova, N., Rashkov I., Li, S, Vert, M. Synthesis and characterization of poly (oxyethylene)-poly (caprolactone) multi-block copolymers. Polym Int 1998, 43:419-26.
    34. Zhu, Z.X., Xiong, C.D., Zhang, L.L., Deng, X.M. Synthesis and characterization of poly (e-caprolactone)-poly (ethylene glycol) block copolymer. J Polym Sci A 1997, 35:709-714.
    35. Bogdanov, B., Vidts, A., Bulcke, V.D., Verbeeck, R., Schacht, E. Synthesis and thermal properties of poly (ethylene glycol)-poly (e-caprolactone) copolymers. Polymer,1998,39:1631-1636.
    36. Choi, S.W., Choi, S.Y., Jeong, B.M., Kim, S.W., Lee, D.S. Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. J Polym Sci A 1999,37(14):2305-2317.
    37. Hirokawa, Y., Tanaka, T.J. Volume phase transitions in nonionic gel. Chem Phys.1984,81:6379-6380.
    38.何庆,盛京.响应性凝胶及其在药物控释上的应用.功能高分子学报,1997,1:118-127.
    39.徐文进,高崇凯,刘利.温度敏感型凝胶.现代食品与药品杂志,2007,17(6):60-62.
    40. Qiao, M.X., Chen, D.W., Hao, T.N., et al. Effect of bee venom peptide-copolymer interactions on thermosensitive hydrogel delivery systems. Int. J. Pharmaceutics, 2007,345(1-2):116-124.
    41.Lee,D.S., Shim, M.S., Kim, S.W., Lee, H., Park, I., Chang, T.Y. Novel thermoreversible gelation of biodegradable PLGA-b-PEO-b-PLGA triblock copolymers in aqueous solution.Macromol Rapid Commun 2001,22:587-592.
    42. Liu, C.B., Gong, C.Y., Huang, M.J., Wang, J.W., Pan, Y.F., Zhang, Y.D., et al. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res, Part B.2008,84:165-175.
    43. Gong, C.Y., Shi, S.,Wu, L., Gou, M.L., et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2:Sol-gel-sol transition and drug delivery behavior. Acta Biomaterialia,2009,5: 3358-3370.
    44.林浩,田华雨,孙敬茹等.温度敏感的PLGA-PEG-PLGA凝胶的合成表征和药物 释放.高等学校化学学报,2006,27(7):1385-1388.
    45. Lu, W.Q., Ding, J.D. Dynamic Monte Carlo Simulation of Polymerization of Amphiphilic Macromers in a Selective Solvent and Associated Chemical Gelation. Macromolecules,2006,39 (21):7433-7440.
    46. Yu, L., Chang G.T., Zhang, H., Ding, J.D. Temperature-Induced Spontaneous Sol-Gel Transitions of Poly(D,L-lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L-lactic acid-co-glycolic acid) Triblock Copolymers and Their End-Capped Derivatives in Water. Journal of Polymer Science:Part A:Polymer Chemistry,2007(45):1122-1133.
    47. Yu, L., Chang, G.T., Zhang, H., Ding, J.D. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int. J. Pharm., xxx (2007) xxx-xxx.
    1. Eric, J., Frits, M., Dick, de Z., Dirk, K.F. Drug targeting to the kidney with low-molecular-weight proteins. Adv. Drug Deliv. Rev,1994,14(1):67-88.
    2. Colin, R., Groom, A., Hopkins, L. Protein kinase drugs-optimism doesn't wait on facts. Drug Discovery Today,2002,15(7):801-802.
    3. Hoyu, T., Ken W., Senji, H., Masaharu, H., Wataru, T., Akira, S. Behavior of protein S during long-term oral anticoagulant therapy. Thrombosis Research,1998,51(3): 241-249.
    4. Mehmet, Y., Veysel, F., Semin, F., Murat, S., Orhan, A., Mustafa, A., Gulay, K. Hormone replacement therapy, C-reactive protein, and fibrinogen in healthy postmenopausal women. Maturitas 2003,46:245-253.
    5. Rosa, F., Guillaume, B., Elisabetta, A., Isabelle, J., Marc, P. Mechanisms of delivery of ubiquitylated proteins to the proteasome:new target for anti-cancer therapy? Critical Reviews in Oncology/Hematology,2005,54:31-51.
    6. Kantlehner, M., Schaffner, P., Finsinger, D., Meyer, J., Jonczyk, A., Diefenbach, B., et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation, Chem BioChem 2000,1:107-114.
    7. Salgado, A.J., Coutinho, O.P., Reis, R.L, Bone tissue engineering:state of the art and future trends, Macromol. Biosci.2004,4:743-765.
    8. Holl, T.A., Mikos, A.G., Advances in drug delivery for articular cartilage. J. Control. Release 2003,86:1-14.
    9. Nesic, D., Whiteside, R., Brittberg, M., Wendt, D., Martin, I., Mainil, P. Cartilage tissue engineering for degenerative joint disease, Adv. Drug Deliv. Rev.2006,58: 300-332.
    10. Sripriya, V., Ramana, R., Jun, S. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs I. Formulation development. Int. J. Pharm.2008,362:2-9.
    11. Almeida, A.J., Souto, E., Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv.2007,59:478-490.
    12. Araya, H., Tomita, M., Hayashi, M., The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int. J. Pharm.2006,305:61-74.
    13. Cilek, A., Celebi, N., Tirnaksiz, F., Tay, A., A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration:investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int. J. Pharm.2005, 298:176-185.
    14. Constantinides, P.P., Scalart, J.P., Lancaster, C., Marcello, J.,Marks, G., Ellens,H., Smith,P.L. Formulation and intestinal-absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm.Res. 1994,11:1385-1390.
    15. Constantinides, P.P., Lipid microemulsions for improving drug dissolution and oral absorption:physical and biopharmaceutical aspects. Pharm. Res.1995, 12:1561-1572.
    16. Date, A.A., Nagarsenker, M.S.Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm.2007: 329,166-172.
    17. Joerg, K., Tessmar, A.Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev.,2007,59:274-291.
    18. Hedberg, E.L., Tang, A., Crowther, R.S., Carney, D.H., Mikos A.G. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites, J. Control. Release 2002,84:137-150.
    19. LeBaron, R.G., Athanasiou, K.A. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng.2000,6:85-103.
    20. Kanematsu, A., Marui, A., Yamamoto Y., Ozeki M., Hirano Y., Yamamoto M., Ogawa O., et al. Type Ⅰ collagen can function as a reservoir of basic fibroblast growth factor. J. Control. Release 2004,99:281-292.
    21. Schonherr, E., Hausser, H.J. Extracellular matrix and cytokines:a functional unit, Dev. Immunol.,2000,7:89-101.
    22. Lutolf, M., Weber, F., Schmoekel, H., Schense, J.C., Kohler, T., Mueller, R., Hubbell, J.A. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol.2003,21:513-518.
    23. Rizzi, S.C., Ehrbar, M., Halstenberg, S., Raeber, G.P., Schmoekel, H.G, Hagenmueller, H., Mueller, R., Weber, F.E, Hubbell, J.A. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part Ⅱ:biofunctional characteristics. Biomacromolecules 2006,7: 3019-3029.
    24. Bogdanov, B., Vidts, A., Bulcke, V.D., Verbeeck, R., Schacht, E. Synthesis and thermal properties of poly (ethylene glycol)-poly (caprolactone) copolymers. Polymer 1998,39:1631-1636.
    25.苗博龙,马桂蕾,宋存先.温敏性PCL-PEG-PCL凝胶的合成、表征及蛋白药物的释放.高等学校化学学报,2009,12:2508-2513.
    26. Guilei, M., Bolong, M., Cunxian, S. Thermosensitive PCL-PEG-PCL hydrogels: Synthesis, Characterization, and Delivery of proteins. J Appl Poly Sci,2010, 116:1985-1993.
    27. Rowinsky, E.K., Onetto, N., Canetta, R.M., et al. Taxol:the first of the taxane, an important new class of antitumour agents. Semin. Oncol,1992,19:646-662.
    28. Spencer, C., Faulds, D. Paclitaxel:a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs, 1994,48:794-847.
    29. Bastiaan, N., Marjan, B., Jan, H.M. Progress in the development of alternative pharmaceutical formulations of taxanes. Investigational New Drugs,2001,19: 143-153.
    30. Rajendra, P., Ariella, S., Boris, V., et al. Intravenous and Regional Paclitaxel Formulations.Curr. Med. Chem.,2004,11:397-402.
    31. Axel, D.I., Kumert, W., Goggelmann, C., et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation,1997,96:636-645.
    32. Avramis, I.A., Kwock, R., Avramis, V.I. Taxotre and vincristine inhibit the secretion of the angiogenesis inducing VEGF by wild-type and drug-resistant human leukmia T-cell lines. Anticaner Res.,2001,21:2281-2286.
    33. Henley, D., Isbill, M., Fernando, R., et al. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother. Pharmacol,2007,59:235-249.
    34. Liao, P.C., Lieu, C.H. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci.,2005,76:1623-39.
    35. Yen, W.C., Wientjes, M.G., Au, J.LS. Differential effect of taxol in rat primary and metastatic postrate tumors:site dependent pharmacodynamics. Pharm. Res.,1996,13: 1305-1312.
    36. Stearns, M.E., Wang, M. Taxol blocks processes essential for prostate tumor cell (PC-3ML) invasion and metastases. Cancer Res.,1992,52:3776-3781.
    1. Jeong, B.; Bae, Y.H.; Lee, D.S.; Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature,1997,388:860-862.
    2. Chawla, J.S.; Amiji, M.M. Int J Pharm 2002,249,127.
    3. Chen, D.R.; Bei, J.Z.; Wang, S.G. Polym Degrad Stabil 2000,67,455.
    4. Bae, S. J.; Suh, J. M.; Sohn, Y. S.; Bae, Y. H.; Kim, S. W.; Jeong,B.Thermogelling Poly (caprolactone-b-ethylene glycol-b-caprolactone) Aqueous Solutions. Macromolecules,2005,38,5260-5265.
    5. Bae, S. J.; Joo, M. K.; Jeong, Y. S.; Kim, W.; Lee, W. K.; Sohn,Y. S.; Jeong, B. Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions. Macromolecules,2006,39,4873-4879.
    6. Liu, C. B.; Gong, C. H.; Huang, M. J.; Wang, J. W.; Pan, Y. F.;Zhang, Y. D.; Li, G. Z.; Gou, M. L.; Wang, K.; Tu, M. J.; Wei,Y. Q.; Qian, Z. Y. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res, Part B J:Appl Biomater,2008,84,165-175.
    7. Horisawa, F; Kubota, K; Tuboi, I.; Sato, K.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Size-dependency of D,L-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res.,2002, 19:132-139.
    8. Horisawa, F; Kubota, K; Tuboi, I.; Sato, K.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Pharm Res 2002,19,132.
    9. Shimizu, M., Uno, T., Sugawara, K., Tateishi, T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol,2006,61:538-544.
    10. He, C.L., Kim, S.W.; Lee, D.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008,127:189-207.
    11. Liang, L.S., Jackson, J., Min, W., Risovic, V., Wasan, K.M., Burt, H.M. Methotrexate loaded poly (L-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J. Pharm. Sci.,2004,93:943-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700