用户名: 密码: 验证码:
皆伐火烧对杉木林和栲树林碳、氮动态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为重要商品林基地的我国亚热带地区,把大面积常绿阔叶林皆伐后进行全面火烧,是我国南方集体林区经营杉木人工林的主要营林技术环节之一,但大面积火烧将造成迹地养分损失、水土流失、土壤物理性质退化等。营林用火已在温带森林的规定火烧、热带地区的刀耕火种中得到大量研究。早期有关研究主要集中在火烧对N、P等森林生长限制元素的损失及其对森林长期生产力、水文状况、径流化学的影响上;随着人们对全球环境变化的关注,皆伐火烧对生态系统C、N循环的影响研究在近十几年逐渐受到重视,但目前有关皆伐火烧后我国亚热带地区常绿阔叶林C、N动态的研究未见报道。作为森林生态系统主要CO2源的土壤呼吸(约68±4 Pg C·a-1),它的微小变化不但会引起大气中CO2浓度的明显改变,更会影响森林贮存C能力。皆伐火烧后土壤生境条件发生显著变化,土壤呼吸将作出怎样的响应已引起人们的极大关注。目前国外对温带林土壤呼吸的特征、影响因素及其对气候变化的响应等研究较多,如何对土壤各组分呼吸(土壤自养呼吸和异养呼吸)进行有效分离则研究较少。我国对森林土壤呼吸研究则与国外有相当差距,皆伐火烧下土壤呼吸及各组分呼吸动态更未有涉及。本文以福建沙县异州杉木林和栲树林为研究对象,通过野外定位观测和室内分析,在研究皆伐火烧影响林分C、N库和土壤肥力的基础上,着重探讨土壤呼吸及各组分呼吸对皆伐火烧的响应及机制,这对进一步拓展我国森林土壤研究,深入分析森林C汇能力有所裨益,为正确评价森林用火提供重要基础资料,并对我国亚热带山区森林管理者科学用火具有一定指导意义。本文主要得出以下结论:
     1.皆伐前杉木林C、N库总量分别为238 t·hm-2和8405 kg·hm-2,栲树林的分别为338 t·hm-2和10223 kg·hm-2。两林分乔木层为主要的C贮库,而林分主要N库存在于土壤层。杉木林和栲树林乔木层C库分别占林分C库总量的53%和62%,矿质土壤层N库则分别占林分N库总量的92%和84%。灌木草本层和枯枝落叶层C、N总贮量分别约占林分C、N总贮量的2%。皆伐后杉木林树干(包括树皮)和粗枝中104 t·hm-2 C和287 kg·hm-2 N移出林地,分别占其林分C和N总贮量的44%和3%;栲树林通过树干(包括树皮)和粗枝迁移的C、N量分别为156 t·hm-2和738 kg·hm-2,分别占其林分C、N贮量的46%和7%。两林分皆伐后,土壤C和N贮量发生损失。皆伐后3个月,杉木林和栲树林土壤有机C贮量分别损失26%和32%;土壤全N分别损失12%和11%。可见
Chinese fir (Cunninghamia lanceolata) is one of the most important plantation tree species in China in terms of planting area, yield and timber usage. The history of managing this plantation exceeds 1000 years in China. In recent decades, many pure Chinese fir stands were established in the southern part of China for an expected highly economic return, leading to a sharp decline in the area of natural forest of broadleaf trees. It is a traditional silvicultural practice in South China to extablish a plantation of Chinese fir by clear-cutting natural forests, slash burning and site preparation. However, timber harvest and slash burning can cause a substantial loss and redistribution of organic matter and nitrogen. Further, yield decline and land degradation in such disturbed ecosystem have become serious problems, possibly due to high precipitations, steep slopes and fragile soils in this region. How the soil fertility can be maintained in the successively planted Chinese fir stands has received considerable concern. In view of increasing awareness about anthropogenic emissions of carbon as a contributor to global warming and the role of forests as C sinks, information about C and N pools and changes associated with disturbances, including forest management, is needed. Especially, a good understanding on how soil CO2 efflux having been impacted by forest management practices is necessary for predicting carbon sequestration. Many attempts have been made, mainly in temperate and tropical forests, to estimate the changes of C and N stored in world forests associated with clear-cutting and slash burning. Littal has been carried out in forests of southern China, a most important area of subtropical forests in the world. Furthermore, few studies have monitored the components of soil respiration before and after disturbance. The aim of this study is to investiagte in detail the effects of clear-cutting and slash burning on the storages of C and N, soil fertility, soil respiration and its components in a Chinese fir plantation and Castanopsis fargesii forest, located in the Yizhou State Forestry Centre in
引文
[1] Dilustro, J.J., Collins, B., Duncan, L., Crawford, C. Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests [J]. For. Ecol. Manage., 2005, 204: 85-95.
    [2] Cole, D., Rapp, M. Elemental cycling of forest ecosystems. In: Reichle, D.E., Dynamic Properties of Forest Ecosystems [M]. Cambridge University Press, New York, 1981. pp. 341-411.
    [3] Morris, L.A., Miller, R.E. Evidence of long-term productivity change as provided by field trials. In: Dyck, W.J., Cole, D.W., Camerford, N.B. (Eds), Impacts of Forest Harvesting on Long-term Site Productivity [M]. Chapman and Hall, London, 1994. pp. 41-80.
    [4] Zak, D.R., Grigal, D.F. Nitrogen mineralization, nitrification, and denitrification in upland and wetland ecosystems [J]. Oecologia, 1991, 88: 189-196.
    [5] 杨玉盛. 杉木林可持续经营的研究 [M]. 北京: 中国林业出版社, 1998.
    [6] Bauhus, J., Pare, D., Cote, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest [J]. Soil Biol. Biochem., 1998, 30: 1077-1089.
    [7] Johnson, D.W., Van Hook, R.I. Analysis of biogeochemical cycling processes in Walker Branch Watershed [M]. Springer-Verlag, New York, 1989, 401 pp.
    [8] Houghton, R.A., Woodwell, G.M. Global climate change [J]. Scientific American, 1989, 260: 18-26.
    [9] Jurgensen, M.F., Harvey, A.E., Graham, R.T., Page-Dumroese, D.S., Tonn, J.R., Larsen, M.J., Jain, T.B. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland Northwest forests [J]. Forest Sci., 1997, 43: 234-251.
    [10] Johnson, D.W., Curtis, P.S. Effects of forest management on soil C and N storage: meta analysis [J]. For. Ecol. Manage., 2001, 140: 227-238.
    [11] Rosenzweig, C., Hillel, D. Soils and global climate change: Challenges and opportunities [J]. Soil Sci., 2000, 165: 47-56.
    [12] 杨玉盛, 刘艳丽, 陈光水, 等. 格氏栲天然林与人工林土壤非保护性有机 C 研究[J]. 生态学报, 2004, 24(1): 1-8.
    [13] Johnson, C.E., Johnson, A.H., Huntington, T.G., et al. Whole-tree clear-cutting effects on soil horizons and organic matter pools [J]. Soil Sci. Soc. Am. J., 1991, (55): 497-502.
    [14] 徐德应. 人类经营活动对森林土壤碳的影响[J]. 世界林业研究, 1994, (5) : 26- 32.
    [15] Johnson, D.W. Effects of Forest Management on Soil Carbon Storage. In: Wisniewski J. and Ligo A.E., eds. Natural Sinks of CO2 [M]. Kluwer Academic Publishers, Dordrecht, 1992. pp. 83-120.
    [16] Liechty, H.O., Luckow, K.R., Guldin, J.M. Soil chemistry and nutrient regimes following 17–21 years of shortleaf pine-bluestem restoration in the Ouachita Mountains of Arkansas[J]. For. Ecol. Manage., 2005, 204: 345-357.
    [17] Sands, R. Physical Changes of Sandy Soils Planted to Radiata Pine. In: Ballard R. and Gessel S.P., eds. IUFRO Symposium on Forest Site and Continuous Productivity [C]. Portland, Oregon, 1983. pp.146-152.
    [18] DeBano, L.F., Neary, D.G., Ffolliott, P.F. Fire Effects on Ecosystems [M]. John Wiley & Sons, NewYork, 1998.
    [19] Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F. Fire effects on belowground sustainability: a review and synthesis [J]. For. Ecol. Manage., 1999, 122: 51-71.
    [20] Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA [J]. J. Hydrol., 2000, 231: 220-229.
    [21] Kimmins, J.P. Forest Ecology [M]. Macmillan Publishing Company, New York, 1987. pp. 112-136.
    [22] Johnson, D.W. Effects of forest management on soil carbon storage [J]. Water, Air and Soil Pollution, 1992, 64: 83-120.
    [23] Weast, R.C. Handbook of Chemistry and Physics [M]. CRC Press, Boca Raton, FL. 1988.
    [24] 杨玉盛, 何宗明, 马祥庆, 林开敏, 俞新妥. 论炼山对杉木人工林生态系统影响的利弊及对策[J]. 自然资源学报, 1997, 12 (2): 153-159.
    [25] Covington, W.W., Sackett, S.S. Effect of periodic burning on soil N concentrations in ponderosa pine [J]. Soil Sci. Soc. Am. J., 1986, 50: 452-457.
    [26] Ellingson, L.J., Kauffman, J.B., Cummings, D.L., et al. Soil N dynamics associated with deforestation, biomass burning, and pasture conversion in a Mexican tropical dry forest [J]. For. Ecol. Manage., 2000, 137: 41-51.
    [27] Waldrop, T.A., Van Lear, D.H., Lloyd, F.T., Harms, W.R. Long-term studies of prescribed burning in loblolly pine forests of the southeastern coastal plain [M]. USDA For. Serv. Gen. Tech. Rep. SE-GTR-45. 1987. 23 pp.
    [28] Wan, S., Hui, D., Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis [J]. Ecol. Appl., 2001, 11: 1349-1365.
    [29] Bauhus, J., Khanna, P.K., Raison, R.J. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil [J]. Aust. J. Soil Res., 1993, 31 (5) : 621-639.
    [30] Brown, G., Mitchell, D.T. Influence of fire on soil phosphorus status [J] . S. Afr. J. Bot., 1986, 52 (1) : 67-72.
    [31] Serrasolsas, I., Khanna, P. Changes in heated and autoclaved forest soils of S.E. Australia. I. Carbon and nitrogen [J]. Biogeochemistry, 1995, 29: 3-24.
    [32] Dunn, P.H., DeBano, L.F. Fire’s effect on the biological properties of chaparral soils [C]. In: International Symposium on the Environmental Consequence of Fire and Fuel Management in Mediterranean-climate Ecosystems (Forests and Scrublands), 1977.
    [33] 周崇莲, 许光辉, 张宪武. 炼山对土壤微生物的影响. 杉木人工林生态系统研究论文集[C]. 沈阳林业土壤研究所, 1980, 128-142.
    [34] Vazquez, F.J., Acea, M.J., Carballas, T. Soil microbial populations after wildfire [J]. FEMS Microbiol. Ecol., 1993, 13: 93-104.
    [35] Fonturbel, M.T., Vega, J.A., Bara, S., Bernardez, I. Influence of prescribed burning of pine stands in NW Spain on soil microorganisms [J]. Eur. J. Soil Biol., 1995, 31: 13-20.
    [36] Hossain, A.K.M.A., Raison, R.J., Khanna, P.K. Effects of fertilizer application and fire regime onsoil microbial biomass carbon and nitrogen, and nitrogen mineralization in an Australian subalpine eucalypt forest [J]. Biol. Fert. Soils, 1995, 19: 246-252.
    [37] 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 1997, 17 (5): 469-476
    [38] Schlesinger, W.H., Andrews, J.A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48: 7-20.
    [39] Raich, J.W., Nadelhoffer, K.J. Belowground carbon allocation in forest ecosystems: Global trends [J]. Ecology, 1989, 70: 1346-1354.
    [40] Oren, R., Ellsworth, D.S., Johnsen, K.H., et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere [J]. Nature, 2001, 411: 469-472.
    [41] Dixon, R.K., Brown, S., Houghton, R.A., et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263: 185-190.
    [42] Hanson, P.J., Edwards, N.T., Garten, C.T., et al. Separating root and microbial contributions to soil respiration: A review of methods and observations [J]. Biogeochemistry, 2000, 48(1): 115-146.
    [43] Raich, J.W., Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls [J]. Biogeochemistry, 2000, 48: 71-90.
    [44] Thierron, V., Laudelout, H. Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest [J]. Can. J. For. Res., 1996, 26(7): 1142-1148.
    [45] Ryan, M.G., Lavigne, M.G., Gower, S.T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate [J]. J. Geophys. Res., 1997, 102 (28): 871-883.
    [46] Behera, N., Joshi, S.K., Pati, D.P. Root contribution to total soil metabolism in a tropical forest soil from Orissa, India [J]. For. Ecol. Manage., 1990, 6: 125-134.
    [47] Epron, D., Farque, L., Lucot, E., et al. Soil CO2 efflux in a beech forest: the contribution of root respiration [J]. Ann. For. Sci., 1999, 56(4): 289-295.
    [48] Susfalk, R.B., Cheng, W.X., Johnson, D.W., et al. Lateral diffusion and atmospheric CO2 mixing compromise estimates of rhizosphere respiration in a forest soil [J]. Can. J. For. Res., 2002, 32 (6): 1005~1015.
    [49] Kelting, D.L., Burger, J.A., Edwards, G.S. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils [J]. Soil Biol. Biochem. , 1998, 30(7): 961-968.
    [50] Rey, A., Pegoraro, E., Tedeschi, V., et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy [J]. Global Change Biol., 2002, 8(9): 851-866.
    [51] Bowden, R.D., Nadelhoffer, K.J., Boone, R.D., et al. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest [J]. Can. J. For. Res., 1993, 23: 1402-1407.
    [52] Chambers, J.Q., Schimel, J.P., Nobre, A.D. Respiration from coarse wood litter in central Amazon forests [J]. Biogeochemistry, 2001, 52(1): 115-131.
    [53] 吴仲民, 曾庆波, 李意德, 等. 尖峰岭热带森林土壤碳储量和CO2排放量的初步研究[J]. 植物生态学报, 1997, 21(5): 416-423.
    [54] 骆士寿, 陈步峰, 李意德, 等. 海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[J]. 生态学报, 2001, 21(12): 2013-2017.
    [55] Raich, J.W., Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 1992, 44B: 81-99.
    [56] Lloyd, J., Taylor, A. On the temperature dependence of soil respiration [J]. Funct. Ecol., 1994, 8: 315-323.
    [57] Keith, H., Jacobsen, K.L., Raison, R.J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest [J]. Plant Soil, 1997, 190(1): 127-141.
    [58] Irvine, J., Law, B.E. Contrasting soil respiration in young and old-growth ponderosa pine forests [J]. Global Change Biol., 2002, 8(12): 1183-1193.
    [59] Maier, C.A., Kress, L.W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability [J]. Can. J. For. Res., 2000, 30(3): 347-359.
    [60] Certini, G., Corti, G., Agnelli, A., et al. Carbon dioxide efflux and concentrations in two soils under temperate forests [J]. Biol. Fert. Soils, 2003, 37: 39-46.
    [61] K?tterer, T., Reichstein, M., Andren, O., et al. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models [J]. Biol. Fert. Soils, 1998, 27: 258-262.
    [62] Qi, Y., Xu, M., Wu, J.G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises [J]. Ecological Modelling, 2002, 153: 131-142.
    [63] D?rr, H., Münich, K.O. Annual variation in soil respiration in selected areas of the temperate zone [J]. Tellus, 1987, 39 (B): 114-121.
    [64] Gulledge, J., Schimel, J.P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga Forest stands in Interior Alaska [J]. Ecosystems, 2000, 3: 269-282.
    [65] Kutsch, W., Kappen, L. Aspects of carbon and nitrogen cycling in soils of the Bornh?ved Lake district. II. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements [J]. Biogeochemistry, 1997, 39: 207-224.
    [66] Fang, C., Moncrieff, J.B. The dependence of soil CO2 efflux on temperature [J]. Soil Biol. Biochem., 2001, 33: 155–165.
    [67] Boone, R.D., Nadelhoffer, K.J., Canary, J.D., et al. Roots exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature, 1998, 396: 570-572.
    [68] O'Neill, K.P., Kasischke, E.S., Richter, D.D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska [J]. Can. J. For. Res., 2002, 32(9): 1525-1541.
    [69] Davidson, E.A., Belk, E., Boone, R.D. Soil water content and temperature as independent orconfounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biol., 1998, 4: 217-227.
    [70] Liu, X.Z., Wan, S.Q., Su, B., et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem [J]. Plant Soil, 2002, 240: 213-223.
    [71] Mielnick, P.C., William, A.D. Soil CO2 flux in a tallgrass prairie [J]. Soil Biol. Biochem., 2000, 32: 221-228.
    [72] Burton, A.J., Pregitzer, K.S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine [J]. Tree Physiol.,2003, 23: 273-280.
    [73] Qi, Y.,Xu, M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains [J]. Plant Soil, 2001, 237(1):15-23.
    [74] Burton, A.J., Pregitzer, K.S., Ruess, R.W., et al. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes [J]. Oecologia, 2002, 131: 559-568.
    [75] Weber, M.G. Forest soil respiration after cutting and burning in immature aspen ecosystems [J]. For. Ecol. Manage., 1990, 31: 1-14.
    [76] Hudgens, E., Yavitt, J.B. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York [J]. Ecoscience, 1997, 4: 214-222.
    [77] 杨玉盛,陈光水,王小国, 等. 中亚热带森林转换对土壤呼吸动态及通量的影响 [J]. 生态学报, 2005, 25(7):1684-1690.
    [78] 易志刚, 蚁伟民, 周国逸, 等. 鼎湖山三种主要植被类型土壤碳释放研究 [J]. 生态学报, 2003, 23(8): 1673-1678.
    [79] 刘绍辉, 方精云, 清田信. 北京山地温带森林的土壤呼吸 [J]. 植物生态学报, 1998, 22(2): 119-126.
    [80] Raich, J.W., Potter, C.S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochem. Cy., 1995, 9: 23-36.
    [81] Jurik, T.W., Briggs, G.M., Gates, D.M. Soil respiration of five aspen stands in northern Lower Michigan [J]. Am. Midl. Nat., 1991, 126: 68-75.
    [82] Ruess, R.W., Van, C.K., Yarie, J., et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior [J]. Can. J. For. Res. 1996, 26: 1326-1336.
    [83] Nakane, K., Tsubota, H. Yamamoto, M. Cycling of soil carbon in a Japanese red pine forest II. Changes occurring in the first year after clear felling [J]. Ecol. Res., 1986, 1: 47-58.
    [84] Fernandez, I.J., Son, Y., Kraske, C.R., Rustad, L.E., David, M.B. Soil carbon dioxide characteristics under different forest types and after harvest [J]. Soil Sci. Soc. Am. J., 1993, 57: 115-121.
    [85] Griffiths, R.P., Swanson, A.K. Forest soil characteristics in a chronosequence of harvested Douglas-fir forests [J]. Can. J. For. Res., 2001, 31: 1871-1879.
    [86] Hendrickson, O., Robinson, J.B. Effects of roots and litter on mineralization processes in forest soil [J]. Plant Soil, 1984, 80: 391-405.
    [87] Striegl, R.G., Wickland, K.P. Effects of a clear cut harvest on soil respiration in a jack pine-lichen woodland [J]. Can. J. For. Res., 1998, 28: 534-539.
    [88] Smethurst, P.J., Nambiar, E.K.S. Changes in soil carbon and nitrogen during the establishment if a second crop of Pinus radiate [J]. For. Ecol. Manage., 1995, 73: 145-155.
    [89] Steudler, P.A., Melillo, J.M., Bowden, R.D., Castro, M.S. The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest [J]. Biotropica, 1991, 23: 356-363.
    [90] Ewel, K., Wendell, P.C.Jr., Gholz, H.L. Soil CO2 evolution in Florida slash pine plantations. I. Changes through time [J]. Can. J. For. Res., 1987, 17: 325-329.
    [91] Gordon, A.M., Schlentner, R.E., van Cleve, K. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska [J]. Can. J. For. Res., 1987, 17: 304-310.
    [92] Lytle, D.E., Cronan, C.S. Comparative soil CO2 evolution, litter decay, and root dynamics in clearcut and uncut spruce-fir forest [J]. For. Ecol. Manage., 1998, 103: 121-128.
    [93] Johnson, C.E., Driscoll, C.T., Faley, T.J., Siccamma, T.G., Hughes, J.W. Carbon dynamics following clear–cutting of a northern hardwood forest. In: McFee, W. W., Kelly, M. J., (eds.). Carbon Forms and Functions in Forest Soils [M]. Soil Science Society of America, Madison Wisconsin. 1995. pp. 463-487.
    [94] Londo, A.J., Messina, M.G., Schoenholtz, S.H. Forest harvesting effects on soil temperature, moisture and respiration in a bottomland hardwood forest [J]. Soil Sci. Soc. Am. J., 1999, 63: 367-644.
    [95] Toland, D.E., Zak, D.R. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests [J]. Can. J. For. Res., 1994, 24:1711-1716.
    [96] Edwards, N.T., Ross-Todd, B.M. Soil carbon dynamics in a mixed deciduous forest following clear cutting, with and without residue removal [J]. Soil Sci. Soc. Am. J., 1983, 47: 1014-1021.
    [97] Mallik, A.U., Hu, D. Soil respiration following site preparation treatments in boreal mixedwood forest [J]. For. Ecol. Manage., 1997, 97: 265-275.
    [98] Sawamoto, T., Hatano, R., Yajima, T., et al. Soil respiration in Siberian taiga ecosystems with different histories of forest fire [J]. Soil Sci. Plant Nutr., 2000, 46(1): 31-42.
    [99] Reinke, J.J., Adriano, D.C., Mcleod, K.W. Effects of litter alteration on carbon dioxide evolution from a south Carolina Pine forest floor [J]. Soil Sci. Soc. Am. J., 1981, 45: 620-623.
    [100] Concilio, A., Ma, S., Li, Q., et al. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests [J]. Can. J. For. Res., 2005, 35: 1581-1591.
    [101] Ewel, K.C., Cropper, W.P.Jr., Gholz, H.L. Soil CO2 evolution in Florida slash pine plantations II: Importance of root respiration [J]. Can. J. For. Res., 1987, 17: 330-333.
    [102] Hughes, R.F., Kauffman, J.B., Cummings, D.L. Fire in the Brazilian Amazon. Dynamics of biomass, C, and nutrient pools in regenerating forests [J]. Oecologia, 2000, 124: 574-588.
    [103] Conard, S.G., Sukhinin, A.I., et al. Determining effects of area burned and fire severity on carboncycling and emissions in Siberia [J]. Climatic Change, 2002, 55: 197–211.
    [104] Johnson, D.W., Susfalk, R.B., et al. Fire effects on carbon and nitrogen budgets in forests [J]. Water, Air and Soil Pollution: Focus, 2004, 4: 263–275.
    [105] Castaldi, S., Aragosa, D. Factors influencing nitrification and denitrification variability in a natural and fire-disturbed Mediterranean shrubland [J]. Biol. Fert. Soils, 2002, 36: 418-425.
    [106] Oros, D.R., Mazurek, M.A., et al. Organic Tracers from wild fire residues in soils and rain river wash-out [J]. Water, Air and Soil Pollution, 2002, 137: 203-233.
    [107] Czimczik, C.I., Preston, C.M., Schmidt, M.W.I., Werner, R.A., Schulze, E.D. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon (charcoal) [J]. Global Biogeochem. Cy., 2003, 17: 1020-1029.
    [108] Kasischke, E.S., Bruhwiler, L.M. Emissions of carbon dioxide, carbon monoxide and methane from boreal forest fires in 1998 [J]. J. Geophys. Res., 2003, 108: 1-14.
    [109] 胡海清. 森林火灾对大气碳平衡影响的研究(30471404)[Z]. 国家自然科学基金资助项目. 见https://isis.nsfc.gov.cn/project
    [110] 杨玉盛, 董彬, 谢锦升, 等. 森林土壤呼吸及其对全球变化的响应 [J]. 生态学报, 2004, 24(3): 583-591.
    [111] 解宪丽, 孙波, 周慧珍, 等. 中国土壤有机碳密度和储量的估算与空间分布分析 [J]. 土壤学报, 2004, 41(1): 35-43.
    [112] 牟守国. 温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究 [J]. 土壤学报, 2004, 41(4): 564-570.
    [113] Fahey, T.J., Hughes, J.W., Pu, M., et al. Root decomposition and nutrient flux following whole-tree harvest in northern hardwood forest [J]. Forest Sci., 1988, 34: 744-768.
    [114] 杨玉盛, 董彬, 谢锦升, 陈光水, 等. 林木根系呼吸及其测定方法进展 [J]. 植物生态学报, 2004, 28 (3): 426-434.
    [115] 盛炜彤. 人工林地力衰退研究 [M]. 北京: 中国林业出版社, 1992.
    [116] 杨玉盛, 陈光水, 林鹏, 等. 格氏栲天然林与人工林细根生物量、季节动态及净生产力 [J]. 生态学报, 2003a, 23 (9): 1719-1730.
    [117] 杨玉盛, 谢锦升, 王义祥, 等.杉木观光木混交林 C 库与 C 吸存 [J]. 北京林业大学学报, 2003b, 25 (5): 10-14.
    [118] 中华人民共和国林业行业标准. 森林土壤分析方法 [S]. 北京: 中国标准出版社, 2000.
    [119] 许光辉, 等. 土壤微生物分析方法手册 [M]. 北京: 农业出版社, 1986.
    [120] (苏)哈兹耶夫著 (郑洪元等译). 土壤酶活性 [M]. 北京: 科学出版社, 1980.
    [121] 郑洪元, 等. 土壤动态生物化学研究法 [M]. 北京: 科学出版社, 1982.
    [122] 文启孝, 等. 土壤有机质研究方法 [M]. 北京: 农业出版社, 1984.
    [123] Yang, Y.S., Liu, C.J., Kutsch, W. Impact of continuous Chinese fir monoculture on soil [J].Pedosphere, 2004, 14 (1): 117-124.
    [124] Vose, J.M., Swank, W.T., Clinton, B.D., Knoepp, J.D., Swift, L.W. Using stand replacement fires to restore southern Appalachian pine-hardwood ecosystems: effects on mass, carbon, and nutrient pools [J]. For. Ecol. Manage., 1999, 114: 215-226.
    [125] Peng, C.H., Jiang, H., Apps, M.J., Zhang, Y.L. Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: a process model simulation [J]. Ecological Modelling, 2002, 155: 177-189.
    [126] Smith, C.K., de Assis Oliveira, F., Gholz, H.L., Baima, A. Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil [J]. For. Ecol. Manage., 2002, 164: 257-263.
    [127] Sharrow, S.H., Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA [J]. Agroforestry Systems, 2004, 60: 123-130.
    [128] 方晰, 田大伦, 项文化. 速生阶段杉木人工林碳素密度、贮量和分布 [J]. 林业科学, 2002, 38(3): 14-19.
    [129] Kraenzel, M., Castillo, A., Moore, T., Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama [J]. For. Ecol. Manage., 2003, 173: 213-225.
    [130] Sanford, R.L., Cuevas, E. Root growth and rhizosphere interactions in tropical forests. In: Mulkey, S., Chazdon, R.L., Smith, A.P. (Eds.), Tropical Forest Plant Ecophysiology [M]. Chapman & Hall, New York, 1996. pp. 268-300.
    [131] 吴仲民, 李意德, 曾庆波, 等. 尖峰岭热带山地雨林C素库及皆伐影响的初步研究 [J]. 应用生态学报, 1998, 9(4): 341-344.
    [132] Houghton, R.A., Hackler, J.L. Continental scale estimates of the biotic carbon flux from land cover change: 1850–1980 [R]. ORNL/CDIAC-79, NDP-050. Oak Ridge National Laboratory, Oak Ridge, TN. 1995.
    [133] Luo, T.X., Pan, Y.D., Shi, P.L., Luo, J., Yu, Z.L., Lu, Q. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau [J]. Global Ecol. Biogeogr., 2004, 13: 345-358.
    [134] Finér, L., Mannerkoski, H., Piirainen, S., Starr, M. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting [J]. For. Ecol. Manage., 2003, 174: 51-63.
    [135] Helmisaari, H.-S. Nutrient cycling in Pinus sylvestris stands in eastern Finland [J]. Plant Soil, 1995, 168-169: 327-336.
    [136] 方晰, 田大伦. 杉木人工林林地CO2释放量的研究 [J]. 林业科学, 1997, 33(Sp.2): 94-103.
    [137] 阮宏华, 姜志林, 高苏铭. 苏南丘陵主要森林类型碳循环研究——含量与分布规律 [J]. 生态学杂志, 1997, 16(6): 17-21.
    [138] 李意德, 吴仲民, 曾庆波, 等. 尖峰岭热带山地雨林生态系统碳平衡的初步研究 [J]. 生态学报, 1998, 18(4): 371-378.
    [139] Chen, X.W., Li, B.L. Change in soil carbon and nutrient storage after human disturbance of aprimary Korean pine forest in Northeast China [J]. For. Ecol. Manage., 2003, 186: 197-206.
    [140] 郭剑芬, 谢锦升, 卢豪良, 等. 格氏栲天然林与人工林凋落物 C 归还及动态 (英文) [J]. 中国林业研究(Forestry Studies in China), 2004,6(1): 33-36.
    [141] Jobággy, E.G., Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecol. Appl., 2000, 10(2): 423-436.
    [142] Yang, Y.S., Guo, J.F., Chen, G.S., Lin, R.Y., Cai, L.P., Lin, P. Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China [J]. Ann. For. Sci., 2004a, 61: 465-476.
    [143] Yang, Y.S., Chen, G.S., Lin, P., Xie, J.S., Guo, J.F. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China [J]. Ann. For. Sci., 2004b, 61: 617-627.
    [144] Yang, Y.S., Chen, G.S., Guo, J.F., Lin, P. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics [J]. Ann. For. Sci., 2004c, 61: 65-72.
    [145] Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G. Soil carbon pools and world life zones [J]. Nature, 1982, 298: 156-159.
    [146] Post, W.M., Pastor, J., Zinke, P.J., Stangenberger, A.G. Global patterns of soil nitrogen storage [J]. Nature, 1985, 317: 613-616.
    [147] Grogan, P., Bruns, T.D., Chapin III, F.S. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest [J]. Oecologia, 2000, 122: 537-544.
    [148] Benecke, U., Nordmeyer, A.H. Carbon uptake and allocation by Nothofagus solandri var. cliffortioides (Hook. f.) Pool and Pinus contorta Douglas ex Loudon ssp. contorta at montane and subalpine altitudes. In: Waring, R.H. (Ed.), Carbon Uptake and Allocation in Subalpine Ecosystems as a Key to Management [M]. Forest Research Laboratory, Oregon State University, Corvallis, 1982. pp. 9-21.
    [149] Scott, N.A., Rodrigues, C.A., Hughes, H., Lee, J.T., Davidson, E.A., Dail, D.B., Malerba, P. Changes in carbon storage and net carbon exchange one year after an initial shelterwood harvest at Howland forest, ME [J]. Environ. Manage., 2004, 33(1): S9-S22.
    [150] Davis, M.R., Allen, R.B., Clinton, P.W. Carbon storage along a stand development sequence in a New Zealand Nothofagus forest [J]. For. Ecol. Manage., 2003, 177: 313-321.
    [151] Carter, M.C., Dean, T.J., Zhou, M., Messina, M.G., Wang, Z. Short-term changes in soil C, N, and biota following harvesting and regeneration of loblolly pine (Pinus taeda L.) [J]. For. Ecol. Manage., 2002, 164: 67-88.
    [152] Mann, L.K., Johnson, D.W., West, D.C., Cole, D.W., Hornbeck, J.W., Martin, C.W., Riekerk, H., Smith, C.T., Swank, W.T., Tritton, L.M., Van Lear, D.H. Effects of whole-tree and stem-only clearcutting on post harvest hydrologic losses, nutrient capital, and regrowth [J]. Forest Sci., 1988, 34: 412-428.
    [153] Swank, W.T. Atmospheric contributions to forest nutrient cycling [J]. Water Resour. Bull., 1984, 20(3): 313-321.
    [154] Harmon, M.E., Ferrel, W.K., Franklin, J.F. Effects on carbon storage of conversion of old-growth forests to young forests [J]. Science, 1990, 247: 699-702.
    [155] Smethurst, P.J., Namibar, E.K.S. Effects of slash and litter management on fluxes of nitrogen and tree growth in young Pinus radiata plantations [J]. Can. J. For. Res., 1990, 20: 1498-1507.
    [156] 方晰, 田大伦, 项文化. 不同经营方式对杉木林采伐迹地土壤C储量的影响 [J]. 中南林学院学报, 2004, 24(1): 1-5.
    [157] Knoepp, J.D., Swank, W.T. Forest management effects on surface soil carbon and nitrogen [J]. Soil Sci. Soc. Am. J., 1997, 61(3): 928-935.
    [158] 骆士寿, 陈步峰, 陈永富, 等. 海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量 [J]. 林业科学研究, 2000, 13 (2) : 123-128.
    [159] Boyer, W.D. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands [J]. For. Ecol. Manage., 1994, 70: 311-318.
    [160] Dumontet, S., Dinel, H., Scopa, A. Postfire soil microbial biomass and nutrient content of a pine forest soil from a dunal Mediterranean environment [J]. Soil Biol. Biochem., 1996, 28: 1467-1475.
    [161] Monleon, V.J., Cromack, K.JR., Landsberg, J.D. Short- and long-term effects of prescribed underburning on nitrogen availability in ponderosa pine stands in central Oregon [J]. Can. J. For. Res., 1997, 27 (3): 369-378.
    [162] Rab, M.A. Soil physical and hydrological properties following logging and slash burning in the Eucalyptus regnans forest of southeastern Australia [J]. For. Ecol. Manage., 1996, 84: 159-176.
    [163] Stewart, H.T.L., Flinn, D.W. Nutrient losses from broadcast burning of Eucalyptus debris in north-east Victoria [J]. Aust. For. Res., 1985, 15: 321-332.
    [164] 杨玉盛, 邱仁辉, 俞新妥. 影响杉木人工林可持续经营因素的探讨 [J]. 自然资源学报, 1998, 13(1): 34-39
    [165] 薛立, 向文静, 何跃君, 等. 不同林地清理方式对杉木林土壤肥力的影响 [J]. 应用生态学报, 2005, 16(8): 1417-1421.
    [166] Boerner, R.E.J. Fire and nutrient cycling in temperate ecosystems [J]. Bioscience, 1982, 2 (3): 187-192.
    [167] 杨玉盛, 李振问, 杨伦增. 林火对森林生态系统氮素循环影响(综述) [J]. 福建林学院学报, 1992, 12(1): 105-111.
    [168] Raison, R.J., Khanna, P.K., Woods, P.V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests [J]. Can. J. For. Res., 1985, 15: 657–664.
    [169] Belillas, C.M., Feller, M.C. Relationships between fire severity and atmospheric and leaching nutrient losses in British Columbia’s coastal western hemlock zone forests [J]. Int. J. Wildland Fire, 1998, 8: 87–101.
    [170] Van Lear, D.H., Kapeluck, P.R. Fell and burn to regenerate mixed pine-hardwood stands: an overview of effects on soil. In: Waldrop, T.A. (Ed.), Proceedings of the Pine–Hardwood Mixtures: A Symposium on Management and Ecology of the Type [C]. USDA For. Serv. Gen. Tech. Rep. SE-GTR-58. 1989. pp. 83– 89.
    [171] Johnson, D.W., Susfalk, R.B., Dahlgren, R.A., Klopatek, J.M. Fire is more important than water for nitrogen fluxes in semi-arid forests [J]. Environ. Sci. Policy, 1998, 1: 79–86.
    [172] White, E.M., Thompson, W.W., Gartner, F.R. Heat effects on nutrient release from soils under ponderosa pine [J]. J. Range Manage., 1973, 26: 22-24.
    [173] Knight, H. Loss of nitrogen from the forest floor by burning [J]. For. Chron., 1966, 42: 149-152.
    [174] Feller, M.C., Kimmins, J.P. Effects of clearcutting and slash burning on stream water chemistry and watershed nutrient budgets in Southwestern British Columbia [J]. Water Resour. Res., 1984, 20: 29-40.
    [175] Hough, W.A. Impact of prescribed fire on understory and forest floor nutrients [R]. USDA For. Serv. Res. Note SE-RN-363. 1981. 4 pp.
    [176] Vose, J.M., Swank, W.T. Site preparation to improve southern Appalachian pine-hardwood stands: Aboveground biomass, forest floor mass, and nitrogen and carbon pools [J]. Can. J. For. Res., 1993, 23: 2255-2262.
    [177] Leitch, C.J., Flinn, D.W., van de Graaff, R.H.M. Erosion and nutrient loss resulting from Ash Wednesday (February 1983) wildfires: a case study [J]. Aust. For., 1983, 46(3): 173-180.
    [178] Lindeburgh, S.B. Effects of Prescribed Fire on Site Productivity [R]. Research Branch Ministry of Forests 31 Bastion Square Victoria, B.C. V8W 3E7. 1990.
    [179] DeByle, N.V., Packer, P.E. Soils and Watershed. In: Clearcutting and fire in the larch/Douglas-fir forests of western Montana: a multifaceted research summary [M]. DeByle, N.V. (editor). U.S. Dep. Agric. For. Serv., Gen. Tech. Rep. INT- 99, 1981. pp. 47-52.
    [180] Baird, M., Zabowski, D., Everett, R.L. Wildfire effects on carbon and nitrogen in inland coniferous forests [J]. Plant Soil, 1999, 209: 233-243.
    [181] Prieto-Fernandez, A., Vilar, M.C., Carballas, M., Carballas, T. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil [J]. Soil Biol. Biochem., 1993, 25: 1657-1664.
    [182] Antos, J.A., Halpern, C.B., Miller, R.E., et al. Temporal and spatial changes in soil carbon and nitrogen after clearcutting and burning of an old-growth Douglas-fir forest [R]. USDA For. Serv. Res. Note PNW-RP-552. 2003.
    [183] Alauzis, M.V., Mazzarino, M.J., Raffaele, E., Roselli, L. Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil [J]. For. Ecol. Manage., 2004, 192: 131-142.
    [184] DeLuca, T.H., Zouhar, K.L. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests [J]. For. Ecol. Manage., 2000, 138: 263-271.
    [185] Knoepp, J.D., Vose, J.M., Swank, W.T. Long-term soil response to site preparation burning in the southern Appalachians [J]. Forest Sci., 2004, 50 (4): 540-550.
    [186] Sertsu, S., Sanchez, P. Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice [J]. Soil Sci. Soc. Am. J., 1978, 42: 940-944.
    [187] Kang, B., Sajjapongse, A. Effect of heating on properties of some soils from southern Nigeria and growth of rice [J]. Plant Soil, 1980, 55: 85-95.
    [188] Giardina, C.P., Sanford Jr, R.L., D?ckersmith, I.C., Jaramillo, V.J. The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation [J]. Plant Soil, 2000, 220: 247-260.
    [189] Chandler, C. Forest fire behavior and effects [M]. John wiley & sons, New York, 1983.
    [190] 张其水. 福建杉木连杉地营造不同混交林后土壤酶活性的季节动态变化 [J]. 土壤学报, 1992, 29(1): 104-108.
    [191] 陈恩凤. 土壤肥力物质基础及其调控 [M]. 北京: 科学出版社, 1990.
    [192] Khanna, P.K., Raison, R.J., Falkiner, R.A. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils [J]. For. Ecol. Manage., 1994, 66: 107–125.
    [193] Harris, G.R., Covington, W.W. The effect of a prescribed fire on nutrient concentration and standing crop of understory vegetation in ponderosa pine [J]. Can. J. For. Res., 1983, 13: 501-507.
    [194] Eivazi, F., Bayan, M.R. Effects of long-term prescribed burning on the activity of select soil enzymes in an oak-hickory forest [J]. Can. J. For. Res., 1996, 26: 1799-1804.
    [195] Giardina, C., Sanford Jr, R., D?ckersmith, I. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest [J]. Soil Sci. Soc. Am. J., 2000, 64: 399-405.
    [196] Turner, J., Lambert, M. Change in organic carbon in forest plantation soils in eastern Australia [J]. For. Ecol. Manage., 2000, 133: 231-247.
    [197] Mendham, D.S., O’Connell, A.M., Grove, T.S., Rance, S.J. Residue management effects on soil carbon and nutrient contents and growth of second rotation eucalypts [J]. For. Ecol. Manage., 2003, 181: 357-372.
    [198] Kranabetter, J.M., Macadam, A.M. Ten-year results from operational broadcast burning trials in northwestern British Columbia [J]. Forest Sci., 1998, 1-29.
    [199] Dyrness, C.T., Van Cleve, K., Levison, J.D. The effect of wildfire on soil chemistry in four forest types in interior Alaska [J]. Can. J. For. Res., 1989, 19: 1389-1396.
    [200] Lynham, T.J., Wickware, G.M., Mason, J.A. Soil chemical changes and plant succession following experimental burning in immature jack pine [J]. Can. J. Soil Sci., 1998, 78: 93-104.
    [201] Yang, Y.S., Guo, J.F., Chen, G.S., He, Z.M., Xie, J.S. Effects of slash burning on nutrient removal and soil fertility in Chinese fir and evergreen broadleaved forests of mid-subtropical China [J]. Pedosphere, 2003, 13(1): 87-96.
    [202] Gough, C.M., Seiler, J.R. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina coastal plain [J]. For. Ecol. Manage., 2004, 191: 353–363.
    [203] Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., Loustau, D. The annual carbon budget of aFrench pine forest (Pinus pinaster) following harvest [J]. Global Change Biol., 2003, 9: 1051–1065.
    [204] Ma, S., Chen, J., North, M., Erikson, H., Bresee, M., LeMoine, J. Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed conifer forest [J]. Environ. Manage., 2004, 33: S148–S159.
    [205] 黄承才, 葛滢, 常杰, 等. 中亚热带东部三种主要木本群落土壤呼吸的研究[J] . 生态学报, 1999, 19(3): 324-328.
    [206] 周志田, 成升魁, 刘允芬, 等. 中国亚热带红壤丘陵区不同土地利用方式下土壤 CO2排放规律初探 [J]. 资源科学, 2002, 24 (2): 83-87.
    [207] 蒋延玲, 周广胜, 赵敏, 等. 长白山阔叶红松林生态系统土壤呼吸作用研究 [J]. 植物生态学报, 2005, 29 (3) : 411-414.
    [208] Startsev, N.A., McNabb, D.H., Startsev, A.D. Soil biological activity in recent clearcuts in west-central Alberta [J]. Can. J. Soil Sci., 1998, 78: 69–76.
    [209] Fahey, T.J., Arthur, M.A. Further studies on root decomposition following harvest of a northern hardwoods forest [J]. Forest Sci., 1994, 40: 618-629.
    [210] Rustad, L.E., Huntington, T.G., Boone, R.D. Controls on soil respiration: implications for climate change [J]. Biogeochemistry, 2000, 48: 1-6.
    [211] Castellanos, J. Efecto de a roza, tumba y quema sobre a dinámica de las raices finas de una selva baja caducifolia [D]. MSc Thesis. Universidad Nacional Autónoma de México, México, DF. 1998.
    [212] Ballard, T.M. Impacts of forest management on northern forest soils [J]. For. Ecol. Manage., 2000, 133: 37-42.
    [213] Zak, D.R., Tilman, D., Parmenter, R.R., Rice, C.W., Fisher, F.M., Vose, V., Milchunas, D., Martin, W.C. Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study [J]. Ecology, 1994, 75: 2333-2347.
    [214] Gallardo, A. Schlesinger, W.H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest [J]. Soil Biol. Biochem., 1994, 26: 1409-1415.
    [215] Schilling, E.B., Lockaby, B.G., Rummer, R. Belowground nutrient dynamics following three harvest intensities on the Pearl River Floodplain, Mississippi [J]. Soil Sci. Soc. Am. J., 1999, 63: 1856- 1868.
    [216] B??th, E., Frosteg?rd, A., Pennanen, T., Fritze, H. Microbial community structure and pH responses in relation to soil organic matter quality in wood-ash fertilised, clear-cut or burned coniferous forest soils [J]. Soil Biol. Biochem., 1995, 27: 229-240.
    [217] Pietikainen, J., Fritze, H. Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification [J]. Soil Biol. Biochem., 1995, 27: 101-109.
    [218] Lundgren, B. Bacteria in a pine forest soil as affected by clear cutting [J]. Soil Biol. Biochem., 1982, 14: 537-542.
    [219] Chang, S.X., Preston, C.M., Weetman, G.F. Soil microbial biomass and microbial andmineralizable N in a clearcut chronosequence on northern Vancouver Island, British Columbia [J]. Can. J. For. Res., 1995, 25: 1595–1607.
    [220] Edmonds, R.L., Marra, J.L., Barg, A.K., et al. Influence of forest harvesting on soil organisms and decomposition in western Washington [J]. USDA Forest Service Gen.Tech.Rep., 2000, 178: 53-72.
    [221] Chen, J., Saunders, S.C., Crow, T.R., Naiman, R.J., Brosofske, K.D., Mroz, G.D., Brookshire, B.L., Franklin, J.F. Microclimate in forest ecosystem and landscape ecology. Variations in local climate can be used to monitor and compare the effects of different management regimes [J]. Bioscience, 1999, 49: 288–297.
    [222] Zheng, D., Chen, J., Song, B., Xu, M., Sneed, P., Jensen, R. Effects of silvicultural treatments on summer forest microclimate in southeastern Missouri Ozarks [J]. Climate Res., 2000, 15: 45–59.
    [223] Winkler, J.P., Cherry, R.S., Sclesinger, W.H. The Q10 relationship of microbial respiration in a temperate forest soil [J]. Soil Biol. Biochem., 1996, 28: 1067-1072.
    [224] Rochette, P., Desjardins, R..L., Patty, E. Spatial and temporal variability of soil respiration in agricultural fields [J]. Can. J. Soil Sci., 1991, 71: 189-196.
    [225] Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands [J]. Soil Biol. Biochem., 2000, 32: 1625-1635.
    [226] Dulohery, C.J., Morris, L.A., Lowrance, R. Assessing forest soil disturbance through biogenic gas fluxes [J]. Soil Sci. Soc. Am. J., 1996, 60: 291-298.
    [227] Arneth, A., Kelliher, F.M., Gower, S.T., Scott, N.A., Scott, N.A., Byers, J.N., McSevery, T.V. Environmental variables regulating soil carbon dioxide efflux following clear-cutting of a Pinus radiata D. Don plantation [J]. J. Geophys. Res., 1998, 103: 695-705.
    [228] Ivan, A.J., Kim, P. Large seasonal changes in Q10 of soil respiration in a beech forest [J]. Global Change Biol., 2003, 9: 911-918.
    [229] Luo, Y., Wan, S., Hui, D., Wallace, L.L. Acclimatization of soil respiration to warming in a tall grass praine [J]. Nature, 2001, 413: 622-625.
    [230] Rustad, L.E., Fernandez, I.J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Main,USA [J]. Global Change Biol., 1998, 4: 597-605.
    [231] Cheng, W., Zhang, Q., Coleman, D.C., Carroll, C.R., Hofman, C.A. Is available carbon limiting microbial respiration in the rhizosphere?[J] Soil Biol. Biochem., 1996, 28: 1283-1288.
    [232] Atkin, O.K., Edwards, E.J., Loveys, B.R. Response of root respiration to changes in temperature and its relevance to global warming [J]. New Phytol., 2000, 147: 141-154.
    [233] Edward, N.T. Below-ground respiration responses of sugar maple and red maple samplings to atmospheric CO2 enrichment and elevated air temperature [J]. Plant Soil, 1998, 206: 85-97.
    [234] Nakane, K., Kohno, T., Horikoshi, T. Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest [J]. Ecol. Res., 1996, 11: 111-119.
    [235] Hendrickson, O.Q., Chatarpaul, L., Robinson, J.B. Effects of two methods of timber harvesting on microbial processes in forest soil [J]. Soil Sci. Soc. Am. J., 1985, 49: 739-746.
    [236] Ahlgren, I.F., Ahlgren, C.E. Effects of prescribed burning on soil microorganisms in a Minnesotajack pine forest [J]. Ecology, 1965, 46(3): 304-310.
    [237] Pietik?inen, J., Fritze, H. Clear-cutting and prescribed burning in coniferous forest: comparision of effects on soil fungal and total microbial biomass, respiration activity and nitrification [J]. Soil Biol. Biochem., 1995, 27(1): 101-109.
    [238] Edwards, N.T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor [J]. Soil Sci. Soc. Am. J., 1975, 39: 361-365.
    [239] Pregitzer, K.S., King, J.S., Burton, A.J., Brown, S.E. Response of tree fine roots to temperature [J]. New Phytol., 2000, 147: 105-115.
    [240] Xu, M., Qi, Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California [J]. Global Change Biol., 2001, 7: 667-677.
    [241] Ryan, M.G., Hubbard, R.M., Pongracic, S., Raison, R.J., McMurtrie, R.E. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status [J]. Tree Physiol., 1996, 16: 333-343.
    [242] 马红亮, 朱建国, 谢祖彬. 大气 CO2 浓度升高对植物一土壤系统地下过程影响的研究 [J]. 土壤, 2003, 35(6): 465-472.
    [243] King, J.A., Harrison, R. Measuring soil respiration in the field: an automated closed chamber system compared with portable IRGA and alkali absorption methods [J]. Communications in Soil Science and Plant Analysis, 2002, 33: 403-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700