磁生物载体的制备及SBBR效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中氮素污染越来越受到人们的关注。“十二五”规划框架将氨氮列入总量控制,这项规定对城市污水处理提出了新要求。本研究利用生物载体强化技术,将好氧反硝化细菌和磁强化技术有机结合,开发新型高效磁生物载体,对其反硝化效能进行了考察。利用磁生物载体和SBR系统相结合,构建SBBR污水脱氮除碳系统,考察稳定运行时反应系统内氮素和COD的去除效能,同时研究了不同环境条件对SBBR系统内的总氮和COD去除效果的影响。通过PCR-DGGE技术分析系统中的群落结构,为现有污水处理系统的强化及同步脱氮除碳机理提供进一步参考。
     研究表明,2#载体挂膜效果最好,同时能促进功能菌T13的处理效果,接种15d后生长吸光度和硝氮去除率分别达到最优值0.91和94.17%,明显优于纯菌。2#载体的3种磁强化处理中,P#和M+P#载体对促进NO3-N的去除效果最有利,平均去除率提高至99.06%和98.44%。M#,M+P#载体提高了OUR值,分别达到48.28和50.25gO 2·(gMLVSS·hr)-1。在检测不同时间T13生物膜对氮素的转化结果发现, P#和M#载体4h后对硝氮去除率即达到95.79%和96.38%,对水中的亚硝氮也有良好的去除效果。12h后对总氮的去除可以达到91.63%和92.46%。根据试验结果选择P#作为反应器投加载体。
     将载体投入反应器中构建SBBR系统。在SBBR和对照系统两个反应器运行期间,SBBR平均出水氨氮浓度为2.91mg/L,去除率为96.79%,出水总氮去除率76.19%,COD评价出水49.25mg/L。对照系统平均出水氨氮浓度7.23mg/L,去除率92.08%,总氮平均去除率59.84%。平均COD出水浓度55.93mg/L,SBBR的总氮和COD去除效果及稳定性都优于对照系统。
     SBBR系统的最佳的HRT为24小时,对照系统为28小时。SBBR系统在pH为7-9之间总氮和COD去除效能较高,而对照系统在pH范围为7-8时可以取得相应最佳效果。随着DO浓度升高,两套系统总氮去除率都有所下降,SBBR及对照系统最佳DO浓度均为2.0mg/L。DGGE分析显示,SBBR系统和对照系统都有丰富的多样性,T13功能菌在运行过程中一直存在于磁强化载体内。
Nitrogen pollution has been concerned by people. In the 12th 5 year plan, total amount control will include the ammonia nitrogen, the provision to the urban sewage treatment puts forward new requirements. This research use biological carrier strengthening technology, combine aerobic denitrification bacteria and magnetic strengthening technology together, develop magnetic biological denitrification efficiency carrier. Using magnetic biological carrier and the SBR system, construct SBBR sewage system, investigate nitrogen and COD removal effect, use different environmental influencing factors of SBBR. Through PCR-DGGE system of microbial community structure succession law for existing wastewater treatment system, the strengthening of the aerobic denitrification and the application of nitrogen and synchronization mechanism provides further reference.
     Results show that 2 # carrier hang membrane effect, and can promote best growth and nitrate nitrogen removal efficiency of 0.91 and 94.17%, significantly better than pure bacteria. Of the three kinds magnetic strengthen treatment, P# and M+P# carrier promote removal efficiency of NO3-N the most advantageous, average removal rate increases to 99.06% and 98.44%, and promote the stability. M#, M+P# carrier increased value is 48.28 and 50.25 gO2·(gMLVSS·hr)-1. In the test different time T13 biofilm on the transformation of nitrogen, P# and found M# carrier grew more good, 4 h of nitrate nitrogen removal rate after that 95.79% and 96.38% of the water, and the nitrate nitrogen removal efficiency of also good. After 12h, total nitrogen removal to 91.63% and 92.46%. According to the results choose P# as the reactor dosing carrier.
     Dose the carrier in to SBR system and construct of the SBBR reactor system. In SBBR and control system two reactor operation period, SBBR average water ammonia nitrogen concentration of 2.91 mg/L, removal rate is 96.79%, and total nitrogen removal of water is 76.19%, COD evaluation is 49.25mg/L. Control system average water ammonia nitrogen concentration 7.23mg/L, removal rate 92.08%, total nitrogen removal rate of 59.84% on average. Average COD 55.93 mg/L water concentration, SBBR of TN and COD removal efficiency and stability are superior to that of the control system.
     The best HRT for SBBR system is 24 hours, contrast system is 28 hours. SBBR system got appropriate effect in the pH range of 7 to 9 total nitrogen and COD removal, and control system in the pH range of 7 to 8 can obtain corresponding best effect. As DO concentration, two sets of system increased total nitrogen removal rate drop, SBBR and control system got best effect when DO concentration is 2.0mg/L. DGGE analysis showed that, SBBR system and control system has the rich diversity, T13 in operation process of the operation and the magnetic strengthen carrier has been in.
引文
[1]张莉,周涛,付四毛,刘玉玲.22例儿童高铁血红蛋白血症临床分析[J].井冈山学院学报(自然科学). 2009,30(1):92-94
    [2]曹芬.淡水鱼养殖水体中亚硝酸盐积累机制及其影响因素的研究[D].华中农业大学.2009.6
    [3]高明辉.亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素[J].南方水产.2008,4(4):73,79
    [4]左薇,马放,王弘宇.一株高效好氧反硝化细菌的鉴定与反硝化特性[C].第九次全国环境微生物学术研讨会议论文集:454~459.
    [5]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社.2002:370-390.
    [6] L.A. Robertson, Kuinin.Nitrogen removal from water and waste[J]. Combridge University Press.1992:227-267.
    [7]王弘宇,马放,周丹丹同步.硝化好氧反硝化生物脱氮机理分析及其研究进展[J].四川环境.2006,23(6):62~70.
    [8] A.B.Kshirsagar,S.K. Gupta.Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha [J]. Environ.Technol.1994,16:35-43.
    [9] J.R.Stephen,G.A.Kowalchuk,M.V.Brun et al.Analysis of a-subgroup Proteobacteria Ammoniaoxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogentic probing[J].Appl.Environ.Microbiol.1998,64:2958-2965
    [10]刘欣.厌氧氨氧化生物滤池脱氮特性研究[D].河北理工大学.2008. 3:44-48.
    [11]徐海江,张仁志,韩恩山.厌氧氨氧化的研究进展[J].能源环境保护.2006,19(2):13-15.
    [12] Mulder A,Van de Graaf A A,Robertson L A,et a1.Anaerobic ammonium oxidationdiscovered in a denitrifying fluidized bed reactor[J] . FEMS Microbiol Ec01.1 995,l6(3):177~184.
    [13] Van de Graaf A A,De Bruijn P,Robertson L A,et a1.Autotrophlic growth of anaerobicammonium—oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology.1 997,142(8):2187—2196.
    [14]刘金苓.厌氧氨氧化微生物的有机代谢机理及其固定化效应研究[D].2009.6.8.
    [15] J.P Voets, H. Wanstaen and W. Verstraete, Removal of nitrogen from highly nitrogenous wastewater, J. Wat. Pollut. Control Fed. 1975, 47:394–398.
    [16] S.Sutherson, J.J.Ganczarczk. Inhibition of nitrite oxidation during nitrification some observations[J]. Wat. Poll. Rse.J.Can.1986,21:257-256.
    [17] O.Turk, D.S.Mavininc. Preliminary assessment of shotcut in nitrogen removal from wastewater[J].Can.J.Civ.Eng.1986,13:600-605.
    [18] E.V. Elisabeth Munch, Paul Lant, J. Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J], Wat. Res.1996, 30(2):277-284.
    [19]王学江,夏四清,陈玲等. DO对MBBR同步硝化反硝化生物脱氮影响研究[J]. 2006,34(4):514-517.
    [20] A.A. Vande,P. Graaf,D. Bruijn,et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology. 1996,142(8):2187-2196.
    [21] W. H. Zhao,S. D. Mavinic,K.W. Oldham. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J].Wat.Res. 1999, 33(4): 961-970.
    [22] E.V. Elisabeth Munch, Paul Lant, J. Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J], Wat. Res.1996, 30(2):277-284.
    [23] E.B.Muller,A.H.Stouthamer,H.W.Verseveld,et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Wat. Res. 1995,29 (4):1179-1189
    [24] A.B. Gupta, S.K. Gupta. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerohic RBC Biofilm[J]. Water Res . 2001,35:1714-1722.
    [25]涂保华,王利平,李定龙.曝气过滤一体化装置中同步硝化反硝化的研究[J].环境科学与技术.2005,28(增刊) :132-134.
    [26]杨航,黄钧,刘博.异养硝化–好氧反硝化菌Paracoccus pantotrophus ATCC 35512的研究进展[J].应用与环境生物学报2008,14(4):585~592
    [27] L.A.Robertson,W.J VAN Niel ED.,A.M Torremans ROB,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaeera Pantotropha Applied and Environmental Microbiology.1988,54(11):2812-2818.
    [28] S.M. Mike Jetten,Susanne logemann,Gerard Muyzer,et al. Novel principle in the microbial conversion of nitrogen compounds Antonie van Leeuwenhoek. 1997,71(1-2):75-93.
    [29]范利荣,黄少斌.好氧反硝化脱氮技术研究进展[J].工业用水与废水.2008,39(2):5~9.
    [30] Stouthamer AH,De Boer APN,Van der Oost J,Van Spanning RJ.Emerging principles of inorganic nitrogen metabolism in Paracoccusdenitrificans and related bacteria[J].Antonie Van Leeuwenhoek,1997,71(1~2):33~41
    [31] Yoshie S,Noda N,Tsuneda S,et al.Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems[J].Applied and Environmental Microbiology,2004,70(5):3152-3157.
    [32] L.A. Robertson,J.G. Kuenen Aerobic Denitrification: a Controversy Revived. Arch[J]. Microbiol.1984,139(5):351-354.
    [33] H. K. Huang,S. K. Tseng. Nitrate reduction by Citrobacter diversus under aerobic environment[J]. Appl. Microbiol Biotechnol.2001,55:90-94.
    [34] A. B. Gupta, S. K. Gupta. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC Biofilm[J]. Wat. Res. 1999,33(2):555-561.
    [35] M. Kshirsagar, A.B Gupta,S.K. Gupta. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha[J]. Environ. Technol. 1994,16(1):35-43.
    [36] Agnieszka Tomska,Lidia Wolny,Enhancement ofbiological wastewater treatment by magnetic field exposure[J].Desalination 2008,(222):368~373
    [37] NURAY Karapinar. Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation[J].Interrmtiohal Journal of Mineral Processing.2003,71(3):45-54.
    [38]柴诚敬,贾绍义,李宗堂等.磁化技术在化工领域中的应用[J].化学工业与工程.1999,16 (4):245-248.
    [39]赵明慧,周集体,邵冬海.磁化学技术在水处理中的应用[J].环境污染治理技术与设备.2003.4(4):79~84
    [40]栗杰,艳丽,焦颖等.棕壤微生物和几种酶活性的磁致效应研究[J].土壤通报.2007,38(5):22-27.
    [41] Hulya Yavuz, Serdar Scelebi. A typical application of magnetic field in wastewater treatment with fluidized bed biofilm reactor[J] . Chen Eng Commun. 2003,190:5-8.
    [42]易赛莉.厌氧-磁化复合系统处理城镇生活污水中试研究[D].武汉大学博士学位论文.2004.4:37-44.
    [43]韩庆祥,邵凤琴.磁场对活性污泥法处理废水的强化作用[J].抚顺石油学院学报.2002,22 (3):8-10.
    [44] M. Koneraka,P. Kopcansky,M. Antalik,et al.I Immobilization of proteins and enzymes to finemagnetic particles[J].Joural of Magnetism and Magnetic Materials. 1999,201(1):427-430.
    [45]任月明,魏希柱,马军,张密林.纳米磁粉生物反应系统处理效能研究[J].哈尔滨工业大学学报40(8),2008:1247~1250
    [46]朱又春,曾胜.磁分离法处理餐饮污水的除油机理[J].中国给水排水.2002,(07):39-41.
    [47]孙水裕,张俊浩,刘炳基,罗少凡.磁种凝聚-磁分离技术处理含Ni2+电镀废水的研究环境工程. 2002,(04):17-19.
    [48]刘建容,吴国庆.磁态厌氧流化床处理印染废水[J].中国环境科学.1996,16(1):64-67.
    [49] Agnieszka Tomska,Lidia Wolny. Enhancement of biological wastewater treatment by magnetic field exposure . Desalination.2008, (222):368–373.
    [50] F R Kolb, P A Wilderer. Activated Carbon Sequencing Batch Biofilm Reactor to Treat Industry Wastewater[J].Wat Sci Tech,1997,35(1):169-176.
    [51]杜平,刘强,孙志民,苗茵婷,徐晓然.SBBR处理城市污水的研究进展和前景[J].广东化工.2010.37:97~98,108.
    [52]曹昉,王增长.SBBR工艺发展与应用综述[J].科技情报开发与经济.2006,16(1):147~148
    [53] PeterA. Wilderer Technology of menberane biofilm reactors operated under periodically changing process conditions[J].Wat.sci.tech,1995,31(1):173-183.
    [54]张莉珍,杨云龙,唐文峰.SBBR工艺及其在水处理中的运用[J].山西建筑2008,34(4):188~189.
    [55] C Di Iaconi,A Lopez,R Ramadori,et al.Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter(SBBR)[J].Water Research,2002,36:2205-2214.
    [56] Gieseke A, Arnz P, Amann R, A Schramm. Simultaneous P and N removal in a sequencingbatch biofilm reactor:insights from reactor and microscale investigations[J].Water Research, 2002, 36:501-509.
    [57]王乾扬,方士,陈国喜.膜法SBR工艺处理皮革废水研究[J].中国给水排水,1997,15(3):54-56..
    [58]黄俊,邵林广.SBBR工艺的现状和发展[J].重庆环境科学,2003,25(6):46-48.
    [59]王强.磁强化好氧反硝化菌的生物脱氮机制与效能[D].哈尔滨工业大学.2011.1.12
    [60]任南琪,马放,杨基先等.污染控制微生物学.哈尔滨工业大学出版社[M].2006:328-333.
    [61]乔文燕.复合式膜生物反应器渗滤液处理效能及群落结构分析[D].北京工业大学.2009.5.1
    [62] L. Ovreas, L. Forney, F. L. Daae. Distribution of Bacterioplanklon inMeromictic Lake Selenvannet, as Determined by Denaturing Gradient Electrophoresis of PCR-Amplified Gene Fragments Coding for 16S Rrna[j]. Applied and Environmental Microbiology. 1997,(63):3363-3367.
    [63]周丹丹,马放,董双石.溶解氧和有机碳源对同步硝化反硝化的影响[j].环境工程学报.2007,1(4):25-28.J.J Beun,A. Hendriks,M.C.M. Van Loosdrech. Aerobic granulation in aseqencing batch reactor[j].Wat.Res.1999, 33(10):2283-2290.
    [64]彭赵旭,彭永臻,左金龙.同步硝化反硝化的影响因素研究[j].给水排水.2009,35(15):167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700