多取代氨基噻吩类/吡咯羧酸类p53-MDM2结合抑制剂的设计、合成及生物活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重威胁人类健康的重大疾病之一,并已成为我国城市居民的第一死因。研究表明,p53基因是与人类恶性肿瘤相关性最高的肿瘤抑制因子之一可通过DNA修复、细胞周期阻滞和凋亡等方式发挥抑制肿瘤作用。而癌基因MDM2的表达产物MDM2蛋白可与p53蛋白结合,调控p53的转录活性和稳定性,抑制p53正常的生物学功能,从而促进肿瘤的发生和发展。大量研究表明,阻断p53-MDM2相互作用可引起p53的聚集和激活,促使肿瘤细胞生长阻滞或凋亡,是一种有效的癌症治疗策略。近年来,小分子p53-MDM2结合抑制剂由于其在肿瘤治疗方面的潜在应用前景而备受关注。
     为寻找全新母核结构的p53-MDM2结合抑制剂,本论文利用计算机辅助药物设计方法构建了p53-MDM2结合抑制剂的三维药效团和分子对接模型,利用此模型对Maybridge数据库和本实验室化合物库进行虚拟筛选,获得了具良好生物活性的3,4,5-三取代氨基噻吩衍生物MCL0527。在此基础上,根据其结构特征,结合骨架迁越、电子等排等理性药物设计方法对MCL0527进行结构优化,设计合成了76个3,4,5-三取代氨基噻吩类衍生物和类似物。所得化合物的p53-MDM2结合抑制活性及体外肿瘤细胞增殖抑制活性测试结果表明:大部分化合物表现出中等到强的p53-MDM2结合抑制活性(ki:0.086~17.66μM);多数化合物同时对表达野生型p53的A549和HCT116细胞具有中等到强的增殖抑制活性(A549IC50:0.25~22.05μM; HCT116IC50:0.24~35.54μM),并对表达野生型p53的细胞株具有良好的选择性,部分化合物的增殖抑制活性和选择性优于阳性对照Nutlin-3.根据活性测试结果,进行了初步构效关系讨论。代表性化合物(1-55)的体内抗肿瘤活性测试(300mg/kg, ig,qd,21天)结果显示,其对裸小鼠人肺癌A549移植瘤有显著的生长抑制作用,抑制率为59.7%,受试动物体重未见明显下降,提示该化合物具有进一步研究的价值,有成为新型抗肿瘤化合物的潜力。化合物1-51的小鼠全血中代谢稳定性测试结果表明,其在血液中稳定,为该类化合物的后续深入代谢研究奠定了基础。
     以前一章节研究过程中发现的活性较好的3,4,5-三取代氨基吡咯类衍生物为基础,根据最低能量构象叠合分析、合理药物设计原理及初步生物活性评价,获得并确定了先导分子1,2,5-三芳基吡咯羧酸类化合物2-39。在此基础上,采用生物电子等排和类似物设计等方法,进而设计合成了26个1,2,5-三芳基吡咯羧酸衍生物。p53-MDM2结合抑制活性测试结果显示,大部分化合物表现出纳摩尔数量级的抑制活性,4个化合物的结合抑制活性优于阳性对照Nutlin-3。其中,化合物2-53(Ki=0.019μM)的活性较Nutlin-3(Ki=0.055μM)提高了2倍,较先导化合物2-39(Ki=1.48μM)提高了77倍。总结初步构效关系:①吡咯环1-苯基上取代基及取代位置的影响:间位取代者的活性总体优于对位取代;取代基为氯、溴或三氟甲基时活性基本相当;邻位引入氟原子有利于提高活性;②吡咯环2-苯基上取代基及取代位置的影响:间氯取代者的活性优于对氯取代;对位引入氟原子可保持或提高活性;③以其它芳环替代5位苯环活性基本保持;④3-羧基衍生化对活性影响较大,可导致活性降低甚至消失。体外肿瘤细胞增殖抑制活性测试结果表明,大部分化合物对表达野生型p53的A549和HCT166细胞具有中等的增殖抑制活性,部分化合物对野生型p53细胞株具有一定的选择性,与Nutlin-3基本相当。在活性筛选的基础上,开展代表性化合物2-53与MDM2的分子对接研究,阐明该类化合物与MDM2蛋白可能的相互作用模式;采用最低能量构象比较分析方法解释了2-53具有强p53-MDM2结合抑制活性的原因,为进一步药物设计提供有利依据。此外,计算机辅助的1,2,5-三芳基吡咯羧酸类衍生物类药性质评价结果表明,该类化合物在体内具有较好的ADME'性质,为后续深入的ADMET'性质研究奠定了基础。
Malignant tumor is one of the major diseases threatening human health worldwide. It has become the number-one cause of death for city dwellers in China. The tumor suppressor p53, key node of the p53pathway, plays essential roles in various cellular activities, such as cell cycle, apoptosis and DNA repair. However, aberrations in p53regulation and/or defective signaling in the p53pathway result in many cases of inadequate tumor suppression. One important cause of p53function deficiency involves MDM2, the negative regulator of the activity and stability of p53. Extensive studies have established that reactivation of p53by utilizing p53-MDM2binding inhibitors is a promising strategy for cancer therapy. Consequently, the research on small-molecule p53-MDM2binding inhibitors has attracted considerable attention in recent years.
     In order to discover novel scaffolds, a3D pharmacophore model (Hypol) of p53-MDM2binding inhibitors was established. Combining with docking studies, the Hypol-based virtual screening led to the identification of compound MCL0527(1-49) as a novel lead. Then series of763,4,5-trisubstituted aminothiophene derivatives and analogues were designed and synthesized based on the structural features of MCL0527according to principles of bioisosterism and design of analogues. MDM2binding assay results showed that most target compounds exhibited moderate to potent affinities towards MDM2. In vitro evaluation against human cancer cell lines showed that most compounds displayed not only moderate to potent tumor cell anti-proliferation activities on wild-type p53expressing cell lines A549and HCT116but also good selective profile for p53status. Preliminary SARs were disclosed. In vivo anti-tumor activity evaluation showed that1-55could significantly inhibit the tumor growth (59.7%) in human lung adenocarcinoma A549xenograft in nude mice. A metabolic stability assay showed that 1-51exhibited good stability in mice whole blood, which laid a foundation for further metabolism studies.
     Based on the structural features of3,4,5-trisubstituted aminopyrroles obtained in previous study, a series of261,2,5-triaryl carboxypyrrole derivatives were designed and synthesized according to the molecular alignment analysis and rational drug design theory. MDM2binding assay showed that most target compounds exhibited potent affinities towards MDM2. Five compounds exhibited improved potency compared to Nutlin-3. Particularly, compound2-53(Ki-0.019μM) is2times more potent than Nutlin-3(Ki=0.055uM). Preliminary SARs were revealed as followed. For the1-phenyl ring of pyrrole, meta-substituted compounds were more potent than para position. Cl, Br and CF3substituents imparted equally positive effect to the binding affinities. Introducing an F atom at meta position was beneficial for potency. Referring to the2-phenyl ring of pyrrole,m-chloro substituted compounds exhibited better activities than that of p-chloro. Introducing an F atom at para position was beneficial for potency. In the case of5-phenyl ring of pyrrole, using other aryl rings to replace phenyl moiety could retain the binding affinities. Derivatization at3-carboxy group caused a loss of potency in varying degrees. In vitro evaluation against human cancer cell lines showed that most compounds displayed moderate tumor cell anti-proliferation activities on wild-type p53expressing cell lines A549and HCT116. Molecular docking analysis was performed to predict the binding mode of MDM2and2-53. Besides, Compared analysis of minimized conformers explained the possible reason that2-53showed potent p53-MDM2binding affinities, which provided useful information for further drug design. In addition, predicted ADME drug-like properties showed that the1,2,5-triaryl carboxypyrroles possessed moderate to good ADME properties. The above results provide new insights for the development of1,2,5-triaryl carboxypyrroles as anti-cancer agents.
引文
1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA:A Cancer Journal'forClinicians'2011,61,69-90.
    2. Bansal, N.; Kadamb, R.; Mittal, S.; Vig, L.; Sharma, R.; Dwarakanath, B. S.; Saluja, D. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One 2011, 6,e26156.
    3. Harris, S. L.; Levine, A. J. The p53 pathway:positive and negative feedback loops. Oncogem 2005,24,2899-908.
    4. Michael, D.; Oren, M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003,13,49-58.
    5. Harper, J. W.; Adami, G. R.; Wei, N.; Keyomarsi, K.; Elledge, S. J. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993,75,805-16.
    6. El-Deiry, W. S.; Tokino, T.; Velculescu, V. E.; Levy, D. B.; Parsons, R.; Trent, J. M.; Lin, D.; Mercer, W. E.; Kinzler, K. W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993,75,817-25.
    7. Poyurovsky, M. V.; Prives, C. Unleashing the power of p53:lessons from mice and men. Genes Dev 2006,20,125-31.
    8. Hollstein, M.; Rice, K.; Greenblatt, M. S.; Soussi, T.; Fuchs, R.; Sorlie, T.; Hovig, E.; Smith-Sorensen, B.; Montesano, R.; Harris, C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994,22,3551-5.
    9. Vousden, K. H.; Lu, X. Live or let die:the cell's response to p53. Nat Rev Cancer 2002,2,594-604.
    10. Harris, S. L.; Levine, A. J. The p53 pathway:positive and negative feedback loops. Oncogene 2005 24,2899-908.
    11. Freedman, D. A.; Wu, L.; Levine, A. J. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999,55,96-107.
    12. Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992,69,1237-45.
    13. Roth, J.; Dobbelstein, M.; Freedman, D. A.; Shenk, T.; Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998,17,554-64.
    14. Vassilev, L. T. p53 Activation by small molecules:application in oncology. JMed Chem 2005,48,4491-9.
    15. Fry, D.; Graves, B.; Vassilev, L. T. Exploiting protein-protein interactions to design an activator of p53. In Protein-Protein Interactions:A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press:New York,2005.
    16. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2006,49,3432-5.
    17. Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.; Pavletich, N. P. Strucutre of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996,274,948-953.
    18. Dudkina, A. S.; Lindsley, C. W. Small molecule protein-protein inhibitors for the p53-MDM2 interaction. Current Topics in Medicinal Chemistry 2007,7,952-960.
    19. Murray, J. K.; Gellman, S. H. Targeting protein-protein interactions:lessons from p53/MDM2. Biopolymers 2007,88,657-86.
    20. Clark, R. C.; Lee, S. Y.; Searcey, M.; Boger, D. L. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-mDM2 protein-protein interaction. Nat Prod Rep 2009,26,465-77.
    21. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004,303,844-8.
    22. Yu, S.; Qin, D.; Shangary, S.; Chen, J.; Wang, G.; Ding, K.; McEachern, D.; Qiu, S.; Nikolovska-Coleska, Z.; Miller, R.; Kang, S.; Yang, D.; Wang, S. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. JMed Chem 2009,52, 7970-3.
    23. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005, 127,10130-1.
    24. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. JMed Chew 2006,49,3432-5.
    25. Parks, D. J.; Lafrance, L. V.; Calvo, R. R.; Milkiewicz, K. L.; Gupta, V.; Lattanze, J.; Ramachandren, K.; Carver, T. E.; Petrella, E. C; Cummings, M. D.; Maguire, D.; Grasberger, B. L.; Lu, T. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction:discovery and SAR. Bioorg Med Chem Lett2005,15, 765-70.
    26. Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 2005,48,909-12.
    27. Marugan, J. J.; Leonard, K.; Raboisson, P.; Gushue, J. M.; Calvo, R.; Koblish, H. K.; Lattanze, J.; Zhao, S.; Cummings, M. D.; Player, M. R.; Schubert, C.; Maroney, A. C.; Lu, T. Enantiomerically pure 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists. Bioorg Med Chem Lett 2006,16,3115-20.
    28. Parks, D. J.; LaFrance, L. V.; Calvo, R. R.; Milkiewicz, K. L.; Marugan, J. J.; Raboisson, P.; Schubert, C; Koblish, H. K.; Zhao, S.; Franks, C. F.; Lattanze, J.; Carver, T. E.; Cummings, M. D.; Maguire, D.; Grasberger, B. L.; Maroney, A. C.; Lu, T. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg Med Chem Lett 2006,16,3310-4.
    29. Leonard, K.; Marugan, J. J.; Raboisson, P.; Calvo, R.; Gushue, J. M.; Koblish, H. K.; Lattanze, J.; Zhao, S.; Cummings, M. D.; Player, M. R.; Maroney, A. C.; Lu, T. Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity. Bioorg Med Chem Lett 2006,16,3463-8.
    30. Raboisson, P.; Marugan, J. J.; Schubert, C.; Koblish, H. K.; Lu, T.; Zhao, S.; Player, M. R.; Maroney, A. C.; Reed, R. L.; Huebert, N. D.; Lattanze, J.; Parks, D. J.; Cummings, M. D. Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 2005,15,1857-61.
    31. Cummings, M. D.; Schubert, C.; Parks, D. J.; Calvo, R. R.; LaFrance, L. V.; Lattanze, J.; Milkiewicz, K. L.; Lu, T. Substituted 1,4-benzodiazepine-2,5-diones as alpha-helix mimetic antagonists of the HDM2-p53 protein-protein interaction. Chem Biol Drug Des 2006,67,201-5.
    32. Rew, Y.; Sun, D.; Gonzalez-Lopez, D. T. F.; Bartberger, M. D.; Beck, H. P.; Canon, J.; Chen, A.; Chow, D.; Deignan, J.; Fox, B. M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao, X.;Jin,L.;Kayser,F.;Kopecky,D.J.;Li,Y.;Lo,M.C.;Long,A.M.;Michelsen,K.; Oliner,J.D.;Osgood,T.;Ragains,M.;Saiki,A.Y.;Schneider,S.;Toteva,M.; Yakowec,P.;Yan,X.;Ye,Q.;Yu,D.;Zhao,X.;Zhou,J.;Medina,J.C.;Olson,S.H. Structure-Based Design of Novel Inhibitors of the MDM2-p53 Interaction.J Med Chem 2012,55,4936-54.
    33.Hardcastle,I.R.;Liu,J.;Valeur,E.;Watson,A.;Ahmed,S.U.;Blackburn,T.J.; Bennaceur,K.;Clegg,W.;Drurnmond,C.;Endicott,J.A.;Golding,B.T.;Griffm,R.J.; Gruber,J.;Haggerty,K.;Harrington,R.W.;Hutton,C.;Kemp,S.;Lu,X.;McDonnell, J.M.;Newell,D.R.;Noble,M.E.;Payne,S.L.;Revill,C.H.;Riedinger,C.;Xu,Q.; Lunec,J.Isoindolinone inhibitors of the murine double minute 2(MDM2)-p53 protein-protein interaction:structure-activity studies leading to improved potency.J Med Chem 2011,54,1233-43.
    34.Hardcastle,I.R.;Ahmed,S.U.;Atkins,H.;Calvert,A.H.;Curtin,N.J.;Famie,G.; Golding,B.T.;Griffin,R.J.;Guyenne,S.;Hutton,C.;Kallblad,P.;Kemp,S.J.; Kitching,M.S.;Newell,D.R.;Norbedo,S.;Northen,J.S.;Reid,R.J.;Saravanan,K.; Willems,H.M.;Lunec,J.Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction.Bioorg Med Chem Lett 2005,15,1515-20.
    35.Hardcastle,I.R.;Ahmed,S.U.;Atkins,H.;Farnie,G.;Golding,B.T.;Griffin,R.J.; Guyenne,S.;Hutton,C.;Kallblad,P.;Kemp,S.J.;Kitching,M.S.;Newell,D.R.; Norbedo,S.;Northen,J.S.;Reid,R.J.;Saravanan,K.;Willems,H.MLunec,J. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold.J Med Chem 2006,49,6209-21.
    36.Allen,J.G.;Bourbeau,M.P.;Wohlhieter,G.E.;Bartberger,M.D.;Michelsen,K.; Hungate,R.;Gadwood,R.C.;Gaston,R.D.;Evans,B.;Mann,L.W.;Matison,M.E.; Schneider,S.;Huang,X.;Yu,D.;Andrews,P.S.;Reichelt,A.;Long,A.M.;Yakowec, P.;Yang,E.Y.;Lee,T.A.;Oliner,J.D.Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse doHble minute 2-tumor protein 53 protein-protein interaction. JMed Chem 2009,52,7044-53.
    37. Beck, H. P.; DeGraffenreid, M.; Fox, B.; Allen, J. G.; Rew, Y.; Schneider, S.; Saiki, A. Y.; Yu, D.; Oliner, J. D.; Salyers, K.; Ye, Q.; Olson, S. Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors. Bioorg Med Chem Lett 2011,21,2752-5.
    38. Rothweiler, U.; Czarna, A.; Krajewski, M.; Ciombor, J.; Kalinski, C; Khazak, V.; Ross, G.; Skobeleva, N.; Weber, L.; Holak, T. A. Isoquinolin-1-one inhibitors of the MDM2-p53 interaction. ChemMedChem 2008,3,1118-28.
    39. Chen, L.; Yin, H.; Farooqi, B.; Sebti, S.; Hamilton, A. D.; Chen, J. p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 2005,4, 1019-25.
    40. Yin, H.; Lee, G. I.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.; Hamilton, A. D. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 2005,44,2704-7.
    41. Hu, C.; Li, X.; Wang, W.; Zhang, L.; Tao, L.; Dong, X.; Sheng, R.; Yang, B.; Hu, Y. Design, synthesis, and biological evaluation of imidazoline derivatives as p53-MDM2 binding inhibitors. Bioorg Med Chem 2011,19,5454-61.
    42. Hu, C.; Dou, X.; Wu, Y.; Zhang, L.; Hu, Y. Design, synthesis and CoMFA studies of N1-amino acid substituted 2,4,5-triph-enyl imidazoline derivatives as p53-MDM2 binding inhibitors. Bioorg Med Chem2012,20,1417-1424.
    43. Taft, C. A.; Da, S. V.; Da, S. C. Current topics in computer-aided drug design. J Pharm Sci 2008,1089-98.
    44. Song, C. M.; Lim, S. J.; Tong, J. C. Recent advances in computer-aided drug design. BriefBioinform 2009,10,579-91.
    45. Vacek, G.; Mullally, D.; Christensen, K. Trends in high-performance computing requirements for computer-aided drug design. Curr Comput-Aided Drug Des 2008,3, 1089-1098.
    46. Sanders, M.; McGuire, R.; Roumen, L.; de Esch, I.; de Vlieg, J.; Klomp, J.; de Graaf, C. From the protein's perspective:the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Comm 2012,3,28-38.
    47. Leach, A. R.; Gillet, V. J.; Lewis, R. A.; Taylor, R. Three-dimensional pharmacophore methods in drug discovery. J Med Chem 2010,53,539-58.
    48. Badrinarayan, P.; Sastry, G. N. Virtual high throughput screening in new lead identification. Comb Chem High Throughput Screen 2011,14,840-60.
    49. Patel, Y.; Gillet, V. J.; Bravi, G.; Leach, A. R. A comparison of the pharmacophore identification programs:Catalyst, DISCO and GASP. J Comput Aided Mol Des 2002, 16,653-81.
    50. Barnum, D.; Greene, J.; Smellie, A.; Sprague, P. Identification of common functional configurations among molecules. J Chem Inf Comput Sci 1996,36,563-71.
    51. Stevenson, J. M.; Mulready, P. D. Pipeline Pilot 2.1 by Scitegic,9665 Chesapeake Drive, Suite 401, San Diego, CA 92123-1365. J Am Chem Soc 2003,125,1437-1438.
    52. Wang, K.; Nguyen, K.; Huang, Y.; Domling, A. Cyanoacetamide multicomponent reaction (Ⅰ):Parallel synthesis of cyanoacetamides. JComb Chem 2009,11,920-7.
    53. Rynbrandt, R. H.; Nishizawa, E. E.; Balogoyen, D. P.; Mendoza, A. R.; Annis, K. A. Synthesis and platelet aggregation inhibitory activity of 4,5-bis(aryl)-2-substituted-thiazoles. J Med Chem 1981,24,1507-10.
    54. Lichitsky, B. V.; Komogortsev, A. N.; Dudinov, A. A.; Krayushkin, M. M. Three-component condensation of 2-aminothiophene-3-carboxylic acid derivatives with aldehydes and Meldrum's acid. Russ ChemBull 2008,57,2175-2179.
    55. Coumar, M. S.; Tsai, M. T.; Chu, C. Y.; Uang, B. J.; Lin, W. H.; Chang, C. Y.; Chang, T. Y.; Leou, J. S.; Teng, C. H.; Wu, J. S.; Fang, M. Y.; Chen, C. H.; Hsu, J. T.; Wu, S. Y.; Chao, Y. S.; Hsieh, H. P. Identification, SAR studies, and X-ray co-crystallographic analysis of a novel furanopyrimidine aurora kinase A inhibitor. ChemMedChem 2010,5,255-67.
    56. http://swl 6.im.med.umich.edu/software/calc_ki/index.jsp..
    57. Hause, C. R.; Morri, G. F. Alkylations of α-dimethylaminophenylacetonitriles and hydrolysis to deoxybenzoins. JOrg Chem 1961,26,4740-4741.
    58. Bergmann, E. D.; Moses, P.; Neeman, M.; Cohen, S.; Kaluszyner, A.; Reuter, S. Methyl-fluorinated methyldiarylcarbinols and related compounds. JAm Chem Soc 1957, 7954174-4178.
    59. Futami, Y.; Nishino, H.; Kurosawa, K. Reactions of alkenes with iodine(III) tris(trifluoroacetate). Bull Chem Soc Jpn 1989,62,3182-3186.
    60. Shen, Z. L.; Xu, X. P.; Ji, S. J. Bronsted base-catalyzed one-pot three-component Biginelli-type reaction:an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. JOrg Chem 2010, 75,1162-7.
    61. Garcia-Echeverria, C; Chene, P.; Blommers, M. J.; Furet, P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. JMed Chem 2000,43,3205-8.
    62. Pravst, I.; Zupan, M.; Stavber, S. Halogenation of ketones with N-halosuccinimides under solvent-free reaction conditions. Tetrahedron 2008,64,5191-5199.
    63. Hay, M. P.; Turcotte, S.; Flanagan, J. U.; Bonnet, M.; Chan, D. A.; Sutphin, P. D.; Nguyen, P.; Giaccia, A. J.; Denny, W. A.4-Pyridylanilinothiazoles that selectively target von Hippel-Lindau deficient renal cell carcinoma cells by inducing autophagic cell death. JMed Chem 2010,53,787-97.
    1. Yu, S.; Qin, D.; Shangary, S.; Chen, J.; Wang, G.; Ding, K.; McEachern, D.; Qiu, S.; Nikolovska-Coleska, Z.; Miller, R.; Kang, S.; Yang, D.; Wang, S. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. JMed Chem 2009,52, 7970-3.
    2. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005, 127,10130-1.
    3. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. JMedChem 2006,49,3432-5.
    4. Rew, Y.; Sun, D.; Gonzalez-Lopez, D. T. F.; Bartberger, M. D.; Beck, H. P.; Canon, J.; Chen, A.; Chow, D.; Deignan, J.; Fox, B. M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao, X.; Jin, L.; Kayser, F.; Kopecky, D. J.; Li, Y.; Lo, M. C; Long, A. M.; Michelsen, K.; Oliner, J. D.; Osgood, T.; Ragains, M; Saiki, A. Y.; Schneider, S.; Toteva, M.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J. C.; Olson, S. H. Structure-Based Design of Novel Inhibitors of the MDM2-p53 Interaction. J Med Chem 2012,55,4936-54.
    5. Garcia-Echeverria, C.; Chene, P.; Blommers, M. J.; Furet, P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. JMed Chem 2000,43,3205-8.
    6. Pravst, I.; Zupan, M.; Stavber, S. Halogenation of ketones with N-halosuccinimides under solvent-free reaction conditions. Tetrahedron 2008,64,5191-5199.
    7. Hay, M. P.; Turcotte, S.; Flanagan, J. U.; Bonnet, M; Chan, D. A.; Sutphin, P. D.; Nguyen, P.; Giaccia, A. J.; Denny, W. A.4-Pyridylanilinothiazoles that selectively target von Hippel-Lindau deficient renal cell carcinoma cells by inducing autophagic cell death. JMed Chem 2010,53,787-97.
    1. Bansal, N.; Kadamb, R.; Mittal, S.; Vig, L.; Sharma, R.; Dwarakanath, B. S.; Saluja, D. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One 2011, 6, e26156.
    2. Harris, S. L.; Levine, A. J. The p53 pathway:positive and negative feedback loops. Oncogene 2005,24,2899-908.
    3. Michael, D.; Oren, M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003,13,49-58.
    4. Harper, J. W.; Adami, G. R.; Wei, N.; Keyomarsi, K.; Elledge, S. J. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993,75,805-16.
    5. El-Deiry, W. S.; Tokino, T.; Velculescu, V. E.; Levy, D. B.; Parsons, R.; Trent, J. M.; Lin, D.; Mercer, W. E.; Kinzler, K. W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993,75,817-25.
    6. Poyurovsky, M. V.; Prives, C. Unleashing the power of p53:lessons from mice and men. Genes Dev 2006,20,125-31.
    7. Vassilev, L. T. MDM2 inhibitors for cancer therapy. Trends Aol Med 2007,13, 23-31.
    8. Hollstein, M.; Rice, K.; Greenblatt, M. S.; Soussi, T.; Fuchs, R.; Sorlie, T.; Hovig, E.; Smith-Sorensen, B.; Montesano, R.; Harris, C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994,22,3551-5.
    9. Cho, Y.; Gorina, S.; Jeffrey, P. D.; Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex:understanding tumorigenic mutations. Science 1994,265, 346-55.
    10. Harris, C. C. Structure and function of the p53 tumor suppressor gene:clues for rational cancer therapeutic strategies. J'Natl'Cancer/nst 1996,88,1442-55.
    11. Oliner, J. D.; Kinzler, K. W.; Meltzer, P. S.; George, D. L.; Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992,358,80-3.
    12. Fakharzadeh, S. S.; Trusko, S. P.; George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO .71991,10,1565-9.
    13. Oliner, J. D.; Pietenpol, J. A.; Thiagalingam, S.; Gyuris, J.; Kinzler, K. W.; Vogelstein, B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993,362,857-60.
    14. Vousden, K. H.; Lu, X. Live or let die:the cell's response to p53. Nat Rev Cancer 2002,2,594-604.
    15. Freedman, D. A.; Wu, L.; Levine, A. J. Functions of the MDM2 oncoprotein. Cell Mol Life Sei 1999,55,96--107.
    16. Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.Cell 1992,69,1237-45.
    17. Roth, J.; Dobbelstein, M.; Freedman, D. A.; Shenk, T.; Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBOJ 1998,17,554-64.
    18. Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. The MDM2 gene amplification database. Nucleic Acids Res 1998,26,3453-9.
    19. Cordon-Cardo, C.; Latres, E.; Drobnjak, M.; Oliva, M. R.; Pollack, D.; Woodruff, J. M.; Marechal, V.; Chen, J.; Brennan, M. F.; Levine, A. J. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 1994,54,794-9.
    20. Bond, G. L.; Hu, W.; Bond, E. E.; Robins, H.; Lutzker, S. G.; Arva, N. C.; Bargonetti, J.; Bartel, F.; Taubert, H.; Wuerl, P.; Onel, K.; Yip, L.; Hwang, S. J.; Strong, L. C.; Lozano, G.; Levine, A. J. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004,119,591-602.
    21. Zhou, M.; Gu, L.; Abshire, T. C.; Homans, A.; Billett, A. L.; Yeager, A. M.; Findley, H. W. Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 2000,14, 61-7.
    22. Bond, G. L.; Hu, W.; Levine, A. J. MDM2 is a central node in the p53 pathway:12 years and counting. Curr Cancer Drug Targets 2005,5,3-8.
    23. Brown, C. J.; Lain, S.; Verma, C. S.; Fersht, A. R.; Lane, D. P. Awakening guardian angels:drugging the p53 pathway. Nat Rev Cancer 2009,9,862-73.
    24. Vassilev, L. T. p53 Activation by small molecules:application in oncology. J Med Chem 2005,48,4491-9.
    25. Chen, L.; Lu, W.; Agrawal, S.; Zhou, W.; Zhang, R.; Chen, J. Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med 1999,5, 21-34.
    26. Chen, L.; Agrawal, S.; Zhou, W.; Zhang, R.; Chen, J. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Natl Acad Sci U S A 1998, 95,195-200.
    27. Wang, H.; Zeng, X.; Oliver, P.; Le LP; Chen, J.; Chen, L.; Zhou, W.; Agrawal, S.; Zhang, R. MDM2 oncogene as a target for cancer therapy:An antisense approach. Int J Oncol 1999,15,653-60.
    28. Tortora, G.; Caputo, R.; Damiano, V.; Bianco, R.; Chen, J.; Agrawal, S.; Bianco, A. R.; Ciardiello, F. A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer. Int J Cancer 2000,88,804-9.
    29. Wang, H.; Nan, L.; Yu, D.; Agrawal, S.; Zhang, R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer:in vitro and in vivo activities and mechanisms. Clin Cancer Hes 2001,7,3613-24.
    30. Wang, H.; Nan, L.; Yu, D.; Lindsey, J. R.; Agrawal, S.; Zhang, R. Anti-tumor efficacy of a novel antisense anti-MDM2 mixed-backbone oligonucleotide in human colon cancer models:p53-dependent and p53-independent mechanisms. Mol Mes 2002, 8,185-99.
    31. Wang, H.; Yu, D.; Agrawal, S.; Zhang, R. Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides:in vitro and in vivo activities and mechanisms. Prostate 2003,54, 194-205.
    32. Zhang, R.; Wang, H.; Agrawal, S. Novel antisense anti-MDM2 mixed-backbone oligonucleotides:proof of principle, in vitro and in vivo activities, and mechanisms. Curr Cancer Drug Targets-2005,5,43-9.
    33. Singh, R.; Ramesh, U.; Goff, D.; Laidig, G.; Issakani, S. D.; Huang, J.; Payan, D. G. Rhodanine Derivatives and Pharmaceutical Compositions Containing Them. WO 2004/043955.
    34. Singh, R.; Ramesh, U.; Issakani, S. D.; Huang, J.; Kinoshita, T.; Gururaja, T. Ubiquitin Ligase Inhibitors. WO 2006/074262.
    35. Lai, Z.; Yang, T.; Kim, Y. B.; Sielecki, T. M.; Diamond, M. A.; Strack, P.; Rolfe, M.; Caligiuri, M.; Benfield, P. A.; Auger, K. R.; Copeland, R. A. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc NatlAcadSci U S A 2002,99,14734-9.
    36. Clement, J. A.; Kitagaki, J.; Yang, Y.; Saucedo, C. J.; O'Keefe, B. R.; Weissman, A. M.; McKee, T. C.; McMahon, J. B. Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg Med Chem 2008,16,10022-8.
    37. Sasiela, C. A.; Stewart, D. H.; Kitagaki, J.; Safiran, Y. J.; Yang, Y.; Weissman, A. M.; Oberoi, P.; Davydov, I. V.; Goncharova, E.; Beutler, J. A.; McMahon, J. B.; O'Keefe, B. R. Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen.J Biomol'Screen2008,13,229-37.
    38. Yang, Y.; Ludwig, R. L.; Jensen, J. P.; Pierre, S. A.; Medaglia, M. V.; Davydov, I. V.; Safiran, Y. J.; Oberoi, P.; Kenten, J. H.; Phillips, A. C.; Weissman, A. M.; Vousden, K. H. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005,7,547-59.
    39. Kitagaki, J.; Agama, K. K.; Pommier, Y.; Yang, Y.; Weissman, A. M. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther 2008,7,2445-54.
    40. Che, Y.; Brooks, B. R.; Marshall, G. R. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Des 2006,20,109-30.
    41. Domling, A. Small molecular weight protein-protein interaction antagonists:an insurmountable challenge? Curr Opin Chem Biol 2008,12,281-91.
    42. Yin, H.; Hamilton, A. D. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2005,44,4130-63.
    43. Harris, P. J.; Speranza, G.; Dansky, U. C. Targeting embryonic signaling pathways in cancer therapy. Expert Opin Ther Targets 2012,16,131-45.
    44. Dudkina, A. S.; Lindsley, C. W. Small molecule protein-protein inhibitors for the p53-MDM2 interaction. Current Topics in Medicinal'Chemistry 2007,952-960.
    45. Murray, J. K.; Gellman, S. H. Targeting protein-protein interactions:lessons from p53/MDM2. Biopolymers 2007,88,657-86.
    46. Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004,3,301-17.
    47. Clackson, T.; Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 1995,267,383-6.
    48. Fry, D.; Graves, B.; Vassilev, L. T. Exploiting protein-protein interactions to design an activator of p53. In Protein-Protein Interactions:A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press:New York,2005.
    49. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2006,49,3432-5.
    50. Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.; Pavletich, N. P. Strucutre of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996,274,948-953.
    51. Clark, R. C.; Lee, S. Y.; Searcey, M.; Boger, D. L. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-mDM2 protein-protein interaction. Nat Prod Rep 2009,26,465-77.
    52. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303,844-8.
    53. Popowicz, G. M.; Domling, A.; Holak, T. A. The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. Angew Chem Int Ed Engl 2011,50,2680-8.
    54. Ding, Q.; Graves, B. J.; Kong, N.; Liu, J.; Lovey, A. J.; Pizzolato, G.; Roberts, J. L.; So, S.; Vu, B. T.; Wovkulich, P. M. Preparation of 2,4,5-triphenyl imidazoline derivatives as inhibitors of the interaction between p53 and MDM2 proteins for use as anticancer agents. WO2007063013A1.
    55. Haley, G. J.; Kong, N.; Liu, E. A.; Vu, B. T. Preparation of chiral cis-2,4,5-triphenylimidazolines as anticancer agents. US20050282803A1.
    56. Bartkovitz, D. J.; Cai, J.; Chu, X.; Li, H.; Lovey, A. J.; Vu, B. T.; Zhao, C. Preparation of chiral cis-imidazolines as anticancer agents. WO2009047161A1.
    57. Fotouhi, N.; Haley, G. J.; Simonsen, K. B.; Vu, B. T.; Webber, S. E. Preparation of cis-2,4,5-triaryl-imidazolines and their use as anticancer medicaments. WO2006097261A1.
    58. Kong, N.; Liu, E. A.; Vu, B. T. Preparation of cis-2,4,5-triphenylimidazolines and their use in the treatment of tumors. WO2003051359A1.
    59. Haley, G. J.; Kong, N.; Liu, E. A.; Simonsen, K. B.; Vu, B. T.; Webber, S. E. Preparation of cis-2,4,5-triphenylimidazolines as inhibitors of interaction of MDM2 protein with a p53-like peptide. US20040259884A1.
    60. Kong, N.; Liu, E. A.; Vu, B. T. Preparation of cis-2,4,5-triphenylimidazolines as MDM2 inhibitors. WO200305136041.
    61. Kim, K.; Liu, E. A.; Mischke, S. G. Preparation of cis-3,4-dihydroxy-4-phenylpiperidine diethers as anticancer agents. US20040180929A1.
    62. Fotouhi, N.; Liu, E. A.; Vu, B. T. Preparation of cis-dihydroimidazoles which inhibit the interaction of MDM2 protein with a p53-like peptide. US20040259867A1.
    63. Fotouhi, N.; Haley, G. J.; Simonsen, K. B.; Vu, B. T.; Webber, S. E. Preparation of cis-imidazolines as anticancer drugs. US20070167437AJ.
    64. Dominique, R.; Goodnow, R. A.; Qiao, Q.; Vu, B. T. Preparation of diphenyldihydroimidazopyridinones which inhibit the interaction of MDM2 protein with a p53-like peptide. US20080255119A1.
    65. Fotouhi, N.; Haley, G. J.; Simonsen, K. B.; Vu, B. T.; Webber, S. E. Preparation of novel optically active cis-l-carbamoyl-2,4,5-triphenyl-2-imidazolines as inhibitors of interaction of MDM2 protein with p53-like peptide useful against solid tumors. WO2005110996A1.
    66. Boettcher, A.; Buschmann, N.; Furet, P.; Groell, J.; Kallen, J.; Hergovich, L. J.; Masuya, K.; Mayr, L.; Vaupel, A.3-Imidazolylindoles for treatment of proliferative diseases and their preparation. WO2008119741A2.
    67. Waning, D. L.; Lehman, J. A.; Batuello, C. N.; Mayo, L. D. Controlling the Mdm2-Mdmx-p53 Circuit. Pharmaceuticals (Basel) 2010,3,1576-1593.
    68. Toledo, F.; Wahl, G. M. MDM2 and MDM4:p53 regulators as targets in anticancer therapy. Int JBiochem Cell Biol 2007,39,1476-82.
    69. Marine, J. C.; Dyer, M. A.; Jochemsen, A. G. MDMX:from bench to bedside. J Cell Sci 2007,120,371-8.
    70. Wade, M.; Wahl, G. M. Targeting Mdm2 and Mdmx in cancer therapy:better living through medicinal chemistry? Mol Cancer Res'2009,7,1-11.
    71. Hu, B.; Gilkes, D. M.; Farooqi, B.; Sebti, S. M.; Chen, J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 2006,281, 33030-5.
    72. Popowicz, G. M.; Czarna, A.; Wolf, S.; Wang, K.; Wang, W.; Domling, A.; Holak, T. A. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 2010,9, 1104-11.
    73. Miyazaki, M.; Kawato, H.; Naito, H.; Ikeda, M.; Miyazaki, M.; Kitagawa, M.; Seki, T.; Fukutake, S.; Aonuma, M.; Soga, T. Discovery of novel dihydroimidazothiazole derivatives as p53-MDM2 protein-protein interaction inhibitors:synthesis, biological evaluation and structure-activity relationships. Bioorg Med Chem Lett 2012,22, 6338-42.
    74. Miyazaki, M.; Naito, H.; Sugimoto, Y.; Kawato, H.; Okayama, T.; Shimizu, H.; Miyazaki, M.; Kitagawa, M.; Seki, T.; Fukutake, S.; Aonuma, M.; Soga, T. Lead optimization of novel p53-MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. BioorgMed Chem Lett 2013,23,728-32.
    75. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005, 127,10130-1.
    76. Lin, J.; Chen, J.; Elenbaas, B.; Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 1994,8,1235-46.
    77. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. JMed Chem 2006,49,3432-5.
    78. Mohammad, R. M.; Wu, J.; Azmi, A. S.; Aboukameel, A.; Sosin, A.; Wu, S.; Yang, D.; Wang, S.; Al-Katib, A. M. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer'2009,8,115.
    79. Azmi, A. S.; Aboukameel, A.; Banerjee, S.; Wang, Z.; Mohammad, M.; Wu, J.; Wang, S.; Yang, D.; Philip, P. A.; Sarkar, F. H.; Mohammad, R. M. MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer 2010,46,1122-31.
    80. Yu, S.; Qin, D.; Shangary, S.; Chen, J.; Wang, G.; Ding, K.; McEachern, D.; Qiu, S.; Nikolovska-Coleska, Z.; Miller, R.; Kang, S.; Yang, D.; Wang, S. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2009,52, 7970-3.
    81. Shangary, S.; Wang, S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function:a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009,49,223-41.
    82. Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R. S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R. B.; Pienta, K. J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 2008,105,3933-8.
    83. Ding, Q.; Jiang, N.; Yang, S.; Zhang, J.; Zhang, Z. Preparation of 2,3-dihydrospiro[indole-3,3'-piperidine]-2,6'-dione derivatives as anticancer agents. US20090156610A1.
    84. Chen, L.; Han, X.; He, Y.; Yang, S.; Zhang, Z. Spiroindolinone derivatives as interaction inhibitors between p53 and MDM2 proteins and their preparation, pharmaceutical compositions and use in the treatment of cancer. US20090163512A1.
    85. Chen, L.; Han, X.; Yang, S.; Zhang, Z. Spiroindolinone pyridine derivatives as inhibitors of MDM2-p53 protein interaction useful as potent and selective anticancer agents and preparation thereof. US20100204257A1.
    86. Chen, L.; Ding, Q.; Liu, J.; Yang, S.; Zhang, Z. Preparation of spiroindolinone derivatives as antiproliferative and anticancer agents. US20080009486A1.
    87. Chen, L.; Han, X.; Yang, S.; Zhang, Z. Preparation of 3,3'-spiroindolinones for treatment of cancer. WO2010121995A1.
    88. Zhang, J.; Zhang, Z. Spiroindolinone pyridine derivatives as inhibitors of MDM2-p53 protein interaction useful as potent and selective anticancer agents and preparation thereof. US20100210674A1.
    89. Rew, Y.; Sun, D.; Gonzalez-Lopez, D. T. F.; Bartberger, M. D.; Beck, H. P.; Canon, J.; Chen, A.; Chow, D.; Deignan, J.; Fox, B. M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao, X.; Jin, L.; Kayser, F.; Kopecky, D. J.; Li, Y.; Lo, M. C.; Long, A. M.; Michelsen, K.; Oliner, J. D.; Osgood, T.; Ragains, M.; Saiki, A. Y.; Schneider, S.; Toteva, M.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J. C.; Olson, S. H. Structure-Based Design of Novel Inhibitors of the MDM2-p53 Interaction. JMed Chem 2012,55,4936-54.
    90. Bartkovitz, D. J.; Chu, X.; Ding, Q.; Graves, B. J.; Jiang, N.; Zhang, J.; Zhang, Z. Preparation of spiroindolinone pyrrolidines as antagonists of Mdm2 interactions for cancer treatment. US20110130398A1.
    91. Bartkovitz, D. J.; Chu, X.; Ding, Q.; Karnachi, P. S.; Liu, J.; So, S.; Zhang, J.; Zhang, Z. Spiropyrrolidine derivatives as MDM2 antagonists and their preparation and use for the treatment of solid tumors. WO2012022707A1.
    92. Liu, J.; Ross, T. M.3-cyano-l-hydroxymethyl-2-phenylpyrrolidine derivatives as inhibitors of mdm2-p53 interactions useful for the treatment of cancer. WO2012076513A1.
    93. Bartkovitz, D. J.; Chu, X.; Liu, J.; Morgan, R. T.; Zhang, Z. Novel N-substituted-pyrrolidines as inhibitors of MDM2-p53 interactions and their preparation. US20110086854A1.
    94. Bartkovitz, D. J.; Chu, X.; Ding, Q.; Jiang, N.; Liu, J.; Ross, T. M.; Zhang, J.; Zhang, Z. Preparation of substituted pyrrolidine-2-carboxamides as anticancer agents. WO2011098398A1.
    95. Bartkovitz, D. J.; Chu, X.; Ding, Q.; Jiang, N.; Liu, J.; Ross, T. M.; Zhang, J.; Zhang, Z. Preparation of substituted pyrrolidine-2-carboxamides as anticancer agents. US20100152190A1.
    96. Ding, Q.; Jiang, N.; Liu, J.; Ross, T. M.; Zhang, J.; Zhang, Z. Substituted pyrrolidine-2-carboxamide derivatives as interaction inhibitors between P53 and MDM2 proteins and their preparation, pharmaceutical compositions and use in the treatment of cancers. WO20I0031713A1.
    97. Chu, X.; Ding, Q.; Jiang, N.; Liu, J.; Ross, T. M.; Zhang, Z. Pyrrolo[1,2-c]imidazolone derivatives as inhibitors of MDM2-p53 interactions and their preparation and use for the treatment of cancer. US20120065210A1.
    98. Parks, D. J.; Lafrance, L. V.; Calvo, R. R.; Milkiewicz, K. L.; Gupta, V.; Lattanze, J.; Ramachandren, K.; Carver, T. E.; Petrella, E. C.; Cummings, M. D.; Maguire, D.; Grasberger, B. L.; Lu, T.1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction:discovery and SAR. Bioorg Med Chem Lett 2005,15, 765-70.
    99. Raboisson, P.; Marugan, J. J.; Schubert, C.; Koblish, H. K.; Lu, T.; Zhao, S.; Player, M. R.; Maroney, A. C.; Reed, R. L.; Huebert, N. D.; Lattanze, J.; Parks, D. J.; Cummings, M. D. Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 2005,15,1857-61.
    100. Cummings, M. D.; Schubert, C.; Parks, D. J.; Calvo, R. R.; LaFrance, L. V.; Lattanze, J.; Milkiewicz, K. L.; Lu, T. Substituted 1,4-benzodiazepine-2,5-diones as alpha-helix mimetic antagonists of the HDM2-p53 protein-protein interaction. Chem Biol Drug Des 2006,67,201-5.
    101. Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 2005,48,909-12.
    102. Bissantz, C.; Kuhn, B.; Stahl, M. A Medicinal Chemist's Guide to Molecular Interactions. Journal of Medicinal Chemistry 2010,53,5061-5084.
    103. Marugan, J. J.; Leonard, K.; Raboisson, P.; Gushue, J. M.; Calvo, R.; Koblish, H. K.; Lattanze, J.; Zhao, S.; Cummings, M. D.; Player, M. R.; Schubert, C.; Maroney, A. C.; Lu, T. Enantiomerically pure 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists. Bioorg Med Chem Lett 2006,16,3115-20.
    104.Parks,D.J.;LaFrance,L.V.;Calvo,R.R.;Milkiewicz,K.L.;Marugan,J.J.; Raboisson,P.;Schubert,C.;Koblish,H.K.;Zhao,S.;Franks,C.F.;Lattanze,J.;Carver, T.E.;Cummings,M.D.;Maguire,D.;Grasberger,B.L.;Maroney,A.C.;Lu,T. Enhanced pharmacokinetic properties Of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design.Bioorg Med Chem Lett 2006,16,3310-4.
    105.Leonard,K.;Marugan,J.J.;Raboisson,P.;Calvo,R.;Gushue,J.M.;Koblish,H. K.;Lattanze,J.;Zhao,S.;Cummings,M.D.;Player,M.R.;Maroney,A.C.;Lu,T. Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity.Bioorg Med Chem Lett 2006,16,3463-8.
    106.Koblish,H.K.;Zhao,S.;Franks,C.F.;Donatelli,R.R.;Tominovich,R.M.; LaFrance,L.V.;Leonard,K.A.;Gushue,J.M.;Parks,D.J.;Calvo,R.R.;Milkiewicz, K.L.;Marugan,J.J.;Raboisson,P.;Cummings,M.D.;Grasberger,B.L.;Johnson,D. L.;Lu,T.;Molloy,C.J.;Maroney,A.C.Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo.Mol Cancer Ther 2006,5,160-9.
    107.Hardcastle,I.R.;Ahmed,S.U.;Atkins,H.;Calvert,A.H.;Curtin,N.J.;Farnie,G.; Golding,B.T.;Griffin,R.J.;Guyenne,S.;Hutton,C.;Kallblad,P.;Kemp,S.J.; Kitching,M.S.;Newell,D.R.;Norbedo,S.;Northen,J.S.;Reid,R.J.;Saravanan,K.; Willems, H. M.;Lunec, J. Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction.Bioorg Med CHem Lett 2005,15,1515-20.
    108.Hardcastle,I.R.;Ahmed,S.U.;Atkins,H.;Farnie,G.;Golding,B.T.;Griffin,R. J.;Guyenne,S.;Hutton,C.;Kallblad,P.;Kemp,S.J.;Kitching,M.S.;Newell,D.R.; Norbedo,S.;Northen,J.S.;Reid,R.J.;Saravanan,K.;Willems,H.M.;Lunec,J. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. JMed Chem 2006,49,6209-21.
    109. Hardcastle, I. R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S. U.; Blackburn, T. J.; Bennaceur, K.; Clegg, W.; Drummond, C; Endicott, J. A.; Golding, B. T.; Griffin, R. J.; Gruber, J.; Haggerty, K.; Harrington, R. W.; Hutton, C.; Kemp, S.; Lu, X.; McDonnell, J. M.; Newell, D. R.; Noble, M. E.; Payne, S. L.; Revill, C. H.; Riedinger, C.; Xu, Q.; Lunec, J. Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction:structure-activity studies leading to improved potency. J Med Chem 2011,54,1233-43.
    110. Riedinger, C.; Noble, M. E.; Wright, D. J.; Mulks, F.; Hardcastle, I. R; Endicott, J. A.; McDonnell, J. M. Understanding small-molecule binding to MDM2:insights into structural effects of isoindolinone inhibitors from NMR spectroscopy. Chem Brol Drug Des 2011,77,301-8.
    111. Allen, J. G.; Bourbeau, M. P.; Wohlhieter, G. E.; Bartberger, M. D.; Michelsen, K.; Hungate, R.; Gadwood, R. C.; Gaston, R. D.; Evans, B.; Mann, L. W.; Matison, M. E.; Schneider, S.; Huang, X.; Yu, D.; Andrews, P. S.; Reichelt, A.; Long, A. M.; Yakowec, P.; Yang, E. Y.; Lee, T. A.; Oliner, J. D. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. JMed Chem 2009,52,7044-53.
    112. Beck, H. P.; DeGraffenreid, M.; Fox, B.; Allen, J. G.; Rew, Y.; Schneider, S.; Saiki, A. Y.; Yu, D.; Oliner, J. D.; Salyers, K.; Ye, Q.; Olson, S. Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors. Bioorg Med Chem Lett 2011,21,2752-5.
    113. Rothweiler, U.; Czarna, A.; Krajewski, M.; Ciombor, J.; Kalinski, C.; Khazak, V.; Ross, G.; Skobeleva, N.; Weber, L.; Holak, T. A. Isoquinolin-1-one inhibitors of the MDM2-p53 interaction. ChemMed Chem 2008,3,1118-28.
    114. Chen, L.; Yin, H.; Farooqi, B.; Sebti, S.; Hamilton, A. D.; Chen, J. p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 2005,4, 1019-25.
    115. Yin, H.; Lee, G. I.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.; Hamilton, A. D. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 2005,44,2704-7.
    116. Galatin, P. S.; Abraham, D. J. A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem 2004,47,4163-5.
    117. Wang, S.; Gibson, D.; Duncan, K.; Bailey, K.; Thomas, M.; MacCallum, D.; Zheleva, D.; Turner, N. J.; Fischer, P. M. Preparation of bisarylsulfonamide compounds and their use in cancer therapy. WO2004005278A1.
    118. Zhao, J.; Wang, M.; Chen, J.; Luo, A.; Wang, X.; Wu, M.; Yin, D.; Liu, Z. The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. Cancer Lett 2002,183,69-77.
    119. Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.; Zeslawski, W.; Kamionka, M.; Rehm, T.; Muhlhahn, P.; Schumacher, R.; Hesse, F.; Kaluza, B.; Voelter, W.; Engh, R. A.; Holak, T. A. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 2001,40,336-44.
    120. Huang, Y.; Wolf, S.; Koes, D.; Popowicz, G. M.; Camacho, C. J.; Holak, T. A.; Domling, A. Exhaustive fluorine scanning toward potent p53-Mdm2 antagonists. ChemMedChem 2012,7,49-52.
    121. Wang, W.; Zhu, X.; Hong, X.; Zheng, L.; Zhu, H.; Hu, Y. Identification of novel inhibitors of p53-MDM2 interaction facilitated by pharmacophore-based virtual screening combining molecular docking strategy. Med Chem Commun 2013,4, 411-416.
    122. Lu, Y.; Nikolovska-Coleska, Z.; Fang, X.; Gao, W.; Shangary, S.; Qiu, S.; Qin, D.; Wang, S. Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 2006 49,3759-62.
    123. Bowman, A. L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H. A. Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 2007,129,12809-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700