用户名: 密码: 验证码:
单糖检测体系的构建及性能测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别一直是有机化学中最具有吸引力的领域之一,从对离子到简单分子以及生物复杂分子的识别整个过程都得到了科学研究者的广泛关注。从超分子识别角度来看,所谓分子识别就是主体(或受体)对客体(或底物)选择性结合并产生某种特定功能的过程。随着科学技术的快速发腱,对简单离子的识别已经无法满足社会发展的要求,对分子识别尤其是具有生物功能的分子如糖、氨基酸等识别是目前化学家、生物学家及医学家研究的热点。
     本学位论文选取在生命体中具有重要生物功能和代谢功能的糖分子进行识别研究。目的是得到高选择性的单糖识别体系,为研究更复杂的生命过程及临床医学糖检测提供可靠的依据和途径。另外,学位论文设计并合成出一系列在医药领域方面有重要作用的吲哚衍生物药物中间体。具体包括以下五个章节。
     第一章,对单糖分子识别传感器做简要的综述,提出本论文研究思路。
     第二章,设计并合成苯一苯水溶性聚合物PPP-SO3-Na+和三种硼酸取代viologens猝灭接受体,并通过组合得到不同组合体系。在接近生理条件下,利用荧光光谱对组合体系和单糖的相互作用进行了研究。研究结果为:o-BBV/PPP-SO3-Na+、m-BBV/PPP-SO3-Na+及p-BBV/PPP-SO3-Na+三种组合体系对D-果糖都具有高的选择性和灵敏性,对果糖的检测范围为1.0mM-200.0mM。三种组合体系中发光体和猝灭结合体的最佳组合比例分别为:o-BBV/PPP-SO3-Na+=3/1、m-BBV/PPP-SO3-Na+= 1/1及p-BB V/PPP-SO3-Na+=3/1(mol)。
     第三章,设计并合成苯-芴水溶性聚合物FPP-SO3-Na+,并分别与三种硼酸取代viologens猝灭接受体组合识别体系,利用荧光光谱对组合体系和单糖的相互作用进行了研究。研究结果为:o-BBV/FPP-SO3-a+和m-BBV/FPP-SO3-a+组合体系也都对D-果糖都具有高的选择性和灵敏性。虽然p-BBV/FPP-SO3-Na+组合体系对果糖也具有选择性,但是识别响应信号很弱。
     第四章,设计并合成一系列在医药及染料领域有重要作用的吲哚衍生物。
     第五章,研究工作总结与展望。
Molecular recognition is one of the most attractive fields in organic chemistry. The recognition processes from the ions to simple molecules and complex biological molecular have attracted widely attention by chemists and biologists et al. With the development of modern science, the recognition of ion has not meeted the demand of social development. Molecular sensing of biological analytes with a metabolic function in living organisms has attracted extensive attention and well-designed recognition systems are crucial for high sensitivities.
     Saccharide molecules which have important function in organism were studied as our research object of the dissertation. The purpose is to get highly selectivity recognition system for monosaccharide and provides dependable basis for more complex life process and logical approach to the identification of clinical medical saccharide. Addtionally, we synthesised several indole derivatives which had important use in medicine and dye fields. This paper mainly includes five chapters as follows.
     Chapter 1:Briefly introduction of saccharide sensor and bring forward the topic of this paper.
     Chapter 2:Design and synthesis benzene-benzene water solubility organic polymer PPP-SO3-Na+ and three kinds of boric acid-substitude viologens quencher. The sensing actions of different sensing system to monosaccharides have been studied by fluorescence emission spectrum at physiological conditions. The results showed that the three combination systems (o-BBV/PPP-SO3-Na+、m-BBV/PPP-SO3-Na+ and p-BBV/PPP-SO3-Na+) had high selectivity and sensitivity for D-fructose. The detection range for D-fructose was from 1.0 mM to 200.0mM. The optimal ratios for fluorophore and quencher of the three system were o-BV/PPP-SO3-Na+ 3/1、m-BBV/PPP-SO3-Na+=1/1 andp-BBV/PPP-SO3-Na+=3/1, respectively.
     Chapter 3:Design and synthesis benzene-fluorene water solubility organic polymer FPP-SO3-Na+. The sensing actions of different sensing system to monosaccharides have been studied by fluorescence emission spectrum at physiological conditions. The results showed that the combination of o-BB V/FPP-SO3-Na+ and m-BBV/FPP-SO3-Na+ had higher selectivity for D-fructose. Additionally, although the system p-BBV/PPP-SO3-Na+ had selectivity for D-fructose, the signal of the recognition responsewas very weak.
     Chapter 4:Synthesis several indole derivatives.
     Chapter 5:Summary and prospects.
引文
[1]赵翠芳.糖尿病患者血糖控制不良原因及分析对策[J].山西职工医学院学报,2010,1,50-53.
    [21]毛永进.糖尿病患者的饮食疗法[J].中国疗养医学,2009,12,1080-1082.
    [3]Adam Heller, Ben Feldman. Electrochemical glucose sensors and their appli- cations in diabetes management[J]. Chem Rev.2008,208,2482-2505.
    [4]Frieder Jakle. Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications[J]. Chem Rev.2010,110,3985-4022.
    [5]Samuel W. Thomas. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem Rev.2007,107,1339-1386.
    [6]William. Seaman, John R. Johnson. Derivatives of phenylboric acid, their prepara-tion and action uponbacteria[J]. J. Am. Chem. Soc,1931,2,711-723.
    [7]John p. Lorand, John O. Edwards. Polyol complexes and structure of the benzene-boronate ion[J]. J. Org. Chem.1959,6,769-744.
    [8]Yasuhiro Aoyama, Yasutaka Tanaka, Shuji Sugahara. Molecular recognition of saccharides via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle[J]. J. Am. Chem. Soc.1989,14,5397-5404.
    [9]Richard P. Bonar-Law, Jeremy K. M. Sanders. Polyol Recognition by a Steroid-Capped Porphyrin. Enhancement and Modulation of Misfit Guest Binding by Added Water or Methanol[J]. J. Am. Chem. Soc.1995,1,259-271.
    [10]Christophe Morin. The chemistry of boron analogues of biomolecules[J]. Tehtrahedron.1994,47,12521-12569.
    [11]Juyoung Yoon, Anthony W. Czarnik. Fluorescent Chemosensors of Carbohyd- rates. A Means of Chemically Communicating the Binding of Polyols in Water Based on Chelation-Enhanced Quenching[J]. J. Am. Chem. SOC.1992,114,5874-5875.
    [12]Henry G. Kuivila, Allen H. Keough, Edward J. Soboczenski. Areneboronates from diols and polyols[J]. J. Org. Chem.1954,5,780-783.
    [13]Moniika Mazik, Wolfgang Radunz, Roland Boese. Molecuar recognition of carbohydrates with acyclic pyridine-based receptors[J]. J. Org. Chem.2004,69: 7748-7462.
    [14]A Tricatecholic receptor for carbohydrate recognition:synthesis and bingding studies[J]. J. Org. Chem.2007,72,3933-3936.
    [15]John P. Lorand John O. Edwards. Polyol Complexes and Structure of the Ben-zeneboronate Ion[J]. J. Org. Chem.1959,6,169-774.
    [16]Jens C. Norrild, Hanne Eggert. Evidence for Mono- and Bisdentate Boronate Complexes of Glucose in the Furanose Form. Application of 1JC-C Coupling Constants as a Structural Probe[J]. J. Am. Chem. Soc.1995,5,1479-1484.
    [17]H. R. Snyder, Clay Weaver. The Preparation of Some Azo Boronic Acids[J]. J. Am. Chem. Soc.1948,1,232-234.
    [18]Chunyan Tan, Evrim Atas, Jrgen G. Mller, Mauricio R. Pinto, Valeria D.Kleiman, and Kirk S. Schanze. Amplified Quenching of a Conjugated Polyelectrolyte by Cyanine Dyes[J]. J. Am. Chem. Soc.2004,126,13685-13694.
    [19]Jun-ichi Kadokawa, Masakazu Suenaga, and Yoshiro Kaneko. Synthesis of Poly-(p-phenylene) Having Phthalic Anhydride Moieties in the Main Chain and Its Conver- sion into Fluoresce in Derivative[J]. Langumir.2008,11,3750-3754.
    [20]Ramachandram Badugu, Joseph R. Lakowicz ChrisD. Geddes. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes[J]. Talanta.2005,66,569-574.
    [21]Scott M. Cannizzaro and Robert S. Langer.Polymeric systems for controlled drug release[J]. Chem Rev.1999,99,3181-3198.
    [22]James T.D., Sandanayake KRRAS, Shinkai S.. Saccharide sensing with mole- cular receptors based on boronic acid[J]. Angew. Chem. Int. Ed. Engl.1996,35, 1910-1922.
    [23]James T.D., Sandanayake KRRAS, Shinkai S.. A glucose-selective molecular fluorescence sensor[J]. Angew. Chem. Int. Ed. Engl.1994,33,2207-2209.
    [24]Karnati V.V., Gao X., Gao S., et al. A glucose-selective fluorescence sensor based on boronic acid-diol recognition[J]. Bioorg. Med. Chem. Lett.2002.12,3373-3377.
    [25]Di Cesare N., Lakowicz J.R., Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing[J]. Anal. Biochem.2001,294,154-160.
    [26]Chan W.C.W., Maxwell D.J., Gao X., et al. Luminescent quantum dots for multi-plexed biological detection and imaging[J]. Curr. Opin. Biotechnol.2002,13,40-46.
    [27]Medintz I.L., Clapp A.R., Mattoussi H., et al. Self-assembled nanoscale bio-sensors based on quantum dot FRET donors[J]. Nat. Mater.2003,2,2630-2638.
    [28]Bryan A.J., De Silva A.P., De Silva S.A.,et al. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations[J]. Biosensors. 1989,4,169-179.
    [29]Arimori S., Ward C., James T.D.. A d-glucose selective fluorescent assay[J]. Tetrahedron Lett.2002,34.303-305.
    [30]Aiden J. Bryan, A.Prasanna de Silva, Saliya A. De Silva, et al. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations[J]. Biosensors.1989,3.169-179.
    [31]Adam Heller, Ben Feldman. Electrochemical glucose sensors and their appli- cations in diabetes management[J]. Chem Rev.2008,208,2482-2505.
    [32]Juyoung Yoon, Anthony W. Czarnik. Fluorescent chemosensing of catechol and atecholamines in water[J]. Bioorganic Medicinal Chemistry.1993,4,267-271.
    [33]Samuel W. Thomas. Chemical sensors based on amplifying fluorescent conjugat-ed polymers[J]. Chem Rev.2007,107,1339-1386.
    [34]Bryan A.J., De Silva A.P., De Silva S.A.,et al. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations[J]. Biosensors. 1989,4,169-179.
    [35]Rainer Ludwig, Yutaka Shiomi, Seiji Shinkai. Saccharide Recognition by Amphiphilic Diboronic Acids at the Air-Water Interface and the Relationship between Selectivity and Stoichiometry[J]. Langmuir,1994,9,3195-3200.
    [36]A. Prasanna de Silva, Dr. K. R. A. Samankumara Sandanayake. Fluorescence "Off-On" Signalling upon Linear Recognition and Binding of α,ω-Alkanediyl-diammonium Ions by 9,10-Bis{(1-aza-4,7,10,13,16-pentaoxa cyclooctadecyl)methyl} anthracene [J]. Angewandte Chemie,1990,10,1173-1175.
    [37]Tomalia D.A., Naylor A.M. and Goddard W.A. Starburst Dendrimers:Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter[J]. Angewandte Chemie.1990,73,138-175.
    [38]陈福建,孙旭东,曾敏峰等.分子内的光诱导电子转移反应在中到大环化合物合成中的应用进展[J].化学试剂.2008,34,265—268.
    [39]Tony D. James, K. R. A. Samankumara Sandanayake and Seiji Shinkai. Chiral discrimination of monosaccharides using a fluorescent molecular sensor [J]. J. Am. Chem. Soc.1995,6250,291-390.
    [40]Masahiro Irie, Takehiko Yorozu, Koichiro Hayashi. Steric effect on fluorescence quenching of 1,1'-binaphthyl by chiral amines[J]. J. Am. Chem. Soc.1978,7,2236 2237.
    [41]Pawlenko S., Von S. J. Bluden, B. A. Cusack und R. Hill. The Industrial Uses of Tin Chemicals[J]. Angewandte Chemie.1986,98,1039.
    [42]Schneider H.-J. and Ruf D. A Synthetic Allosteric System with High Cooper-ativity between Polar and Hydrophobia Binding Sites[J]. Angewandte Chemie.1990, 10.1159-1169.
    [43]贾志胜.有机取代反应的电子转移机理[J].大学化学.1997,2,24—27.
    [44]Ramon martine, Felix sancenon.Fluorogenic and chromogenic chemosensors and reagents for anions[J]. Chem Rev.2003,103,4419-4476.
    [45]Bernard valeur, Isabelle leray. Design priciples of fluorescent molecular sensors for cation recognition [J]. Coordination Chem Rev.2000,205,3-40.
    [46]Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution[J]. Org Lett.2007,16,3109-3112.
    [46]John C. Pickup, Faeiza Hussaina, Nicholas D. Evans,et al. Fluorescence-based glucose sensors[J]. Biosensors and Bioelectronics.2005,20,2555-2565.
    [47]Tony D. James, K. R. A. Samankumara Sandanayake, and Seiji Shinkai. Saccharide Sensing with Molecular Receptors Based on Boronic Acid[J]. Angew. Chem. Int.Ed. 1996,35,1910-1922.
    [48]James T.D., Sandanayake KRRAS, Shinka S. A glucose-selective molecular fluorescence sensor[J]. Angew. Chem. Int. Ed. Engl.1994,33,2207-2209.
    [49]Arimori S., Ward C., James T.D. A d-glucose selective fluorescent assay [J]. Tetrahedron Lett.2002,34,303-305.
    [50]Medintz I.L., Clapp A.R., Mattoussi H., et al. Self-assembled nanoscale bio-sensors based on quantum dot FRET donors[J]. Nat. Mater.2003,2,630-638.
    [51]Yasuhiro Aoyama, Yasutaka Tanaka, Shuji Sugahara. Molecular recognition of saccharides via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle[J]. J. Am. Chem. Soc.1989,14,5397-5404.
    [52]Henry G.Kuivila,Allen H.Keough,Edward J.Soboczenski. Areneboronates from diols and polyols[J].J Org Chem.1954,5,780-783.
    [53]Ramachandram Badugu, Joseph R. Lakowicz ChrisD. Geddes. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes[J]. Talanta.2005,66,569-574.
    [54]David B. Cordes, Aaron Miller, Soya Gamsey, et al. Optical glucose detection across the visible spectrum using anionic fluorescent dyes and a viologen quencher in a two-component saccharide sensing system[J]. Org.Biomol.Chem.2005,3,1708-1733.
    [55]Alexander Schiller, Ritchie A. Wessling, and Bakthan Singaram. A Fluorescent Sensor Array for Saccharides Based on Boronic Acid Appended Bipyridinium Salts[J]. Angew. Chem. Int. Ed.2007,46,6457-6459.
    [56]David B. Cordes, Soya Gamsey, and Bakthan Singaram. Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution[J]. Angew. Chem. Int. Ed.2006,45,3829-3832.
    [57]Zachary Sharrett, Soya Gamsey, Paul Levine, et al. Boronic acid-appended bis-viologens as a new family of viologen quenchers for glucose sensing[J]. Tetrahedron Letters.2008,49,300-304.
    [58]David B. Cordes, Soya Gamsey, Zach Sharrett, et al. The Interaction of Boronic Acid-Substituted Viologens with Pyranine:The Effects of Quencher Charge on Fluorescence Quenching and Glucose Response[J]. Langmuir.2005,21,6540-6547.
    [59]Jeff T. Suri, David B. Cordes, Frank E. Cappuccio, et al. Monosaccharide Detection with 4,7-Phenanthrolinium Salts:Charge-Induced Fluorescence Sensing[J]. Langmuir.2003,12,5145-5152.
    [60]Soya Gamsey, Aaron Miller, Marilyn M. Olmstead,et al. Boronic Acid-Based Bipyridinium Salts as Tunable Receptors for Monosaccharides and r-Hydroxycarbox-ylates[J]. J. Am. Chem. Soc.2007,129,1278-1286.
    [61]Soya Gamsey, Jeff T.Suri, Ritchie A.Wessling, et al. Continuous Glucose Detection Using Boronic Acid-Substituted Viologens in Fluorescent Hydrogels:Linker Effects and Extension to Fiber Optics[J]. Langmuir.2006,22,9067-9074.
    [62]Zachary Sharrett, Soya Gamsey, Jonathan Fat, et al. The effect of boronic acid acidity on performance of viologen-based boronic acids in a two-component optical glucose-sensing system[J]. Tetrahedron Letters.2007,48,5125-5129.
    [63]Soya Gamsey, Nichol A. Baxter, a Zachary Sharrett, et al. The effect of boronic acid-positioning in an optical glucose-sensing ensemble[J]. Tetrahedron.2006,62, 632-6331.
    [64]Jason N. Camara, Jeff T. Suri, Frank E. Cappuccio, et al. Boronic acid sub-stituted viologen based optical saccharide sensors:modulated quenching with viologen as a method for monosaccharide detection[J]. Tetrahedron Letters.2002,43,1139-1141.
    [65]朱文兵,吴芳英.硼酸类荧光受体识别单糖[J].化学进展.2009,6,1241-1253.
    [66]Yutaka Aoyagi, Toshihiko Mizusaki and Akihiro Ohta. Facile and efficient synthesis of pyrroles and indoles via palladium-catalyzed oxidation of hydroxy-enamines and amines. Tetrahedron Lett[J].1996,37.9203-9206.
    [67]Robinson,B. The fischer indole synthesis. Chem.Rev[J].1963,63:374.
    [68]蒋金芝,王艳.Fischer吲哚合成法的研究进展.有机化学[J].2006,8,1025-1030.
    [69]刘小余,欧阳贵平.吲哚类抗癌化合物的研究进展.精细化工中间体[J].2010,5,1-8.
    [70]Malleron, J.L., Gueremy, C., Mignani, S., et al. New indole derivatives as potent and selective serotonin uptake inhibitors [J]. J.Med.Chem.1993,36,1194-1202.
    [71]彭司勋.药物化学进展(4)[M].化学工业出版社[P].2005,5-10.
    [72]Wang Gloer J B, Scottj A, et al. TerezinesA-D:New Amino Acid-derived Bioactive Metabolites from Thecoprophilous Fungus Sporormiella-teretispora[J]. Journal of Natural Products,1995,1,93-99.
    [73]Nettleton D E, Doyle T W, KR Shnan B, et al. Isolation and Structure of Rebeccamycin:A New Antitumor Antibiotic from No Cardia Aerocoligenes[J]. Tetrahedron Letters.1985,34,4011-4014.
    [74]Chung B C, Alwxander, Wolfram L J. Process for Coloring Keratinaceous Materials with materials with Compositions Containing an Azidoindole or Aromatic Azide[P]. US 4695285,1987.
    [75]冯娟,罗啸,穆云等.NBS与取代苯的亲电反应及其应用[J1.应用化学,2007,1,111-113.
    [76]Tatsuo I, Miki M, Norio M. Palladium(O)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes:A Direct Procedure for Arylboronic Esters[J]. J. Org. Chem.1995,60,7508-7510.
    [77]Ravi V, Sreelatha N, Srinivas RA. Molecular Iodine-Catalyzed Facile Procedure for N-Boc Protection of Amines[J]. J. Org. Chem.2006,71,8283-8286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700