异型坯连铸二冷传热模型研究及仿真软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型钢主要应用于桥梁、重型设备、高层建筑的建设方面,有减轻构件重量等优点。异型坯用于轧制H型钢不但可以减少轧制道次,降低能耗和投资建设成本,而且可以大幅提高生产效率。但在异型坯的连铸过程中,由于其断面几何形状复杂,加之均匀冷却难以实现,因而裂纹敏感性较方坯、板坯则大大增加,其裂纹缺陷主要表现在腹板和内缘处的表面裂纹、翼缘顶端角部的内裂、腹板厚度1/2处的中心裂纹。因此对异型坯铸机的结构参数和连铸过程的工艺参数的优化设计提出更高要求。
     本文针对某钢厂新建异型坯连铸机,建立了异型坯连铸过程铸坯二维凝固传热数学模型。以变间距网格划分方法离散模型区域,并运用有限差分法离散传热微分方程。考虑到异型坯横断面冷却水流不均情况,建立了喷淋水水流密度分布模型,模型可将测试的平板水流密度分布转化为异型坯横向水流密度分布,使模型可以用于优化异型坯喷嘴布置。于此同时模型考虑了异型坯宽面内弧、宽面外弧及窄面的喷嘴排列不同的情况,模型更接近于实际情况,使得模型准确性更高。
     应用Visual Basic 6.0程序设计语言,开发了异型坯连铸二次冷却通用仿真软件,软件集成了异型坯连铸过程的凝固传热仿真和数据后处理等功能,为异型坯铸机的结构参数和连铸过程的工艺参数优化设计提供了依据。
     应用所开发的异型坯连铸过程二冷仿真软件,结合异型坯冶金准则的要求,对所研究连铸机的喷嘴布置和二冷制度进行优化设计。分析了现有喷嘴布置所存在的问题,提出了两种优化喷嘴布置的方案。并以Q235钢为例,说明了异型坯连铸过程二冷制度的确定过程,并给出了常拉速下Q235钢异型坯连铸过程的温度变化情况,对比了不同拉速对异型坯的温度场分布、坯壳厚度生长、特征点温度变化的影响。
H-shaped steel is mainly used in bridges, heavy equipment, and high-rise building construction. There are advantages to reduce component weight and so on. For rolling H-shaped steel used beam blank can reduce rolling pass, reducing energy consumption and investment, construction costs, and can significantly increase productivity. However, in beam blank continuous casting process, because of its cross-section geometry of the complex, coupled with difficult to achieve uniform cooling, and thus Beam blank crack more sensitive than billet, slab. The cracks and defects mainly in the inner edge of the web surface cracks, the inner flange of the top corner crack, web thickness 1/2 the center of the crack. Therefore, optimize the design the structure of beam blank casting machine casting process parameters and process parameters is demands.
     In this paper, contrary to a new beam blank continuous casting machine, established a two-dimensional beam blank continuous casting solidification process of heat transfer mathematical model. Mesh spacing with Variable grid spacing method to discrete model and the used finite difference method to discrete the heat equation. Taking into account the cooling water flow unevenly shaped cross-section billet, establishing a spray of water flow density distribution model, the model can test the water density distribution into a flat-shaped billet flow transverse density distribution.The model can be used to optimize the layout of the nozzle. At the same time the model takes into account a wide area within the arc-shaped blank, wide and narrow plane surface of the nozzle arc discharge different situations, the model closer to reality, making the model with higher accuracy.
     Application of Visual Basic 6.0 programming language, developed a common secondary cooling beam blank continuous casting simulation software, the software integrates beam blank continuous casting process of solidification and heat transfer simulation and data processing functions for the beam blank casting machine parameters and structures continuous casting process parameters to optimize the design process was provided.
     Applications developed secondary cooling beam blank continuous casting process simulation software, combined with the beam blank Metallurgical requirements of the guidelines, optimized the design of the secondary cooling system and the continuous casting machine nozzle layout. Analysis the problem of the existing layout of nozzle, proposed two optimization programs for the nozzle layout. Illustrated design the secondary cooling system of beam blank continuous casting process by Q235 steel. Given the temperature changed of Q235 steel under constant casting speed in beam blank continuous casting process. Contrast the temperature distributions, the growth of solidified shell thickness and the feature point temperature changingunder different casting speeds.
引文
[1]田燕翔.现代连铸新技术新工艺与铸坯质量控制[M].北京:当代中国出版社,2004.
    [2] Oconnor T G and Dantzig J A. Modeling the thin-slab continuous-casting mold[J]. Metallurgical and Materials Transactions B,1994, 25 (3): 443-457.
    [3] Fastert H and Cygler M. Development of beam blank casting[J]. Canadian Institute of Mining, Metallurgy and Petroleum(Canada),1995: 23-32.
    [4]张小平.近终形连铸技术[M].北京:冶金工业出版社, 2001.
    [5] Hoedl H, Wimmer F and Mayrhofer K. VAI beam-blank casting technology. Fundamentals and examples of plant installations[J]. Revue de métallurgie,2002, (11): 981-989.
    [6] Hoedl H, Wimmer F, Mayrhofer F, Spiess J, Hartmann G, Dengler J and Baumann H. Beaming to success- VAI beam blank casting technology. Association of Iron and Steel Engineers, 3 Gateway Center, Suite 2350, Pittsburgh, PA 15222, USA, City, 2001.
    [7] Hoedl H, MAYRHOFER F K, SPIESS J S, HARTMANN G, DENGLER J and BAUMANN H. Beam blank casting technology[J]. AISE steel technology,2002, 79 (9): 26-33.
    [8] Hoedi H, Wimmer F and Mayrhofer K. NOTA TECNICA-VAI Beam-Blank Casting Technology-Fundamentals and Examples of Plant Installations[J]. MetallItal,2003, 95 (10): 50-52.
    [9] Wolf M. Henry Bessemer and continuous casting[J]. Revue de métallurgie,2001, (1): 63-73.
    [10] Wolf M. Historical perspectives on continuous casting in the minimills[J]. Near-Net-Shape Casting in the Minimills,1995: 3-22.
    [11] Ponikvar P. Achieving both High Quality and High Production Rates on Combination Casting Machines at Maanshan, PRC and Steel Dynamics Inc., USA. ASSOCIATION FOR IRON & STEEL TECHNOLOGY, City, 2004.
    [12]杜松林,包燕平.异型坯连铸双浸入式水口浇铸技术模拟研究及工业实践[J].钢铁,2009, 11: 29-34.
    [13]李建生.异型坯连铸结晶器流场和温度场耦合模拟[D].河北:河北理工大学,2008.
    [14] Thomas B, Li G, Moitra A and Habing D. Analysis of thermal and mechanical behavior of copper molds during continuous casting of steel slabs. IRON AND STEEL SOCIETY OF AIME, City, 1997.
    [15] Thomas B G, Yuan Q, Sivaramakrishnan S and Vanka S P. Transient fluid flow in the continuous steel-slab casting mold[J],2002.
    [16] Lee H, Lim J, Shim D, Yeo T, Oh K and Yoon J. A coupled finite element analysis of heattransfer and stress in beam blank casting at Kangwon. City, 1996.
    [17] Reza, A. M., Hasan, M. and Guthrie, R. Thermal Modeling and Stress Analysis in the Continuous Casting of Arbitrary Sections [J]. Steel research,1994, 65 (6): 225-233.
    [18] Samarasekera, J. K. P. I. V., Thomas, B. and Yoon, U. Analysis of thermal and mechanical behavior of copper mould during thin slab casting. City.
    [19] Park, J. K., Samarasekera, I. V., Thomas, B. G. and Yoon, U. S. Analysis of thermal and mechanical behavior of copper mould during thin slab casting. City, 2000.
    [20] Park, J. K., Samarasekera, I. V., Thomas, B. G. and Yoon, U. S. Thermal and mechanical behavior of copper molds during thin-slab casting (I): Plant trial and mathematical modeling[J]. Metallurgical and Materials Transactions B,2002, 33 (3): 425-436.
    [21] Raj, S. and Langdon, T. Creep behavior of copper at intermediate temperatures--I. Mechanical characteristics[J]. Acta Metallurgica,1989, 37 (3): 843-852.
    [22] Thomas, B., Jiang, J. and Lorento, D. Optimization of Water Channel Design in Beam-Blank Molds. City.
    [23] Hibbeler, L. C., Koric, S., Xu, K., Spangler, C. and Thomas, B. Thermomechanical Modeling of Beam Blank Casting[J]. Iron and Steel Technology,2009, 6: 7.
    [24]徐海伦.连铸异型坯冷却过程模拟仿真及优化[D].重庆:重庆大学, 2010.
    [25]罗伟,严波,熊跃兴.异型坯连铸结晶器传热行为的数值模拟研究[J].钢铁,2011, (04): 31-35.
    [26]靳星,陈登福,王青峡.板坯连铸二冷喷嘴性能测试及应用[J].过程工程学报,2008, (S1): 161-165.
    [27]靳星,陈登福,龙木军.连铸二冷区喷嘴布置方式优化方法[J].重庆大学学报,2011, (01): 53-59.
    [28]张克强.连铸用气-水雾化喷嘴的传热特性[J].北京科技大学学报,1991, (S1): 37-41.
    [29] Lee, J., Yeo, T., Hwan OH, K., Yoon, J. and Yoon, U. Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell[J]. Metallurgical and Materials Transactions A,2000, 31 (1): 225-237.
    [30] Shi, X. L. Analysis of Beam Blank Defects and Optimum Control for High Efficient Continuous Casting[J]. J Iron Steel Res Int,2008, 15: 327-333.
    [31]卢盛意连铸坯质量[M].北京:冶金工业出版社, 2000.
    [32] Kim, K., Han, H., Yeo, T., Lee, Y., Oh, K. and Lee, D. Analysis of surface and internal cracks in continuously cast beam blank[J]. Ironmaking and Steelmaking,1997, 24 (3): 249-256.
    [33]陈玉宝.异型坯表面纵裂纹产生原因分析[J].金属世界,2008, (05): 36-38.
    [34]娄娟娟,包燕平,刘建华.连铸异型坯凝固过程的数值模拟[J].北京科技大学学报,2005, (02): 173-177.
    [35]王雅贞,张岩新编连续铸钢工艺及设备[M].北京:冶金工业出版社, 2007.
    [36] Zhang, L., Shen, H. F., Rong, Y. M. and Huang, T. Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods[J]. Mat Sci Eng a-Struct,2007, 466 (1-2): 71-78.
    [37] Zang, X. Y., Wang, X. D., Ma, Y., Yao, M. and Zhang, L. Investigation of friction force between mould and strand shell under sinusoidal and non-sinusoidal oscillation in continuous slab casting[J]. Steel Res Int,2008, 79 (7): 564-568.
    [38] Sun, J., Wang, J. X. and Liu, Z. W. Study on Crack Forecast Model of Continuous Casting Slab[J]. 2009 International Asia Conference on Informatics in Control, Automation, and Robotics, Proceedings,2009: 410-413.
    [39] Irving, W. SMEA Conference report Quality steel-advances in casting technology[J]. Ironmaking and Steelmaking,1994, 21 (4): 264-273.
    [40] Xu, H. L., Wen, G. H., Sun, W., Wang, K. Z., Yan, B. and Luo, W. Thermal behaviour of moulds with different water channels and their influence on quality in continuous casting of beam blanks[J]. Ironmak Steelmak,2010, 37 (5): 380-386.
    [41] Komori, K. and Koumura, K. Simulation of deformation and temperature in multi-pass H-shape rolling[J]. J Mater Process Tech,2000, 105 (1-2): 24-31.
    [42] Chen, W., Zhang, Y. Z., Zhang, C. J., Zhu, L. G., Wang, B. X., Lu, W. G. and Ma, J. H. Numerical simulation of the thermo-mechanical process for beam blank continuous casting[J]. Acta Metallurgica Sinica (English Letters),2007, 20 (4): 241-250.
    [43]草野昭彦,三隅秀幸,千葉仁.连铸铸片の中心割れの発生机构.铁と钢, City, 1998.
    [44] Dengler, J. M., Lachmann, G., Richter, E. and Hartmann, G. Das Giessen von Beam blanks im Elektrostahlwerk der Stahlwerk Thuringen GmbH, Unterwellenborn[J]. Stahl Eisen,1997, 117 (5): 89-96.
    [45] Wada, T., Suzuki, M. and Mori, T. High Speed Casting of 3 Meters/Minute on the NKK Fukuyama Works' No. 5 Slab Caster[J]. Iron &Steel Maker,1987, 9: 31-38.
    [46] Wang, B., Walker, B. and Samarasekera, I. Shell growth, surface quality and mould taper design for high-speed casting of stainless steel billets[J]. Canadian Metallurgical Quarterly,2000, 39 (4): 441-454.
    [47] Adamczyk, J. Manufacturing of mass-scale products from structural microalloyed steels in integrated production lines[J]. ISSUES,2007, 1: 2.
    [48] Birat, J. P. Innovation paradigms for the steel industry of the 21st Century. Future directionsfor steel industry and CC[J]. Revue de M¨|tallurgie,2002, (11): 957-979.
    [49] Volkova, O.Mathematische Modellierung und experimentelle Untersuchung der Schnellerstarrung von St hlen[D]. Universit tsbibliothek der TU BAF, 2005.
    [50] Saez, E. and Stilli, A. Concast Convex Technology instead of more strands at Celsa[J]. Concast Standard News,1995, 34 (2): 4.
    [51] Bruder, R., Wolf, J. and Borowski, A. Investigation and Results of SBQ Billets Cast With Double Speed at Thyssen Stahl AG, Oberhausen. City, 1994.
    [52]吴坚.减少连铸异型坯表面纵裂纹的工艺研究[J].钢铁,2009, (10) :95-97
    [53]刘建华.近终形异型坯连铸特点分析[J].炼钢,2008, (01): 1-4.
    [54]沈昶.异型坯结晶器流场的数值模拟[J].安徽工业大学学报,2004, (01): 4-6.
    [55]沈昶.减少异型坯裂纹的工艺研究[J].炼钢,2004, (05): 51-53.
    [56]刘建华,包燕平,陈高兴. H型连铸坯表面温度评析[J].北京科技大学学报,2005, (06): 671-674.
    [57]娄娟娟.连铸异型坯凝固过程的数值模拟[J].北京科技大学学报,2005, (02): 173-177.
    [58]陈登福,颜广庭,刘人达.方坯连铸凝固传热数学模型[J].重庆大学学报(自然科学版),1994, 17(01):112-116
    [59]陈登福,徐传忠,颜广廷.方坯连铸凝固传热的数值仿真及实践[J].炼钢,1992, (04):3-7.
    [60]陈登福,潘艳华,龙木军.二次冷却通用仿真软件在方坯连铸中的应用[J].冶金设备,2006,55 (02):140-143.
    [61]曹晓兵.异型坯连铸二冷区配水模型研究[J].连铸,2000, (02): 3-6.
    [62]王升,孙维,汪开忠. Nb微合金化钢异型坯连铸工艺的优化[J].炼钢,2002, (03): 212-215.
    [63]郑鹏.连铸二冷过程建模及配水的智能优化研究[D].沈阳:东北大学, 2005.
    [64] Wang, Y. C., Li, D. Y., Peng, Y. H. and Zhu, L. G. Computational modeling and control system of continuous casting process[J]. Int J Adv Manuf Tech,2007, 33 (1-2): 1-6.
    [65] Liu, W. and Xie, Z. Design and Application of Dynamic Control System for Secondary Cooling of Billet Continuous Casting[J].Advanced Computer Control (ICACC), 2010 2nd International Conference on.
    [66] Zhao, Y., Chen, D. F., Jin, X., Feng, K., Han, Z. W., Long, M. J. and Zhang, J. The Development and Investigation of Numerical Simulation Software for Secondary Cooling Zone in Thin Slab Continuous Casting[J]. J Iron Steel Res Int,2009, 16: 246-253.
    [67] Klemens, H., Kurt, D., Susanne, H., Christian, C., Chistian, F., Sergiu, I., Lothar, L., Paul, P. and Xia, G. M. Dynamic 3D Heat Transfer Simulation of Continuous Casting[J]. J Iron Steel Res Int,2008, 15: 575-579.
    [68]孟宪俭.莱钢近终形异型坯表面纵裂原因及对策[J].连铸,2007, (01): 24-25.
    [69]张书维.莱钢近终形异型坯表面纵裂原因分析及改进措施[J].山东冶金,2007, (03): 29-30.
    [70]王学新异型坯包晶合金钢质量控制的研究与应用[J].冶金设备,2010, (4).
    [71]魏佑保.莱钢异型坯轧后腹板裂纹得到控制[J].中国冶金报, 2007
    [72]李克.莱钢异型坯连铸机控制系统的研究与应用[J].自动化技术与应用,2009, (08): 101-103
    [73]唐海燕,李京社,韩丽敏.圆坯连铸凝固传热数学模型及应用[J].特殊钢,2009, (04): 5-7.
    [74] Brimacombe, J. Design of continuous casting machines based on a heat-flow analysis: state-of-the-art review[J]. Canadian Metallurgical Quarterly,1976, 15(2): 163-175.
    [75] Santos, C., Spim, J. and Garcia, A. Mathematical modeling and optimization strategies (genetic algorithm and knowledge base) applied to the continuous casting of steel[J]. Engineering Applications of Artificial Intelligence,2003, 16 (5): 511-528.
    [76] WANG, H., LI, G., LEI, Y., ZHAO, Y., DAI, Q. and WANG, J. Mathematical heat transfer model research for the improvement of continuous casting slab temperature[J]. ISIJ International,2005, 45 (9): 1291-1296.
    [77] Camisani-Calzolari, F., Craig, I. and Pistorius, P. Speed disturbance compenation in the secondary cooling zone in continuous casting[J]. ISIJ International,2000, 40 (5): 469-477.
    [78] Hills, A. Simplified theoretical treatment for the transfer of heat in continuous-casting machine moulds[J]. Journal of the iron and steel institute,1965: 18-26.
    [79] Hills, A. and Moore, M. SOLIDIFICATION OF PURE METALS UNDER UNIDIRECTIONAL HEAT FLOW CONDITIONS. SOLIDIFICATION WITH ZERO SUPERHEAT[J]. TRANS MET SOC AIME,1969, 245 (7): 1481-1492.
    [80] Hills, A. W. D., Malhotra, S. and Moore, M. The solidification of pure metals (and eutectics) under uni-directional heat flow conditions: II. Solidification in the presence of superheat[J]. Metallurgical and Materials Transactions B,1975, 6 (1): 131-142.
    [81] Pehlke, R. D. Computer simulation of solidification processes?aThe evolution of a technology[J]. Metallurgical and Materials Transactions B,2002, 33 (4): 519-541.
    [82] Brimacombe, J. and Weinberg, F. Continuous Casting of Steel. Pt. 2. Theoretical and Measured Liquid Pool Profiles in the Mould Region During the Continuous Casting of Steel[J]. J. Iron Steel Inst,1973, 211 (1): 24-33.
    [83] Samarasekera, I. and Brimacombe, J. Application of mathematical models for the improvement of billet quality. City, 1991.
    [84] Lally, B., Biegler, L. and Henein, H. Finite difference heat-transfer modeling for continuous casting[J]. Metallurgical and Materials Transactions B,1990, 21 (4): 761-770.
    [85] Louhenkilpi, S., Laitinen, E. and Nieminen, R. Real-time simulation of heat transfer in continuous casting[J]. Metallurgical and Materials Transactions B,1993, 24 (4): 685-693.
    [86] Kondo, O., Hamada, K., Kuribayashi, T., Tanizawa, Y., Sato, A. and Inoue, T. New Dynamic Spray Control System for Secondary Cooling Zone of Continuous Casting Machine. City, 1993.
    [87]蔡开科,吴元增.连续铸锭板坯凝固传热数学模型[J].北京钢铁学院学报,1982, (03): 1-11.
    [88]蔡开科,刘凤云.连铸坯凝固冷却过程的控制[J].北京钢铁学院学报,1983, (03): 112-121.
    [89]蔡开科.连续铸锭结晶器传热[J].北京钢铁学院学报,1980, (01): 22-36.
    [90]王恩刚,杨泽宽,陈海耿.关于连铸坯凝固传热有限元数值模拟的研究[J].炼钢,1996, (04).
    [91] Zhan, H. Y., Wang, X. D., Guo, L. L. and Yao, M. Real Heat Flux Analysis of Continuously Casting Round Billet[J]. Journal of Iron and Steel Research, International,2008, 15 (1): 25-29.
    [92]陈登福.板坯连铸二次冷却通用仿真软件的设计开发[C].连铸二次冷却技术交流会论文汇编(2005).
    [93]陈登福.方坯连铸二次冷却数值仿真商用软件[J].重庆大学学报(自然科学版),2004,27(09):67-71
    [94]王水根.圆坯连铸凝固传热数学模型的研究[C]. 2010年全国冶金物理化学学术会议论文集(2010).
    [95] Thomas, B. and Zhang, L. Mathematical modeling of fluid flow in continuous casting[J]. ISIJ International,2001, 41 (10): 1181-1193.
    [96] Worapradya, K. and Thanakijkasem, P. Optimum Spray Cooling in Continuous Slab Casting Process under Productivity Improvement[J]. In C Ind Eng Eng Man,2009: 120-124.
    [97] Jin, X., Chen, D. F., Zhao, Y. and Li, X. L. Numerical Simulation of Temperature Field During Secondary Cooling of Thin Slab Continuous Casting[J]. J Iron Steel Res Int,2009, 16: 316-321.
    [98] Shen, H. F., Guo, L. L., Tian, Y. and Yao, M. Temperature distribution and dynamic control of secondary cooling in slab continuous casting[J]. Int J Min Met Mater,2009, 16 (6): 626-631.
    [99] Chang, Y. and Zhang, J. Development and Application of Dynamic Secondary Cooling Control Model for Beam Blank Casting Based on FEM[J]. Advanced Materials Research,2011, 148: 569-574.
    [100] Leingruber, F., Chimani, C. and Wimmer, F.奥钢联近终形异型坯浇铸技术[J].连铸2004, (5): 5.
    [101] Chen, W., Zhang, Y. Z., Zhang, C. J., Zhu, L. G., Lu, W. G., Wang, B. X. and Ma, J. H. Thermo-mechanical simulation and parameters optimization for beam blank continuous casting[J]. Mat Sci Eng a-Struct,2009, 499 (1-2): 58-63.
    [102] Chen, W., Zhang, Y. Z., Zhang, C. J., Zhu, L. G., Wang, S. M., Wang, B. X., Ma, J. H. and Lu, W. G. Thermomechanical analysis and optimisation for beam blank continuous casting[J]. Ironmak Steelmak,2008, 35 (2): 129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700