板坯连铸二冷动态轻压下辊缝收缩模型研究及软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸二冷动态轻压下技术是近年来发展比较迅速的一种新工艺。二冷动态轻压下技术的应用,可以有效地改善或消除连铸坯凝固过程中的中心偏析和中心疏松质量问题,提高生产效益。二冷动态轻压下技术在国内处于刚起步状态,大多企业都是引进国外的设备,在技术方面仍是个黑匣子,尚未把握技术要领。因此自行研究开发动态轻压下技术具有重大的意义。
     本文采用差分离散法建立了板坯连铸一维凝固传热模型,并应用截片阵列记忆思维模式对连铸过程铸坯的温度场实现动态模拟跟踪。在此基础上,结合PID控制算法,对连铸坯的温降规律进行实时调节控制。
     在二冷动态模型实时跟踪的基础上,建立板坯连铸二冷动态轻压下辊缝收缩模型。辊缝收缩模型同时考虑了铸坯的自然凝固收缩和动态轻压下消除铸坯质量缺陷。模型通过温度梯度节点法计算固态和固液两相区的自然凝固收缩。在测试钢种高温性能的前提下,了解钢种产生内裂的临界应变,并推导计算动态轻压下区域的最佳压下量。
     结合二冷动态模型和辊缝收缩模型,开发了板坯连铸二冷动态轻压下系统,并针对柳钢4号板坯连铸机AH36钢和Q345钢的生产实际工况进行了不同工艺条件的模拟研究。研究表明:
     (1)二冷动态轻压下系统响应快速,动态调节性能良好,可以有效地控制铸坯表面温度。
     (2)连铸坯的自然凝固收缩主要跟铸坯凝固状态有关,铸坯凝固壳厚度越大,收缩量越大,相应扇形段锥度越大。
     (3)在常用拉速0.9m/min~1.1m/min时,柳钢4号连铸机AH36钢和Q345钢生产动态轻压下的最佳总压下量通常在4mm~6mm。
     (4)拉速增大,连铸坯的凝固末端位置和动态轻压下位置后移,动态压下量也相应增大。浇铸温度增大,连铸坯的凝固末端位置到弯月面距离会增大,但对动态压下量影响不大。与浇铸温度相比,拉速变化对轻压下参数的影响较大些。
     二冷动态轻压下系统经过修正后,基本上能够真实反应连铸机的工作实况,可以有效辅助实际生产。
Dynamic soft reduction technology for secondary cooling during continuous casting is a kind of new technology that developing quickly in recent years. Owing to the application of dynamic soft reduction technology for secondary cooling, the quality problems of center segregation and center porosity for casting slab can be improved or eliminated effectively during the solidification process in continuous casting; And productive benefits have been improved. Dynamic soft reduction technology for secondary cooling in China is now just in a start state. Most enterprises are importing foreign equipment, however, it is still a black box on the side of technology, essentials are not be grasped yet. So research and development our own technology of dynamic soft reduction is of great significance.
     The one dimension heat transfer model for slab continuous casting had been developed in this text, by the way of differencing discretization. Thingking mode of memory slicing array was used to simulate and trace the temperature field of casting slab during the continuous casting. Based on this, the law of temperature drop for casting slab was regulated in real time, combining with the PID control algorithm.
     Based on the real-time tracing of slab dynamic model for secondary cooling, the roll gap shrinking model of dynamic soft reduction for slab had been developed. In this model, natural solidification shrinkage of casting slab and dynamic soft reduction for quality defects eliminating were both considered. In the model, natural solidification shrinkage for solid phase and liquid-solid phase was calculated by the way of temperature gradient node. Under the premise of steel performance testing at high temperature, it had found out the critical strain under which the steel will engender internal crack, and deduced the optimal soft reduced amount in the area of dynamic soft reduction.
     Integrating the slab dynamic model for secondary cooling with roll gap shrinking model, system of dynamic soft reduction for slab continuous casting was developed. In allusion to slab caster 4# in Liu Steel, the software system was used to simulate and study the production practice of steel AH36 and Q345 under different technological conditions. The study shows that:
     (1) Response speed of the system of slab dynamic soft reduction is rapid, and it has good performance in dynamic regulation. The software can control the surface temperature of casting slab effectively.
     (2) Natural solidification shrinkage is mainly related to the solidification state of casting slab. As the solidified shell thickness increase, the shrinkage will augment, and the taper of segment will increase correspondingly.
     (3) Optimal dynamic soft reduction amount for steel AH36 and Q345 production in Liu Steel is usually about 4mm~6mm, within the common speed of 0.9m/min~1.1m/min.
     (4) As the casting speed increase, the position of solidification end and soft reduction for casting slab will shift along the drawing direction; the total dynamic soft reduced amount will increase correspondingly, too. Distances from meniscus to solidification end for casting slab will augment as the casting temperature increase. However, casting temperature has little effect on the total dynamic soft reduced amount. Compared with the casting temperature, change of the casting speed has greater effect on soft reduction parameters.
     System of dynamic soft reduction for secondary cooling can factually reflects the working fact of continuous caster, after being corrected. It can assist the production practice effectively.
引文
[1] 蔡开科, 程士富. 连续铸钢原理与工艺[M]. 北京: 冶金工业出版社. 2002: 1-4.
    [2] 干勇, 连续铸钢前沿技术的工程化[J]. 中国工程科学. 2002, 4(9): 12-13.
    [3] 冯捷, 史学红主编. 连续铸钢生产[M]. 北京: 冶金工业出版社. 2005: 1-3.
    [4] 张海军, 薛庆国. 连铸技术的最新发展趋势[J]. 宽厚板. 2005(12): 42-45.
    [5] 孙决定. 我国近几年薄板坯连铸连轧发展趋势述评[J]. 武钢技术. 2006(12). vol.44(6): 49-52.
    [6] 中华人民共和国国家发展和改革委员会. 2006 年钢铁行业生产运行情况通报[EB/OL]. (2007-02-06) [2007-4-16]. http://www.sdpc.gov.cn/zjgx/t20070206_115992.htm.
    [7] 郭戈, 乔俊飞. 连铸过程控制理论与技术[M]. 北京: 冶金工业出版社. 2003: 1-3.
    [8] 曹晓兵, 梁爱生, 郭希学. 带液芯控制的异型坯连铸二冷区动态控制模型. 太原重型机械学院学报, 2000, 3, vol.21(1): 6-12.
    [9] 贾光霖, 齐雅丽, 张国志等. 合金钢连铸坯动态凝固过程数值模拟. 东北大学学报, 2004,2, vol.25(2): 129-132.
    [10] 刘青, 田乃媛. 矩形坯连铸机二次冷却的在线控制. 冶金自动化, 1997, 2: 9-12.
    [11] 马汗超, 姚勇, 王永福. 方坯连铸机二冷水动态控制. 炼钢, 1998, 2 :13-15.
    [12] BealyM, Leskinen N, etc. Simulation of cooling conditions in secondary cooling zoons in continuous casting process [J]. Ironmaking and steelmaking. 1995, 22 (3): 246~255.
    [13] 李凯玉. 济钢 4#铸机板坯二冷控制模型及应用. 山东冶金, 1999, 4, vol.21(2): 21-22.
    [14] 毛汉平, 潘红, 纪扬等. 莱钢 4#矩形坯连铸机二冷水动态控制模型. 冶金自动化, 2001,2:35-37.
    [15] 王玉珠, 孙相武. 连铸二冷动态配水控制系统研究. 一重技术, 1999,3: 3-5.
    [16] K.-H. Spitzer, Kuribayashi, B.Weber. Mathematical Model for Thermal Tracking and On-line Control in Continuous Casting. ISIJ International. 1992, Vol.32(7): 848-856.
    [17] 傅广瑞, 郑贤淑. 用温度场数值模拟方法优化连铸二冷制度. 钢铁, 1994, 5, vol.29(5).
    [18] 杨建伟, 曹晓兵. 异型坯连铸二冷区配水模型研究. 重型机械, 2001,1: 18-24.
    [19] 李东辉, 白金兰. 基于热传输理论的方坯连铸机二冷水在线控制方法. 特种铸造及有色合金, 2005, vol.25(2).
    [20] 孙冀, 潘德惠. 基于实测温度推算铸坯表面热流量分布. 东北大学学报,1998,2, vol.19(1): 66-68.
    [21] 陈永, 李桂军, 杨素波等. 大方坯连铸关键装备技术应用研究. 钢铁钒钛, 2004, 3, vol.25(1): 1-6.
    [22] 孙海峰. 威钢 ROKOP 高效方坯连铸二次冷却的研究[D]. 重庆大学硕士学位论文, 2002,5.
    [23] 陈登福, 孙海峰, 冯科. ROKOP 高效方坯连铸二冷动态控制算法模型. 重庆大学学报, 2004, vol.27(7): 56-59.
    [24] 刘坤, 冯亮花, 赵连刚. 板坯连铸机二冷段的动态控制模型. 钢铁研究学报, 2005,4, vol.17(2): 75-78.
    [25] 郭戈, 王伟, 柴天佑. 基于神经网络的铸坯凝固过程自适应控制. 甘肃工业大学学报, 2002, vol.28(1):62-64.
    [26] 徐荣军, 陈念贻, 刘洪霖. 基于模式识别和人工神经网络建立的板坯连铸二冷水模型. 钢铁, 2001, vol.36(2):25-28.
    [27] C.A.Santos, J.A.Spim, and A.Garcia. Mathematical Modeling and Optimization Strategies (Genetic Algorithm and Knowledge Base) Applied to the Continuous Casting of Steel. Engineering Applications of Artificial Intelligence, 2003, vol.16: 511-527
    [28] N.Chakraborti, R.Kumar, and D.Jain. A Study of the Contiunous Casting Mold Using a Pareto-converging genetic Algorithm. Applied Mathematical Modelling, 2001, vol.25: 287-297.
    [29] 徐荣军. 连铸二冷水热传输及人工智能优化模型与控制. 中国科学院上海冶金研究所.博士学位论文.
    [30] 孙韶元, 李世平, 王俊然等. 连铸二冷控制的智能化方法. 北京科技大学学报, 1997, 4, vol.19(2): 188-191.
    [31] M.雅赫拉, J.康廷恩, H.赫都. 罗德洛基钢铁公司6号板坯连铸机特点及实践. 钢铁, 1999, 34(10): 16-19.
    [32] LuigiMorsut. 有效控制板坯浇铸用的技术软件包. 钢铁, 2003, 38(5): 25-30.
    [33] Flemings. Our understanding of macrosegregation: past and present. ISIJ international, 2000, 40 (9): 833~841
    [34] 吴光亮, 肖上工. 薄板坯连铸过程中轻压下对其组织与性能的影响. 炼钢, 2001, 17(3): 37-41.
    [35] F. R. Camisani-Calzolari. Modelling and Control of the Secondary Cooling Zone in Continuous Casting. Master’s thesis. University of Pretoria, Pretoria. 1998.
    [36] 袁集华, 于登龙. 薄板坯连铸带液芯轻压下过程工业试验力学研究. 重型机械. 2000, (5): 15-19.
    [37] 马长文, 沈厚发, 黄天佑. 连铸轻压下技术的机理比较. 上海金属, 2003, 25(6): 1-5.
    [38] Peter Heinrich, etc. Productivity quality and resource efficiency of CSP technology. MPT International, 2003, 3: 88~90, 92, 94, 96.
    [39] Sivesson, etc. Improvement of inner quality of continuously cast billets using electromagnetic stirring and thermal soft reduction. Ironmaking and Steelmaking, 1998, 25(3): 239~246.
    [40] Byrne, Tercelli. Mechanical soft reduction in billet casting. Steel Times International, 2002, October: 33~35.
    [41] 彭晓华. 薄板坯连铸连轧的液芯压下技术[J]. 钢铁. 1999(9): 63-67, 62.
    [42] 邢长虎. 翟启杰.于艳.薄板坯连铸液芯压下工艺研究进展[J]. 上海金属. 2003, 1.
    [43] 高 和, 赵怀玉, 徐韶堂. 薄板坯动态液芯压下技术[J]. 一重技术. 2006(1): 1-3, 21.
    [44] 沈国强, 汪洪峰. 动态轻压下技术在梅山连铸中的应用. 工艺技术. 2006(2): 1-3.
    [45] 陈志平, 程乃良, 宋景欣. 板坯连铸机动态轻压下应用研究. 梅山科技. 2006(1): 40-43.
    [46] 廖永松. 轻压下技术在高碳钢方坯连铸中的应用[J]. 炼钢, 2002, 18(5): 35-39.
    [47] 林启勇, 蒋欢杰, 朱苗勇. 连铸坯动态轻压下的压下参数分析[J]. 材料与冶金报. 2004,12.
    [48] 汪洪峰, 程乃良. 动态轻压下技术在梅山高效连铸中的应用. 宽厚板, 2003, 9(6): 24-26.
    [49] 陈素琼, 张家泉, 崔立新. 板坯凝固末端轻压下实时控制的热-力学分析. 钢铁研究学报. 2003, 15(2): 9-14.
    [50] 杨素波, 陈永, 李桂军. 大方坯连铸动态轻压下技术应用研究. 钢铁. (40): 24-26.
    [51] 桂美文, 覃之光. 82B 高碳钢连铸坯中心偏析及线材质量的改善[J]. 炼钢. 2005(6): 1-4.
    [52] 林启勇. 板坯连铸动态轻压下压下量模型研究[D]. 沈阳:东北大学. 2004.
    [53] 朱苗勇, 林启勇. 连铸坯的轻压下技术. 鞍钢技术. 2004 (1): 1-6
    [54] 孙蓟泉, 周华勤. 高效连铸及轻压下技术. 机械工程与自动化, 2004, (1): 4-6.
    [55] Byrne, Tercelli. Mechanical soft reduction in billet casting. Steel Times Inernational. 2002, 10: 33~35.
    [56] 罗秉臣, 刘彩玲, 王庆新. 厚板坯连铸新技术. 重型机械, 2000, (4): 21-24.
    [57] Sivesson, Raihle. Thermal soft reduction in continuously cast slabs. Materials Science and Engineering, 1993, A173: 299~304.
    [58] 袁集华. 薄板坯连铸带液芯轻压下技术. 钢铁, 2004, 39(2): 25-28.
    [59] Mingzhong Liu, Jingshe Li, Shiqi Li ect. Application of soft reduction technique to continuous-casting billets. Journal of University of Science and Technology Beijing, 2004, vol.11: 302-305.
    [60] 李京社, 阎红军, 李琦. 120mm×120mm 连铸小方坯轻压下技术的应用. 特殊钢, 2002, 23(6): 43-45.
    [61] TC. Tszeng, S.kobayashi, Stress Analysis in Solidification Process: Application Continuous Casting, Int. J. Mach. Tools Manufact, 1989, Vol 29(1): 121-140.
    [62] 杨晓江. 采用达涅利 FTSC 工艺生产包晶钢技术的最新进展. 钢铁研究, 2002, (6): 52-56.
    [63] K. Sorimachi, LK. Brimacombe, Improvement in mathematical modeling of stress in continuous casting of steel. Ironmaking & Steelmaking, No4, 1997, P 245-249.
    [64] Birat. Innovation in steel continuous casting: past, present and future. La Revuede Metallurgie -CIT, 1999, November: 1389~1399.
    [65] 孙风晓, 王玉民, 李殿明. 济钢第三炼钢厂大板坯连铸机新技术的应用. 山东冶金. 2003, (增刊): 42-44.
    [66] 王捷, 杨拉道. 连铸轻压下技术的最新发展. 重型机械. 2001.6: 1-3, 7.
    [67] Morwald, etc. Benefit soft SMART segment technology and ASTC strand taper control in continuous casting. Steel Times International, 2003, Dec Jan: 17~19.
    [68] K.M rwald, M.Thalhammer, C.Federspiel. SMART?/ASTC 技术的冶金、操作和经济效果. 钢铁. 2003, 38(11): 21-25.
    [69] 武小林, 蔡开科. 通用连铸二冷配水模型及其软件开发. 第十一届全国.炼钢学术会议论文, 2000, 北京.
    [70] AYOUB A M, SAMIR H, EDDIN H. Matheematial modeling of heat transfer in continous casting of steel billet. Advances in Continuous Casting Research and technology, proceeding of synposium on continuous casting held with, “International Meeting in Cairo”, Egypt, April, 1992.
    [71] DAVIES R. Solidification modelling-an aid to continuous casting. 4th International Conference Continuous Casting Preprints, 1988.
    [72] 王建伟. 连铸板坯带液芯轻压下过程数值模拟研究. 北京科技大学硕士学位论文. 2000. 27-30.
    [73] 何离庆主编. 过程控制系统与装置. 重庆大学出版社. 2002: 49-53.
    [74] 萧德云,吕伯明译. 过程应用系统─—应用、设计与整定(第 3 版). 清华大学出版社. 2004.
    [75] 刘元扬, 刘德溥主编. 自动检测和过程控制(第 2 版). 冶金工业出版社.2000: 158-167.
    [76] Sivesson P, Ortlund T, Widell B. Improment of inner quality in continuously cast billets through thermal soft reduction and use of multivariate analysis of saved process variables [j]. Ironmaking and steelmaking. 1996, 23(6): 504-511.
    [77] Suzuki K, Takahashi K. Mechanical properties of the slab mill roll materials at room and elevated temperatures [J], Trans. Iron and steel institute of Japan. 1975, 61(3): 371-387.
    [78] Hideo MIZUKAMI, Akihiro YAMANAKA, Tadao WATANABE. Prediction of Density of Carbon Steels. ISIJ International, 2002, 42 (4): 375–384.
    [79] 袁伟霞, 韩志强, 蔡开科等. 连铸板坯凝固过程应变及内裂纹研究. 炼钢. 2001, 4, 17(2): 48-51.
    [80] 韩志强, 袁伟霞, 韩传基等. 连铸坯内裂纹形成的临界应变. 连铸. 1999, (5): 22-24.
    [81] 曾祖谦. 连铸板坯内裂纹的防止. 炼钢, 1998, (3): 13-15.
    [82] 张喜娥, 庞维诚, 陈松林. 连铸坯应力应变计算机辅助分析. 铸造. 2003, 2. 52(2): 95-97.
    [83] Mayumi Sakaki. Soft reduction of continuously cast blooms at Stelco’s Hilton Works[J], Steelmaking Conference proceedings, 1996: 296-300.
    [84] Wolf M M. Defination and control of strand soft reduction [J], CAMP-ISIJ, 1998, 11: 187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700