几类高维非线性系统的分岔与混沌问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在物理、化学、生物及工程等领域中,许多问题的动力学方程都可以约化为高维非线性系统。由于高维非线性系统具有更复杂、更丰富的动力学性质,其研究难度比线性系统以及低维的非线性系统要大得多,因此受到许多学者和专家的关注,也一直是研究的热点和前沿问题,特别是高维非线性系统的分岔与混沌动力学的研究。
     本文主要利用规范型理论、全局摄动法、能量相位法、Silnikov方法等解析方法和数值方法研究几类高维非线性动力系统的分岔与混沌问题。
     首先,利用规范型理论和数值方法,研究了一类3:1内共振和组合参激共振条件下大范围直线运动梁的稳定性与局部分岔问题,分别对第一阶、第二阶模态主参激共振以及第一、二阶模态间组合参激共振条件下的梁系统进行稳定性与分岔分析,给出了系统在各种特征值情况下的临界分岔曲线、分岔解及其稳定性,得到了这类模型的丰富的动力学性质,并用数值方法验证了理论分析所得结果的正确性。
     其次,研究了双耦合参数激励下的非线性Van der Pol振子的全局分岔与混沌问题。利用全局摄动法研究了双耦合参数激励下的非线性Van der Pol振子的Silnikov型单脉冲轨道的存在性及其导致的Silnikov型混沌运动,并利用能量相位法研究了该系统的多脉冲跳跃同宿轨道的存在性及其导致的Smale马蹄意义下的混沌,得到了一些新的有意义的动力学现象。
     然后,对两类非线性悬索系统,研究了其单脉冲跳跃轨道、多脉冲跳跃轨道及它们所导致的混沌问题。利用全局摄动法研究了这两类非线性悬索系统的单脉冲轨道的存在性及其导致的Silnikov型混沌运动,利用能量相位法研究了这两类非线性悬索系统的Silnikov型多脉冲轨道的存在性及其导致的Smale马蹄意义下的混沌,得到了一些新的动力学行为。
     最后,利用第一Lyapunov系数和Silnikov方法详细研究了Rucklidge系统和一个具有四翼混沌吸引子的三维系统的Hopf分岔与混沌,用待定系数法证明了这些系统的同宿轨道和异宿轨道的存在性,从而存在Smale马蹄意义下的混沌。
In physics, chemistry, biology and engineering, the governing equations of motion for a number of problems can be described by high-dimensional nonlinear systems. Comparing with linear systems and low-dimensional nonlinear systems, the study on the dynamical behavior of high-dimensional nonlinear systems were more difficult, so there are more complexities and richer in the dynamical phenomena of high-dimensional nonlinear systems. High-dimensional nonlinear systems have received considerable attention and play an important part in this area, especially, the study of bifurcations and chaos of high-dimensional nonlinear systems.
     By using normal form method, global perturbation method, energy-phase method, Silnikov method and numerical methods, the present dissertation is devoted to the bifurcations and chaos of some high-dimensional nonlinear dynamical systems.
     Firstly, both normal form method and numerical approaches are employed to consider the stability and local bifurcation for the flexible beam system undergoing a large linear motion with combination parametric resonance and 3:1 internal resonance. We discuss the stability and local bifurcation for the flexible beam to a principal parametric excitation of either the first or the second mode or a combination parametric resonance of both modes. The critical bifurcation curves, bifurcation solutions and their stabilities are obtained. Some significant dynamical phenomena are obtained. Numerical simulations agree with the analytic prediction.
     Secondly,with the global perturbation method and the energy-phase method, we discuss the global bifurcations and chaotic dynamics of two non-linearly coupled parametrically excited van der Pol oscillators. Using the global perturbation method, the existence of Silnikov-type single-pulse orbits and chaotic motions of Silnikov-type single-pulse of two non-linearly coupled parametrically excited van der Pol oscillators are studied in detail. And using the energy-phase method, the existence of Silnikov-type multi-pulse orbits of these systems are studied in detail. These results show that the chaotic motions of Silnikov-type multi-pulse can occur. Some new significant dynamical phenomena are obtained.
     Thirdly, Silnikov-type single-pulse orbit, Silnikov-type multi-pulse orbits and chaotic motions of two types of nonlinear suspended cables systems are studed in detail in this dissertation. The global perturbation method is applied to study the existence of Silnikov-type single-pulse orbits and chaotic motions of Silnikov-type single-pulse of two types of nonlinear suspended cables systems. The energy-phase method is utilized to analyze the existence of Silnikov-type multi-pulse orbits of these systems. These results show that the chaotic motions of Silnikov-type multi-pulse can occur.
     Lastly, for Rucklidge systems and a new 3-D quadratic autonomous system with a four-wing chaotic attractor, Hopf bifurcation and Silnikov chaos are discussed in detail with the first Lyapunov coefficient and Silnikov method. Using undetermined coefficient method, the existence of heteroclinic and homoclinic orbits of these systems are proved, and the Silnikov criterion guarantees that there exists the Smale horseshoe chaos motion.
引文
[1] Mandadi V, Huseyin K. Non-linear bifurcation analysis of non-gradient systems. International Journal of Non-linear Mechanics, 1980, 15: 159-172.
    [2] Seyranian A P, Mailybaev A A. Multiparameter stability theory with mechanical applications. London: World Scientific, 2003.
    [3] Yu P, Huseyin K. Static and dynamic bifurcations associated with a double-zero eigenvalue. Dynamics and Stability of Systems, 1986, 1(1): 73-86.
    [4] Yu P, Huseyin K. A perturbation analysis of interactive static and dynamic bifurcations. IEEE Transactions on Automatic Control, 1988, 33(1): 28-41.
    [5] Huseyin K, Yu P. On bifurcations into nonresonant quasi-periodic motions. Applied Mathematical Modelling, 1988, 12: 189-201.
    [6] Yu P, Huseyin K. On phase-locked motions associated with strong resonance. Quarterly Applied Mathematics, 1993, 51: 91-100.
    [7] Yu P. Computation of norm forms via a perturbation technique. Journal of Sound and Vibration, 1998, 211 (1): 19-38.
    [8] Yu P, Bi Q S. Analysis of non-linear dynamics and bifurcations of a double pendulum. Journal of Sound and Vibration, 1998, 217(4): 691-736。
    [9] Zhou L Q, Chen F Q. Stability and bifurcation analysis for a model of a nonlinear coupled pitch–roll ship. Mathematics and Computers in Simulation, 2008, 79: 149-166.
    [10]刘曾荣.混沌研究中的解析方法.上海:上海大学出版社, 2002: 56-82.
    [11] Wiggins S. Introduction to applied non-linear dynamical systems and chaos. New York: Springer, 1990: 52-60。
    [12] Guckenheimer J, Holmes P J. Non-linear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer, 1983: 184-205.
    [13] Wiggins S. Global Bifurcations and Chaos-Analytical Methods. New York: Springer-Verlag, 1988.
    [14] Kovacic G, Wiggins S. Orbits homoclinic to resonance with an application to chaosin a model of the forced and damped sine-Gordon equation. Physica D, 1992, 57: 185-225.
    [15] Feng Z C, Sethna P R. Global bifurcations in the motion of parametrically excited thin plate. Nonlinear Dynamics, 1993, 4: 389-408.
    [16] Feng Z C, Liew K.M. Global bifurcations in parametrically excited systems with zero-to-one internal resonance. Nonlinear Dynamics, 2000, 21: 249-263.
    [17] Zhang W, Zhao M L, Yu P. Global dynamics of a parametrically and externally excited thin plate. Nonlinear Dynamics, 2001, 24: 245-268.
    [18] Zhang W, Tang Y. Global dynamics of the cable under combined parametrical and external excitations. International Journal of Non-Linear Mechanics, 2002, 37: 505-526.
    [19] Malhotral N, Sri Namachchivaya N. Global dynamics of parametrically excited nonlinear reversible systems with nonsemisimple 1:1 resonance. Physica D, 1995, 89: 43-70.
    [20] Haller G, Wiggins S. Orbits homoclinic to resonance: The Hamiltonian case. Physica D, 1993, 66: 298-346.
    [21] Haller G, Wiggins S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation. Physica D, 1995, 85: 311-347.
    [22] Haller G, Wiggins S. N-Pulse homoclinic orbits in perturbations of resonant hamiltonian systems. Archive for Rational Mechanics and Analysis, 1995, 130: 25-101.
    [23] Haller G. Chaos near resonace. New York: Springer-Verlag, 1999.
    [24] Kovacic G. Singular perturbation theory for homoclinic orbits in a class of near intergrable dissipative systems. SIAM Journal on Mathematical Analysis, 1995, 26: 1611-1643.
    [25] Malhotral N, Sri Namachchivaya N, McDonald R. J. Multipulse orbits in the motion of flexible Spinning discs. Journal of Nonlinear Science, 2002, 12: 1-26.
    [26] McDonalda R J, Sri Namachchivaya N. Pipes conveying pulsating ?uid near a 0:1 resonance: Global bifurcations. Journal of Fluids and Structures, 2005, 21: 665-687.
    [27] Yao M H, Zhang W. Multipulse Silnikov orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam. International Journal of Bifurcation and Chaos, 2005, 15(12): 3923-3952.
    [28] Si’lnikov. Si’lnikov theorem-a tutorial. IEEE Transactions on Circuits and Systems I, 1993, 40(10):678-682.
    [29] Zhou T S, Chen G R, Yang Y. Chen’s attractor exists. International Journal of Bifurcation and Chaos, 2004, 14: 3167-3178.
    [30] Wang J, Zhao M, Zhang Y, Xiong X. Si’lnikov-type orbits of Lorenz-family systems. Physica A , 2007, 37: 438-446.
    [31] Jiang L, Sun J. Si’lnikov homoclinic orbits in a new chaotic system. Chaos, Solitons & Fractals, 2007, 32: 150-159.
    [32] Zhou L Q, Chen F Q. Si’lnikov chaos of the Liu system. Chaos, 2008, 18: 013113.
    [33] Zhou T S, Chen G R, Celikovsky S. Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dynamics, 2005, 39: 319-334.
    [34]胡海岩.应用非线性动力学.北京:航空工业出版社,2000: 120-128.
    [35] Golubitsky M, Schaeffer D G. Singularities and bifurcation theory. Vol.1. New York: Springer-Verlag, 1985: 1-165.
    [36]陈予恕.非线性振动系统的分叉和混沌理论.北京:高等教育出版社,1993: 208-222.
    [37] Chen Y S, Andre Y T Leung. Bifurcation and chaos in engineering. London: Springer-Verlag, 1998: 205-210.
    [38]郭柏灵,高平等.近可积无穷维动力系统.北京:国防工业出版社, 2004.
    [39] Nayfeh A.H, Mook D.T. Nonlinear Oscillations. New York: Wiley, 1979.
    [40] Mosekilde E. Topics in Nonlinear Dynamics. Singapore: World Scientific, 1996.
    [41] Thomson J.M.T, Stewart H.B. Nonlinear Dynamics and Chaos. New York: Wiley, 1986.
    [42] Knudsen C, Slivsgaard E, Rose M, True H, Feldberg R. Dynamics of a model of a ailroad wheelset. Nonlinear Dynamics, 1994, 6: 215-236.
    [43] Sorensen C.B, Mosekilde E, Granazy P. Nonlinear dynamics of a thrust vectored aircraft. Physica Scripta, 1996, 67: 176-183.
    [44] Thomson J.M.T. Complex dynamics of compliant off-shore structures. Proceedings of Royal Society A, 1983, 387: 407-427.
    [45] Shy A. Prediction of jump phenomena in roll-coupled maneuvers of airplanes. Journal of Aircraft, 1977, 14: 375-382.
    [46] Malhotra N, Namachivaya N.S. Chaotic motion of shallow arch structures under 1:1 internal resonance. Journal of Engineering Mechanics, 1997, 123: 620-627.
    [47] Namachchivaya N.S, Roessel H.J.Van. Unfolding of degenerate Hopf bifurcation for supersonic flow past a pitching wedge. Journal of Guidance, Control and Dynamics, 1986, 9: 413-418.
    [48] Namachchivaya N.S, Roessel H.J.Van. Unfolding of double-zero eigenvalue bifurcations for supersonic flow past a pitching wedge. Journal of Guidance, Control and Dynamics, 1990, 13: 343-347.
    [49] Hyun S.H, Yoo H.H. Dynamic modeling and stability analysis of axially oscillating cantilever beams. Journal of Sound and Vibration, 1999, 228(3): 543-558.
    [50] Kane T.R, Ryan R.R, Banerjee A.K. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151.
    [51] Chin C.M, Nayfeh A.H. Three-to-one internal resonances in hinged-clamped beams. NonlinearDynamics, 1997, 12(2): 129-154.
    [52] Chin C.M, Nayfeh A.H. Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dynamics, 1999, 20(2): 131-158.
    [53] Feng Z.H, Hu H.Y. Dynamic stability of a slender beam with internal resonance under a large linear motion. Acta Mechanica Sinica, 2002, 34(3): 389-399 (in Chinese).
    [54] Feng Z.H, Hu H.Y. Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mechanica Sinica, 2003,19(4): 355-364.
    [55] Feng Z.H, Hu H.Y. Largest lyapunov exponent and almost certain stability analysis of slender beams under a large linear motion of basement subject to narrowband parametric excitation. Journal of Sound and Vibration, 2002, 257(4): 733-752 .
    [56] Yu P, Huseyin K. Bifurcations associated with a double zero and a pair of pure imaginary eigenvalues. SIAM Journal on Applied Mathematics, 1988, 48(2): 229-261.
    [57] Yu P, Huseyin K. Bifurcations associated with a three-fold zero eigenvalue. Quarterly of applied mathematics, 1988, 46(2): 193-216.
    [58] Bi Q S, Yu P. Computation of normal forms of differential equations associated with non-semisimple zero eigenvalue. International Journal of Bifurcation and Chaos, 1998, 8(12): 2279-2319.
    [59] Yu P. Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique. Journal of Sound and Vibration, 2001, 247: 615-632.
    [60] Yu P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dynamics, 2002, 27: 19-53.
    [61] Yu P, Zhang W, Bi Q S. Vibration analysis on a thin plate with the aid of computation of normal forms. International Journal of Non-Linear Mechanics, 2001, 36: 597-627 .
    [62] Bi Q S, Yu P. Double Hopf bifurcations and chaos of a nonlinear vibration system. Nonlinear Dynamics, 1999, 19: 313-332.
    [63] McDonalda R.J, Sri Namachchivaya N. Pipes conveying pulsating ?uid near a 0:1 resonance: Local bifurcations. Journal of Fluids and Structures, 2005, 21: 629-664.
    [64] Zhang W, Wang F.X, Yao M.H. Global bifurcation and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dynamics, 2005, 40: 251-279.
    [65] Zhang W, Zu J.W, Wang F.X. Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons & Fractals, 2008, 35: 586-608.
    [66] Cao D.X, Zhang W. Global bifurcations and chaotic dynamics for a string-beam coupledsystem. Chaos, Solitons & Fractals, 2008, 37: 858-875.
    [67] Yao M H, Zhang W. Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate. International Journal of Bifurcation and Chaos, 2007, 17(3): 851-875.
    [68] Rand R.H, Holmes P.J. Bifurcation of periodic motions into weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 1980, 15: 387-399.
    [69] Storti D.W, Rand R.H. Dynamics of two strongly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 1982, 17: 143-152.
    [70] Chakraborty T, Rand R.H. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 1988, 23: 369-376.
    [71] Asmis K.G, Tso W.K. Combination and internal resonance in a nonlinear two-degree-of- freedom system. Journal of Applied Mechanics, 1972, 39: 832-834.
    [72] Tezak E.G, Nayfeh A.H, Mook D.T. Non-linear analysis of the lateral response of columns to periodic loads. Journal of Sound and Vibration, 1978, 100: 651-659.
    [73] Maccari A. Modulated motion and infinite-period bifurcation for two non-linearly coupled and parametrically excited van der Pol oscillators. International Journal of Non-Linear Mechanics, 2001, 36: 335-347.
    [74] Bi Q S. Dynamical analysis of two coupled parametrically excited van der Pol oscillators. International Journal of Non-Linear Mechanics, 2004, 39: 33-54.
    [75] Rompala K. Modeling the Avian Circadian System with Coupled Nonlinear Oscillators, PhD thesis, Cornell University, August 2008.
    [76] Nayfeh A.H. Perturbation methods. New York: Wiley, 1973.
    [77] Nayfeh A.H. Methods of normal forms. New York: John Wiley & Sons, 1993.
    [78] Sanchez N.E, Nayfeh A.H. Prediction of bifurcations in a parametrically excited duffing oscillator. International Journal of Non-Linear Mechanics, 1990, 25: 163-176.
    [79] Zhang W, Wang F X, Zu J W. Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam. Journal of Sound and Vibration, 2004, 278: 949-974.
    [80] Rao G, Iyengar R N. Internal resonace and non-linear response of a cable under periodic excitation. Journal of Sound and Vibration, 1991, 149: 25-41.
    [81] Lee C L, Perkins C N. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dynamics, 1992, 3: 465-490.
    [82] Lee C L, Perkins N C. Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dynamics, 1995, 8: 45-63.
    [83] Zhao Y, Wang L. On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. Journal of Sound and Vibration, 2006, 294: 1073-1093.
    [84] Wang L, Zhao Y. Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. International Journal of Solids and Structures, 2006, 43: 7800-7819.
    [85] Rega G, Alaggio R, Benedettini F. Experimental investigation of the nonlinear response of a hanging cable. Part I: local analysis. Nonlinear Dynamics, 1997, 14: 89-117.
    [86] Benedet tini F, Rega G, Alaggio R. Nonlinear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. Journal of Sound and Vibration, 1995, 182(5): 775-798.
    [87] Rega G, Lacarbonara W, Nayfeh A H, Chin C M. Multiple Resonances in suspended cables: direct versus reduced order models. International Journal of Non-Linear Mechanics, 1999, 34: 901-924.
    [88] Lacarbonara W, Rega G, Nayfeh A H. Resonant nonlinear normal modes, Part I: analytical treatment for structural one-dimensioalsystems. International Journal of Non-Linear Mechanics, 2003, 38: 851-872.
    [89] Pakdemirli M, Nayfeh S. A, Nayfeh A. H. Analysis of One-to-One Autoparametric Resonances in Cables-Discretization vs. Direct Treatment. Nonlinear Dynamics, 1995, 8: 65-83.
    [90] Srinil N, Rega G., Chucheepsakul S. Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dynamics, 2003, 33: 129-154.
    [91] Srinil N, Rega G, Chucheepsakul S. Three-dimensional nonlinear coupling and dynamic tension in the large amplitude free vibrations of arbitrarily sagged cables. Journal of Sound and Vibration, 2004, 269: 823-852.
    [92] Srinil N, Rega G, Chucheepsakul S. Two-to-one resonant multi-modal dynamics of horizontal/inclined cables, Part I. Theoretical formulation and model validation. Nonlinear Dynamics, 2007, 48: 231-252.
    [93] Srinil N, Rega G. Two-to-one resonant multi-modal dynamics of horizontal/inclined cables, Part II. Internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dynamics, 2007, 48: 253-274.
    [94] Srinil N, Rega G. The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. International Journal of Non-Linear Mechanics, 2007, 42:180-195.
    [95] Srinil N, Rega G. Space–time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables. Journal of Sound and Vibration, 2008, 315: 394-413.
    [96] Irvine H.M. Cable Structures. Cambridge, MA: MIT Press, 1981.
    [97] LüJ, Chen G. A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 2002, 12: 659-661.
    [98] Zhou X, Wu Y, Li Y, Wei Z. Hopf bifurcation analysis of the Liu system. Chaos, Solitons & Fractals, 2008, 36: 1385-1391.
    [99] Rucklidge AM. Chaos in models of double convection. Journal of Fluid Mechanics, 1992, 237: 209-229.
    [100] Sprott J C. Chaos and time-series analysis. 1st ed. New York: Oxford University Press, 2003.
    [101] Vicha T, Dohnal M. Qualitative feature extractions of chaotic systems. Chaos, Solitons & Fractals, 2008, 38: 364-373.
    [102] Zhang Y B, Zhou T S. Three schemes to synchronize chaotic fractional-order rucklidge systems. International Journal of Modern Physics B, 2007, 21(12): 2033-2044.
    [103]陈予恕,唐云.非线性动力学中的现代分析方法.北京:科学出版社,1992.
    [104] Kuznetsov Y A. Elements of applied bifurcation theory. 2nd ed. New York: Springer-Verlag Co, 1998.
    [105] Yu Y, Zhang S. Hopf bifurcation analysis of the Lüsystem. Chaos, Solitons & Fractals, 2004, 21: 1215-1220.
    [106] Chen G, LüJ. Dynamics of the Lorenz family system-analysis, controlling and synchronization. Beijing: Scientific Pub Co, 2003. [in Chinese].
    [107] Zhou L Q, Chen F Q. Hopf bifurcation and Si’lnikov chaos of Genesio system. Chaos, Solitons & Fractals, 2009, 40: 1413-1422.
    [108] Liu W B, Chen G R. Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor? International Journal of Bifurcation and Chaos, 2004, 14(4): 1395-1403.
    [109] Zhou T, Chen G, Yang Q. Constructing a new chaotic system based on the Silnikov criterion. Chaos, Solitons & Fractals, 2004, 19: 985-993.
    [110] Qi G Y, Chen G R, Wyk M, Wyk B, Zhang Y. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos, Solitons & Fractals, 2008, 38: 705-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700