高维非线性系统全局分岔与混沌若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中的真实动力系统几乎都含有各种各样的非线性因素。由于线性系统对非线性系统的逼近并非总是可靠的,且线性系统的解的适定性对非线性系统不再成立,因而非线性系统具有更丰富的动力学行为。非线性系统的分岔与混沌行为研究是目前国际上非线性动力学领域中的热点和前沿课题,研究非线性系统的模态分岔及相互作用具有潜在的应用价值和实际意义。本文主要研究几类四维非线性系统的全局分岔与混沌问题,一共分为如下六部分。
     第一章,主要介绍了非线性动力学中动力系统分岔、混沌等与本文相关的一些基本概念、性质、方法和定理等。
     第二章,研究了谐波激励下简支矩形金属板1:1内共振下的全局分岔行为和混沌运动。首先,在非Hamilton共振下,运用Melnikov方法,得到了无阻尼时系统的混沌行为。其次,在Hamilton共振下,运用Kovacic-Wiggins全局摄动法和能量-相位法,研究了系统同宿于慢流形的单脉冲和多脉冲同宿轨的存在性及其导致的Smale马蹄意义下的混沌。这与Melnikov方法得到的结果有本质上的区别。最后通过数值模拟,得到了一些新的动力学现象。
     第三章,研究了粘弹性运动梁1:2内共振和主共振条件下的全局动力学行为。在多尺度法得到平均方程的基础上,运用规范型理论得到对应一对非半简零特征根和一对共轭纯虚特征根的规范型。运用Kovacic-Wiggins全局摄动法和能量-相位法,研究了系统在Hamilton共振情形下同宿于慢流形的单脉冲和多脉冲同宿轨的存在性。本节结果从理论上解释了粘弹性运动梁跳跃行为。
     第四章,研究了周期激励浅拱的全局分岔,得到了系统在Hamilton共振带上连结鞍点和汇点的同宿轨和异宿轨。与Kovacic-Wiggins全局摄动法和能量-相位法得到同宿于慢流形的轨道不同,这些轨道是交替地位于快慢流形之上的。
     第五章,利用Silnikov方法讨论了两类四维系统的混沌行为。利用待定系数法证明了这些系统同宿轨和异宿轨的存在性,并给出了系统发生混沌运动的判据。
     第六章是全文总结与展望。
There are various nonlinear factors in the real engineering systems. The certainty for the solutions of linear systems is not satisfied for that of nonlinear systems, so there are more complexities in nonlinear systems. The study of bifurcations and chaos of nonlinear systems are cutting-edge topics. The investigations of mode bifurcations and interactions play an important part in this area. The present dissertation is devoted to the global bifurcations and chaos of some nonlinear four-dimensional mechanical systems. The paper is mainly divided into six chapters.
     In the first charter, some important concepts, properties, methods and theories of bifurcation and chaos are introduced, which are quoted here for earlier references until they are applied in later chapters.
     In the second charter, the global bifurcations in mode interactions of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation are investigated with the case of the 1:1 internal resonance. Firstly, for the“non-resonant”case, Melnikov method has been used to study the chaotic behaviors. Secondly, for the“resonant”case, the Kovacic-Wiggins global perturbation method and energy-phase method are utilized to analyze the global bifurcations for the rectangular metallic plate. The existence of Silnikov-type single-pulse and multi-pulse homoclinic orbits is obtained, which imply that chaotic motions may occur for this class of rectangular metallic plates. This is quite different from the earlier case based on Melnikov method. Finally, numerical results are presented and some new dynamical phenomena are obtained.
     In the third chapter, the global bifurcations and chaotic dynamics of an axially moving viscoelastic beam are investigated with the case of 1:2 internal resonance. On the basis of the modulation equations derived by the method of multiple scales, the theory of normal form is utilized to find the explicit formulas of normal form associated with a double zero eigenvalues and a pair of pure imaginary eigenvalues. The Kovacic-Wiggins perturbation method and energy-phase method are employed to analyze the global bifurcations for the axially moving viscoelastic beam. The results obtained here indicate that there exist the Silnikov-type single-pulse and multi-pulse orbits homoclinic to certain invariant sets for the“resonant”case, leading to chaos in the system. The results give the explanation for the jumping behaviors observed in this class of axially moving viscoelastic beams.
     In the fourth chapter, the existence of homoclinic orbits and heteroclinic orbits for a shallow arch subjected to periodic excitation with internal resonance is obtained. Rather than possess finitely many fast pieces that follow one after the other, orbits in this class are composed of alternating slow and fast pieces. In this sense, the results obtained here are different from the Kovacic-Wiggins global perturbation method and energy-phase method.
     In the fifth chapter, Silnikov chaos is discussed in detail for two four-dimensional dynamical systems with Silnikov method. By applying the undetermined coefficient method, the Silnikov-type homoclinic and heteroclinic orbits in these systems are found analytically and the uniform convergence of the corresponding series expansions of these orbits is proved. The criterions for chaos are obtained.
     The last chapter is the summary and outlook of this paper.
引文
[1]Guckenheimer J, Holmes P J. Non-liner oscillations, dynamical systems and bifurcations of vector fields. New York: Springer, 1983: 184-205.
    [2]Wiggins S. Introduction to applied non-linear dynamical systems and chaos. New York: Springer, 1990: 52-60.
    [3]李继彬.混沌与Melnikov方法.重庆:重庆大学出版社, 1989: 89-178.
    [4]刘曾荣.混沌研究中的解析方法.上海:上海大学出版社, 2002: 56-82.
    [5]Sanders J A. Melnikov's method and averaging. Celestial Mechanics and Dynamical Astronomy, 1982, 28: 171-181.
    [6]Jauslin H R. Melnikov's criterion for nondifferentiable weak-noise potentials. Journal of Statistical Physics, 1986, 42: 573-585.
    [7]Zhu R Z, Xiang C. Studies of Melnikov method and transversal homoclinic orbits in the circular planar restricted. Applied Mathematics and Mechanics, 1996, 17: 1177-1187.
    [8]Tong X, Tabarrok B. Melnikov's method for rigid bodies subject to small perturbation torques. Archive of Applied Mechanics, 1996, 66: 215-230.
    [9]Casasayas J, Faisca P, Nunes A. Melnikov method for parabolic orbits. Nonlinear Differential Equations and Applications, 2003, 10: 119–131.
    [10]Wiggins S. Global bifurcations and chaos-analytical methods. New York: Springer-Verlag, 1988: 334-476.
    [11]Delshams A, Gutierrez P. Splitting potential and the Poincare-Melnikov method for Whiskered Tori in Hamiltonian systems. Journal of Nonlinear Science, 2000, 10: 433–476.
    [12]Samoylenko S B, Lee W K. Global bifurcations and chaos in a harmonically excited and undamped circular plate. Nonlinear Dynamics, 2007, 47: 405–419.
    [13]Kovacic G,Wiggins S. Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Physica D, 1992, 57: 185-225.
    [14]Haller G, Wiggins S. Orbits homoclinic to resonances: the Hamiltonian case. Physica D, 1993, 66: 298-346.
    [15]Feng Z C, Wiggins S. On the existence of chaos in a class of two‐degree‐of‐freedom, damped, strongly parametrically forced mechanical systems with broken O(2) symmetry. ZAMP, 1993, 44: 201‐248.
    [16]Feng Z C, Sethna P R. Global bifurcation in motions of parametrically excited thin plates. Nonlinear Dynamics, 1993, 4: 398‐408.
    [17]Malhotra N, Namachchivaya N S. Chaotic motion of shallow arch structures under 1:1 resonance. ASCE Journal of Engineering Mechanics, 1997, 123: 620‐627.
    [18]Feng Z C, Liew K M. Global bifurcations in parametrically excited systems with zero‐to‐one internal resonance. Nonlinear Dynamics, 2000, 21: 249‐263.
    [19]Samaranayake G, Samaranayake S, Bajaj A K. Non‐resonant and resonant chaotic dynamics in externally excited cyclic system. Acta Mechanica, 2001, 150: 139‐160.
    [20]Wang M N, Xu Z Y. On the homoclinic orbits in a class of two‐degree‐of‐freedom systems under the resonance conditions. Applied Mathematics and Mechanics, 2001, 22: 340‐352.
    [21]Zhang W, Zhao M L, Pei Y. Global dynamics of a parametrically and externally excited thin plate. Nonlinear Dynamics, 2001, 24: 245–268.
    [22]Zhang W. Global dynamics of the cable under combined parametrical and external excitations. International Journal of Non-Linear Mechanics, 2002, 37: 505-526.
    [23]Zhang W, Li J. Global analysis for a nonlinear vibration absorber with fast and slow modes. International Journal of Bifurcation and Chaos, 2001, 8: 2179-2194.
    [24]Zhang W, Wang F X, Yao M H. Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dynamics, 2005, 40: 251‐279.
    [25]Zhang W, Zu J W, Wang F X. Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons & Fractals, 2008, 35: 586–608.
    [26]Cao D X, Zhang W. Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos, Solitons & Fractals, 2008, 37: 858-875.
    [27]Haller G, Wiggins S. N-Pulse homoclinic orbits in perturbations of resonant Hamilton systems. Archive for Rational Mechanical and Analysis, 1995, 130: 25-101.
    [28]Haller G, Wiggins S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forces nonlinear Schrodinger equation. Physica D, 1995,85: 311-347.
    [29]Malhotra N, Namachchivaya N S, McDonals R J. Multi-pulse orbits in the motion of flexible spinning discs. Journal of Nonlinear Science, 2002, 12: 1-26.
    [30]McDonald R J, Namachchivaya N Sri. Pipes conveying pulsating fluid near a 0:1 resonance: Global bifurcations. Journal of Fluids and Structure, 2005, 21: 665-687.
    [31]Zhang W, Yao M H. Multi-pulse and chaotic dynamics in motion of parametrically excited viscoelastic moving belt. Chaos, Solitons & Fractals, 2006, 28: 42-66.
    [32]Zhang W, Yao M H. Theories of multi-pulse global bifurcations for high-dimensional systems and application to cantilever beam. International Journal of Modern Physics B, 2008, 24: 4089-4141.
    [33]Zhang W, Gao M J, Yao M H, et al. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate. Science in China Series G: Physics, Mechanics & Astronomy, 2009, 52: 1989-2000.
    [34]Zhang W, Zhang J H, Yao M H, et al. Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Acta Mechanica, 2010, 211: 23–47.
    [35]Zhang W, Yao M H, Zhang J H. Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. Journal of Sound and Vibration, 2009, 319: 541-569.
    [36]Kovacic G. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems. SIAM Journal on Mathematical Analysis, 1995, 26: 1611-1643.
    [37]Kaper T J, Kovacic G. Multi-bump orbits homoclinic to resonance bands. Transactions of the American Mathematical Society, 1996, 348: 3835-3887.
    [38]Kovacic G. Homoclinic orbits in the dynamics of resonantly driven coupled pendula. ZAMP, 1996, 47: 221-264.
    [39]Silnikov L P. Silnikov theorem-a tutorial. IEEE Transactions on Circuits and Systems I, 1993, 40: 678-682.
    [40]Zhou T S,Tang Y,Chen G R. Chen’s attractor exists. International Journal of Bifurcation and Chaos, 2004, 9: 3167‐3177.
    [41]Zhou T S, Chen G R, Yang Q G. Constructing a new chaotic system based on the Silnikov criterion. Chaos, Solitons and Fractals, 2004, 19: 985‐993.
    [42]Wang X. Silnikov chaos and Hopf bifurcation analysis of Rucklidge system. Chaos, Solitons & Fractals, 2009, 42: 2208-2217.
    [43]Zhou L Q, Chen F Q. Silnikov chaos of the Liu system. Chaos, 2008, 18: 013113.
    [44]Zhou T S, Chen G R, Celikovsky S. Silnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dynamics, 2005, 39: 319‐334.
    [45]Zheng Z H, Chen G R. Existence of heteroclinic orbits of the Silnikov type in a 3D quadratic autonomous chaotic system. Journal of Mathematical Analysis and Applications, 2006, 315: 106‐119.
    [46]胡海岩.应用非线性动力学.北京:航空工业出版社, 2000: 120-128.
    [47]Sathayamorthy M. Nonlinear vibration analysis of plates: A review and survey of current developments. Applied Mechanical Review, 1987, 40: 1553‐1561.
    [48]Yeh F H, Liu W H. Nonlinear analysis of rectangular orthotropic plates. International Journal of Mechanical Science, 1991, 33: 563‐578.
    [49]Sridhar S, Mook D T, Nayfeh A H. Non‐linear resonances in the forced responses of plate, part I: symmetric responses of circular plates. Journal of Sound and Vibration, 1975, 41: 359‐373.
    [50]Sridhar S, Mook D T, Nayfeh A H. Non‐linear resonances in the forced responses of plate, part II: asymmetric responses of circular plates. Journal of Sound and Vibration, 1978, 59: 159‐170.
    [51]Hadian J, Nayfeh A H. Modal interaction in circular plates. Journal of Sound and Vibration, 142, 1990: 279‐292.
    [52]Chin C, Nayfeh A H. Bifurcation and chaos in externally excited circular cylindrical shells. Journal of Applied Mechanics, 1996, 63: 565-574.
    [53]Yang X L, Sethna P R. Local and global bifurcations in the parametrically excited vibrations of nearly square plates. International Journal of Non‐Linear Mechanics, 1991, 26: 199‐220.
    [54]Elbeyli O, Anlas G. The nonlinear response of a simply supported rectangular metallic plate to transverse harmonic excitation. Journal of Applied Mechanics, 2000, 67: 621‐626.
    [55]Anlas G, Elbeyli O. Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one‐to‐one internal resonance. Nonlinear Dynamics, 2002, 30: 1‐28.
    [56]Oz H R, Pakdemirli M. Vibrations of an axially moving beam with time-dependent velocity. Journal of Sound and Vibration, 1999, 227: 239-257.
    [57]Oz H R, Pakdemirli M, Boyaci H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. International Journal of Non-linear Mechanics, 2001, 36: 107-115.
    [58]Ozkaya E, Pakdemirli M. Vibrations of an axially accelerating beam with small flexural stiffness. Journal of Sound and Vibration, 2000, 234(3): 521-535.
    [59]Marynowski K, Kapitaniak T. Kelvin-Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web. International Journal of Non-linear Mechanics, 2002, 37: 1147-1161.
    [60]Chen L Q, Yang X D, Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam. European Journal of Mechanics A: Solids, 2004, 23: 659-666.
    [61]杨晓东,陈立群.黏弹性变速运动梁稳定性的直接多尺度分析.振动工程学报, 2005, 18: 223-226.
    [62]Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beam with pulsating speed: comparison of two nonlinear models. International Journal of Solids and Structures, 2005, 42: 37-50.
    [63]Yang X D, Chen L Q. Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos, Solitons & Fractals, 2005, 23: 249-258.
    [64]Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports. European Journal of Mechanics - A/Solids, 2006, 25: 996-1008.
    [65]丁虎,陈立群,戈新生.黏弹性轴向运动梁非线性受迫振动稳态幅频响应.力学季刊, 2008, 29: 502-505.
    [66]丁虎,陈立群.黏弹性变速度轴向运动梁的稳定性分析.机械强度, 2008, 30: 884-887.
    [67] Chen L Q, Ding H. Steady-state responses of axially accelerating viscoelastic beams: Approximate analysis and numerical confirmation. Science in China Series G: Physics Mechanics and Astronomy, 2008, 51: 1707-1721.
    [68] Ding H, Chen L Q. On two transverse nonlinear models of axially moving beams. Science in China Series E: Technological Sciences, 2009, 52: 743-751.
    [69]Ding H, Chen L Q. Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature. Acta Mechanica Solida Sinica, 2009, 22: 267-275.
    [84]Chen J S, Lin J S. Stability of a shallow arch with one end moving at constant speed. International Journal of Non-Linear Mechanics, 2006, 41: 706-715.
    [85]Pi Y L,Bradford M A, Loi F T. Flexural-torsional buckling of shallow arches with open thin-walled section under uniform radial loads. Thin-Walled Structures, 2007, 45: 352–362.
    [86]Pi Y L,Bradford M A, Loi F T. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load. International Journal of Non-Linear Mechanics, 2008, 43: 1-17.
    [87]Corona E, Wang J. Response and collapse of foam-supported sheet metal beams and shallow arches. International Journal of Solids and Structures, 2008, 45: 5844-5855.
    [88]Pi Y L, Bradford M A, Loi F T. Nonlinear analysis and buckling of elastically supported circular shallow arches. International Journal of Solids and Structures, 2007, 44: 2401-2425.
    [89]Pi Y L, Bradford M A. Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load. Journal of Sound and Vibration, 2008, 317: 898-917.
    [90]Mallon N J, Fey R H B, Nijmeijer H, et al. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape. International Journal of Non-Linear Mechanics, 2006, 41: 1057-1067.
    [91]Lorenz E N. Deterministic non periodic flow. Journal of the Atmospheric Sciences, 1963, 20: 130‐141.
    [92]Genesio R, Tesi A. Harmonic balance methods for analysis of chaotic dynamics in nonlinear systems. Automatica, 1992, 28: 531-548.
    [93]Zhou L Q, Chen F Q. Hopf bifurcation and Silnikov chaos of Genesio system. Chaos, Solitons & Fractals, 2009, 40: 1413-1422.
    [94]Chen G R, Ueta T. Yet another chaotic attractor. International Journal of bifurcation and chaos, 1999, 9: 1465‐1466.
    [95]Chen G R, Ueta T. Bifurcation analysis of Chen’s attractor. International Journal of bifurcation and chaos, 2000, 10: 1917‐1931.
    [96]Rossler O E. An equation for continuous chaos. Physics Letters A, 1996, 57: 397‐398.
    [97]Lu J H, Chen G R, Zhang S C. Dynamical analysis of a new chaotic attractor.
    [84]Chen J S, Lin J S. Stability of a shallow arch with one end moving at constant speed. International Journal of Non-Linear Mechanics, 2006, 41: 706-715.
    [85]Pi Y L,Bradford M A, Loi F T. Flexural-torsional buckling of shallow arches with open thin-walled section under uniform radial loads. Thin-Walled Structures, 2007, 45: 352–362.
    [86]Pi Y L,Bradford M A, Loi F T. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load. International Journal of Non-Linear Mechanics, 2008, 43: 1-17.
    [87]Corona E, Wang J. Response and collapse of foam-supported sheet metal beams and shallow arches. International Journal of Solids and Structures, 2008, 45: 5844-5855.
    [88]Pi Y L, Bradford M A, Loi F T. Nonlinear analysis and buckling of elastically supported circular shallow arches. International Journal of Solids and Structures, 2007, 44: 2401-2425.
    [89]Pi Y L, Bradford M A. Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load. Journal of Sound and Vibration, 2008, 317: 898-917.
    [90]Mallon N J, Fey R H B, Nijmeijer H, et al. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape. International Journal of Non-Linear Mechanics, 2006, 41: 1057-1067.
    [91]Lorenz E N. Deterministic non periodic flow. Journal of the Atmospheric Sciences, 1963, 20: 130‐141.
    [92]Genesio R, Tesi A. Harmonic balance methods for analysis of chaotic dynamics in nonlinear systems. Automatica, 1992, 28: 531-548.
    [93]Zhou L Q, Chen F Q. Hopf bifurcation and Silnikov chaos of Genesio system. Chaos, Solitons & Fractals, 2009, 40: 1413-1422.
    [94]Chen G R, Ueta T. Yet another chaotic attractor. International Journal of bifurcation and chaos, 1999, 9: 1465‐1466.
    [95]Chen G R, Ueta T. Bifurcation analysis of Chen’s attractor. International Journal of bifurcation and chaos, 2000, 10: 1917‐1931.
    [96]Rossler O E. An equation for continuous chaos. Physics Letters A, 1996, 57: 397‐398.
    [97]Lu J H, Chen G R, Zhang S C. Dynamical analysis of a new chaotic attractor.International Journal of bifurcation and chaos, 2002, 12: 659‐661.
    [98]Celikovsky S, Chen G R. On a generalized Lorenz canonical form of chaotic systems. International Journal of bifurcation and chaos, 2002, 12: 1001‐1015.
    [99]Lu J H, Chen G R, Cheng D Z. A new chaotic system and beyond: the generalized Lorenz‐like system. International Journal of bifurcation and chaos, 2004, 14: 1507‐1537.
    [100]Yang Q G, Zhang K M, Chen G R. Hyperchaotic attractors from a linearly controlled Lorenz system. Nonlinear Analysis: Real World Applications, 299, 10: 1601‐1617.
    [101]Qi G Y, Chen G R, Zhang Y H. On a new asymmetric chaotic system. Chaos, Solitons & Fractals, 2008, 37: 409‐423.
    [102]Qi G Y, Du S Z, Chen G R, et al. On a four‐dimensional chaotic system. Chaos, Solitons & Fractals, 2005, 23: 1671‐1682.
    [103]Qi G Y, Chen G R. Analysis and circuit implementation of a new 4-D chaotic system. Physcia Letters A, 2006, 352: 386‐397.
    [104]Qi G Y, Chen G R, Li S W, et al. Four‐wing attractors: from pseudo to real. International Journal of bifurcation and chaos, 2006, 16: 859‐885.
    [105]Qi G Y, Wyk B J, Wyk M A. A four‐wing attractor and its analysis. Chaos, Solitons & Fractals, 2009, 40: 2016-2030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700