非线性演化方程的精确解及其动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,在自然科学和社会科学领域中广泛存在的非线性问题,越来越引起人们的关注,而且许多非线性问题的研究最终可归结为非线性演化方程来描述,通过对非线性演化方程的求解和定性分析的研究,有助于人们弄清系统在非线性作用下的运动变化规律,合理解释相关的自然现象,更加深刻地描述系统的本质特征,极大地推动相关学科如物理学、力学、应用数学以及工程技术的发展。
     本文从动力系统分支理论的角度来研究非线性演化方程的精确行波解、行波解的分支及其动力学行为,主要研究工作如下:
     第一章是绪论,综述了非线性演化方程的发展历史、研究现状、主要研究方法以及取得的成果,介绍了近年来非光滑波的发现、相应的研究方法及其最新研究进展,指出了非线性演化方程与动力系统之间的联系以及运用动力系统相关理论研究非线性演化方程的现状。最后介绍了研究非线性演化方程的动力系统方法一“三步法”的主要理论和结果以及其它预备知识。
     第二章利用动力系统方法研究了n+1维双sine-Gordon(DSG)方程与双sinh-Gordon(DSHG)方程的精确行波解。首先分别在相柱面和相平面上研究了DSG方程和DSHG方程的动力学性质,得到了这两个方程在不同参数空间的所有可能的精确行波解。随后利用三个不同的变换对这两个方程作进一步探究,在某些变换后得到的行波系统具有奇性,通过时间尺度变换消除奇性,把奇异系统化为正则系统,运用经典的动力系统分支理论研究了正则系统的轨道的定性行为,再利用奇异摄动理论分析了正则系统与奇异系统的轨道之间的关系,获得了奇异系统的解的动力学性质,我们得到这样一个重要事实:DSG方程与DSHG方程在这些变换下的行波解都是光滑的。结合相平面分析,我们给出了DSG方程与DSHG方程在这些变换下的所有可能的精确行波解。最后经过逐一验证,说明在变换下求出的DSG方程与DSHG方程的解都包含在不作变换而直接求解原方程所得到的解当中。也就是说,通过这些变换求出的DSG方程和DSHG方程的行波解只是形式上发生了变化,变换从本质上并没有改变原方程的动力学性质。充分说明了动力系统方法是研究非线性演化方程的行波解的有效方法,通过研究系统的解的动力学性质,所得到的行波解全面而细致,这是其他方法不可替代的。
     第三章研究了广义Calogero-Degasperis-Fokas (CDF)方程的动力学性质与精确行波解。由于原行波系统具有奇性,通过时间尺度变换消除奇性并化为正则系统后,不同的时间尺度导致两系统某些对应轨道有着不同的动力学性质,利用奇异摄动理论分析了正则系统与奇异系统的轨道之间的关系,证明了正则系统的奇异同宿轨道在不同参数条件下分别对应着奇异系统的周期轨道和同宿轨道,而正则系统的异宿轨道在不同参数条件下对应着奇异系统的同宿轨道和异宿轨道,说明了奇直线的存在只是使得系统“有可能”存在非光滑解,并非必然导致系统出现非光滑解,并解释了破缺波产生的原因,得到了广义CDF方程在不同参数空间所有可能的精确行波解的显式表达式,这些解既包含光滑的孤立波、扭波、反扭波和周期波,也包含非光滑双边破缺的峰(谷)型破缺波与单边破缺的破缺扭波和反扭波。说明了奇直线的存在使得非线性演化方程的行波解呈现非常复杂的动力学行为,而动力系统方法恰是研究这些复杂而有趣的现象的有效工具。
     第四章研究了广义非线性导数Schrodinger方程和高阶色散非线性Schrodinger方程的精确行波解,根据这两类方程的实际物理背景,通过适当的行波变换,把对这两类方程的行波解研究统一为对同一个Hamilton系统的研究,通过对该Hamilton系统的动力学行为完整而细致的讨论,得到了这两类Schrodinger型方程在不同参数条件下所有可能的包络孤立波解、包络扭波解和周期波解,所得到的结果比其他文献中的更为完整。
     第五章研究了非线性色散Schrodinger方程,即NLS(m,n)方程的精确解。通过适当的变换,把对复非线性演化方程的研究转化为对平面可积系统的研究,运用经典的平面动力系统的分支理论方法系统地研究了NLS(m,n)方程的解的动力学行为,解释了非光滑的周期尖斑图解和破缺斑图解出现的原因,获得了各种光滑解和非光滑解存在的充分条件,得到了NLS(m,n)方程的一些精确解的显式和隐式表达式,这些解既包含光滑的包络孤波斑图解、包络扭波斑图解和周期斑图解,也包含非光滑的周期尖斑图解。
     第六章对本文的工作进行了总结,提出了有待进一步研究的问题。
With the development of science and technology, there are many nonlinear problems in natural and social areas, which arouses much concern. These problems are usually characterized by nonlinear evolution partial differential equations. The research on find-ing explicit and exact solutions of nonlinear evolution equations and on analyzing the qualitative behavior of solutions of nonlinear wave equations can help us understand the motion laws of the nonlinear systems under the nonlinear interactions, explain the corre-sponding natural phenomena reasonably, describe the essential properties of the nonlinear systems more deeply, and promote greatly the development of engineering technology and related subjects such as physics, mechanics and applied mathematics.
     In this dissertation, the exact travelling wave solutions, the bifurcations and dynam-ical behavior of travelling wave solutions of the nonlinear evolution equations are inves-tigated from the viewpoint of bifurcation theory of dynamical systems. The major works of this dissertation mainly are as follows.
     In Chapter 1, the historical background, research developments, main methods and achievements of nonlinear evolution equations are summarized. The discovery, corre-sponding research approaches and recent advance of non-smooth waves are introduced. The relation between nonlinear evolution equations and dynamical systems along with the study on nonlinear evolution equations by using the theory of dynamical systems are presented. In the end of the chapter, some preliminary knowledge of dynamical systems and the basic mathematic theory and main results of the three-step method are introduced.
     In Chapter 2, the exact travelling wave solutions of the n+1 dimensional double sine-Gordon(DSG) equation and double sinh-Gordon(DSHG) equation are studied by using the dynamical system approach. First, we study the dynamical behavior of DSG equation and DSHG equation on phase cylinder and phase plane respectively and obtain all pos-sible explicit exact travelling wave solutions of the two equations in different parametric regions. Second, we investigate the two equations by using three different transforma-tions. Under some transformations, the resulting travelling wave systems are singular. After making a transformation of time scale, the singular systems are reduced to the regu-lar system. And the qualitative behavior of orbits of the regular system can be obtained by using the classical bifurcation theory of dynamical systems. Hence the dynamical behav-ior of the solutions of the singular systems are achieved from singular perturbation theory and the relation between the singular system and the regular system. An important fact is obtained:under these transformations the travelling wave solutions of DSG and DSHG equations are smooth. By the analysis of phase plane we give all possible explicit exact travelling wave solutions of the DSG and DSHG equations under these transformations. Finally, after verifying one by one, we illustrate that the solutions of DSG and DSHG equations which we obtained by making transformations are included in those obtained by considering the original equation directly. In other words, the solutions obtained by using transformations are just changed in forms and the transformations do not change the dynamical behavior of the equations essentially. We can conclude that the dynamical system approach is an effective method to solve nonlinear evolution equations. The trav-elling wave solutions obtained by using dynamical system approach are comprehensive and the approach can not be displaced by other methods.
     In Chapter 3, the exact travelling wave solutions and dynamical behavior of the gen-eralized Calogero-Degasperis-Fokas (gCDF) equation are studied. After making a trans-formation of time scale, the singular travelling wave system of gCDF equation is reduced to a regular dynamical system. The singular travelling wave system and the regular trav-elling wave system have distinct time scales which cause their some corresponding orbits to have distinct dynamical properties. And the relationship of orbits between the regular system and the singular system is analyzed by using singular perturbation theory. And the fact is proved that the singular homoclinic orbit of the regular system is corresponding to smooth periodic orbit or homoclinic orbit of the singular system; the heteroclinic orbit of the regular system is corresponding to smooth homoclinic orbit or heteroclicic orbit of the singular system. It shows that singular line does not always result in non-smooth so-lutions. Furthermore, the reason of the occurrence of breaking wave is explained. Finally, we give all possible explicit exact travelling wave solutions of gCDF equation, which in-clude not only smooth solitary waves, kink waves, anti-kink waves and periodic waves but also breaking waves with peak type or valley type (breaking in two sides), breaking kink waves and breaking anti-kink waves(breaking in one side). The existence of singu-lar line makes the dynamical behavior of travelling wave solutions of nonlinear evolution equations be more complex and the dynamical system approach is the effective tool to study these complex and interesting problems.
     In Chapter 4, the exact travelling wave solutions of the generalized nonlinear deriva-tive Schrodinger equation and the high order dispersive nonlinear Schrodinger equation are studied. According to the physical background and by proper travelling wave trans-formations, the research on the two equations is reduced to the research on the same Hamiltonian system. Through complete and delicate discussion of the dynamical behav-ior of the Hamiltonian system, we obtain all possible envelope solitary wave, envelope kink (anti-kink) wave and periodic wave solutions of the two equations, which are more complete than those in other papers.
     In Chapter 5, the exact solutions of the nonlinearly dispersive Schrodinger equation, i.e. NLS(m,n) equation, are studied. The research on complex nonlinear evolution equa-tion is transformed to the research on a planar integrable system by proper transformation. The dynamical behavior of solutions of NLS(m,n) equation is studied systematically by using the classical theory and methods of planar dynamical systems. The reasons for ap-pearance of non-smooth periodic cusp patterns and breaking patterns are explained and the sufficient conditions to guarantee the existence of smooth and non-smooth solutions are obtained. The explicit and implicit parametric representation of some smooth enve-lope solitary patterns, envelope kink patterns, periodic patterns and non-smooth periodic cusp patterns are given.
     In Chapter 6, the summary of this dissertation and the prospect of future study are given.
引文
[1]李大潜,陈韵梅,非线性发展方程,科学出版社,1999.
    [2]郭柏灵,非线性演化方程,上海科技教育出版社,1998.
    [3]Gleick J, Chaos:Making a New Science, New York:Viking Penguin Inc.,1988.中译本:《混沌开创新科学》,张椒誉译,上海译文出版社,1990.
    [4]傅新楚,关于非线性与复杂性.见:第九届全国现代数学和力学学术会议,上海:上海大学出版社,2004.
    [5]Ablowitz M J, Clarkson P A, Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Notes Series 149, Cambridge: Cambridge University Press,1991.
    [6]Bullough R K, Caudrey P J, Solitons. Berlin:Springer-Verleg,1980.
    [7]Dodd R K, Eilbeck J C, Morris H C, Solitons and Nonlinear Equations. London: Academic Press,1984.
    [8]Drazin P G, Johnson R S, Solitons:An Intruduction. Cambridge:Cambridge Univer-sity Press,1988.
    [9]Gu Chaohao, Guo Bailin, Li Yishen et al, Soliton Theory and Its Applications. New York:Springer-Verleg,1995.
    [10]Remoissenet M, Waves Called Solitons:Concepts and Experiments. Berlin: Springer-Verleg,1996.
    [11]Infeld E, Rowlands G, Nonlinear Waves, Solitons and Chaos. Cambridge:Cam-bridge University Press,2000.
    [12]任学藻,廖旭,刘涛等,一维分子晶体中的极化子,原子与分子物理学报,2006,4(23):616-620.
    [13]李百文,郑春阳,宋敏等,高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速,物理学报,2006,55(10):5325-5337.
    [14]吴紫标,光纤中的光孤子,大学物理,2000,19(3):40-41.
    [15]楼森岳,唐晓艳,非线性数学物理方法.北京:科学出版社,2006.
    [16]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何应用.上海:上海科学技术出版社,1999.
    [17]李翊神,孤子与可积系统.上海:上海科技教育出版社,1999.
    [18]Rogers C, Schief W K, Backlund and Darboux Transformations Geometry and Mod-ern Applications in Soliton Theory. Cambridge:Cambridge University Press,2002.
    [19]Russell J S, Report on Waves, in:Report of the British Association for the Advance-ment of Science,1837, pp.417-496.
    [20]Russell J S, On waves, in:Report of 14th Meeting of the British Association for the Advancement of Science,1844, pp.311-390.
    [21]王振东,孤立子与孤立波,力学与实践,2005,27(5):86-88.
    [22]Airy G B, Tides and Waves. London:Encyclopedia Metropolitana,1845, 192(5):241-396.
    [23]Stokes G G, On the theory of oscillatory waves, Transactions of the Cambridge Philosophical Society,1847,8:441-455.
    [24]王丽霞,KdV方程的第二次导出,数学的实践与认识,2006,36(8):343-349.
    [25]Boussinesq M J, Theorie de l'intumescence appelee onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sc. Paris,1871,72:755-759.
    [26]Boussinesq M J, Theorie des ondes et des remous qui se propagent le long d'un canal rectangularie horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, Journal de Mathematiques Pures et Appliquees,1872,17(2):55-108.
    [27]Boussinesq M J, Essai sur la theorie des eaux courants, Mem. Acad. Sci. Inst. Nat. France,1877,23(1):1-680.
    [28]Miles J W, The Korteweg-de Vries equation:a historical essay, Journal of Fluid Mechanics,1981,106:131-147.
    [29]Darrigol O, The spirited horse, the engineer, and the mathematician:Water waves in nineteenth-century hydrodynamics, Archive for History of Exact Sciences,2003, 58(1):21-95.
    [30]Rayleigh L, On Waves, Philosophical Magazine,1876,5(1):257-279.
    [31]McCowan J, On the solitary wave, Philosophical Magazine,1891,32(194):45-58.
    [32]Korteweg D J, de Vries G, On the change of form of long waves advancing in a rect-angular canal, and on a new type of long stationary waves, Philosophical Magazine, 1895,39(5):422-443.
    [33]Holden H, Peder D. Lax-Elements from his contributions to mathematics, A lecture at the Norwegian Academy of Science and Letters on March 17,2005中译本:《对Lax(拉克斯)工作的通俗介绍—Peter. D. Lax对数学的主要贡献》,张同 译,叶其孝校,数学译林,2005,2:121-127.
    [34]Fermi E, Pasta J R, Ulam S M, Studies on nonlinear problems. Los Alamos Science Laboratory Report La-1940,1955.
    [35]闫振亚,非线性波与可积系统:[博士学位论文].大连:大连理工大学,2002.
    [36]Zabusky N J, Kruskal M D, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters,1965,15(6):240-243.
    [37]陈登远,孤子引论.北京:科学出版社,2006,
    [38]Seeger A, Donth H, Kochendorfer A, Theorie der Versetzungen in eindimensionalen Atomreihen, Zeitschrift fur Physik,1953,134(2):173-193.
    [39]Perring J K, Skyrme T H R, A model unified field equation, Nuclear Physics,1962, 31:550-555.
    [40]申建伟,非线性波方程行波解分岔及其动力学行为的研究:[博士学位论文].西安:西北工业大学,2006.
    [41]Camassa R, Holm D D, An integrable shallow water equation with peaked solitons, Physical Review Letters,1993,71(11):1661-1664.
    [42]Kraenkel R A, Senthilvelan M, Zenchuk A I, Lie symmetry analysis and reduc-tions of a two-dimensional integrable generalization of the Camassa-Holm equation, Physics Letters A,2000,273(3):183-193.
    [43]Qian Tifei, Tang Minying, Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos Solitons and Fractal,2001,12(7):1347-1360.
    [44]Liu Zhengrong, Qian Tifei, Peakons of the Camassa-Holm equation, Applied Math-ematical Modelling,2002,26(3):473-480.
    [45]Tian Lixin, Sun Lu, Singular solitons of generalized Camassa-Holm models, Chaos, Solitons and Fractals,2007,32(2):780-799.
    [46]Wazwaz Abdul-Majid, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Applied Mathematics and Com-putation,2007,186(1):130-141.
    [47]Holm D D, Marsden J E, Ratiu T S, The Euler-Poincare equations and semidirect products with applications to continuum theories, Advances in Mathematics,1998, 137(1):1-81.
    [48]Rosenau Philip, Hyman James M, Compactons:Solitons with finite wavelength, Physical Review Letters,1993,70(5):564-567.
    [49]Rosenau Philip, On solitons, compactons, and Lagrange maps, Physics Letters A, 1996,211(5):265-275.
    [50]Yan Zhenya, Bluman George, New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Computer Physics Commu-nications,2002,149(1):11-18.
    [51]Wazwaz Abdul-Majid, Compacton solutions and nonlinear dispersion, Applied Mathematics and Computation,2003,142(3):495-509.
    [52]Wazwaz Abdul-Majid, Compacton solutions of the Kawahara-type nonlinear disper-sive equation, Applied Mathematics and Computation,2003,145(1):133-150.
    [53]Wazwaz Abdul-Majid, Compacton solutions of higher order nonlinear dispersive KdV-like equations, Applied Mathematics and Computation,2004, 147(2):449-460.
    [54]Zhang Jiefang, Meng Jianping, New localized coherent structures to the (2+1)-dimensional breaking soliton equation, Physics Letters A,2004,321(3):173-178.
    [55]He Jihuan, Wu Xuhong, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals,2006, 29(1):108-113.
    [56]Fan Xinghua, Tian Lixin, Compacton solutions and multiple compacton solu-tions for a continuum Toda lattice model, Chaos, Solitons and Fractals,2006, 29(4):882-894.
    [57]Feng Zhaosheng, Computations of soliton solutions and periodic solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces, Applied Mathematics and Computation,2006,182(1):781-790.
    [58]Inc Mustafa, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals,2007, 33(4):1275-1284.
    [59]Hasegawa A, Tappert F, Transmission of stationary nonlinear optical pulse in dis-persive dielectric fibers, Applied Physics Letters,1973,23(3):142-144.
    [60]Mollenaure L F, Stolen R H, Gordon J P, Experiment observation of picosec-ond pulse narrowing soliton in optical fibers, Physical Review Letters,1980, 45(13):1095-1098.
    [61]代红英,汪仲清,光纤孤立子与光孤子通信,重庆邮电学院学报,2004,16(6):77-80.
    [62]蔡炬,杨祥林,光孤子通信技术的现状与未来,半导体光电,2003,24(1):66-70.
    [63]刘喜莲,彭天翔,光孤子与光孤子通信,物理与工程,2002,12(5):37-41.
    [64]何淑贞,浅析光孤子通信技术,光纤通信,2002,24(4):28-30.
    [65]张翼,基于双线性方法的孤子可积系统:[博士学位论文].上海:上海大学,2004.
    [66]陈勇,孤立子理论中的若干问题的研究及机械化实现:[博士学位论文].大连:大连理工大学,2003.
    [67]Wahlquist Hugo D, Estabrook Frank B, Backlund transformation for solutions of the Korteweg-de Vries equation, Physical Review Letters,1973,31(23):1386-1390.
    [68]Rogers C, Shadwick W R, Backlund transformations and their application. New York:Academic Press,1982.
    [69]Darboux G, sur une proposition relative aux equations lineaires. Paris:Comptes Rendus Hebdomadaries des Seances de L'Academie des Science,1882.
    [70]Wadati Miki, Sanuki Heiji, Konno Kimiaki, Relationships among inverse method, Backlund transformation and an infinite number of conservation laws, Progress of Theoretical Physics,1975,53(2):419-436.
    [71]Ablowitz M J, Kaup D J, Newell A C et al, Nonliear evolution equations of physical significance, Physical Review Letters,1973,31(2):125-127.
    [72]Gu Chaohao, Darboux transformations for a class of integrable systems in n vari-ables, Analyse, Varietes, et Physique, Proc. of Colloque International en l'honneur d'Yvonne Choquet-Bruhat, Kluwer,1992.
    [73]Gu Chaohao, On the interaction of solitons for a class of integrable systems in the space-time Rn+1, Letters in Mathematical Physics,1992,26(3):199-209.
    [74]Gu Chaohao, Zhou Zixiang, On Darboux transformations for soliton equations in high dimensional space-time, Letters in Mathematical Physical,1994,32(1):1-10.
    [75]Gu Chaohao, Hu Hesheng, A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations, Letters in Mathematical Physics,1986, 11(4):325-335.
    [76]Gu Chaohao, On the Backlund transformations for the generalized hierar-chies of compound MKdV-SG equations, Letters in Mathematical Physics,1986, 12(1):31-41.
    [77]Hu Hesheng, Darboux Transformations Between Δα=sinh α and Δα=sinα and the Application to Pseudo-Spherical Congruences in R2,1, Letters in Mathematical Physics,1999,48(2):187-195.
    [78]Hu Hesheng, The geometry of sine-Laplace, sinh-Laplace equations, Proceedings of the 3rd Marcel Grossmann meeting on general relativity, Part B,1983, pp.1073-1078.
    [79]Gu Chaohao, Hu Hesheng, The soliton behavior of principal chiral fields, Tian-jin:Proceedings, Differential geometric methods in theoretical physics,1992, pp.501-510.
    [80]Hu Hesheng, Some nonexistence theorems for massive Yang-Mills fields and har-monic maps, Lecture Notes in Physics,1984,212:107-116.
    [81]Hu Hesheng, Letters in Mathematical PhysicsNonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime, Letters in Mathematical Physics,1987,14(3):253-262.
    [82]Hu Hesheng, Wu Siye, Nonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime (Ⅱ), Letters in Mathematical Physics,1987, 14(4):343-351.
    [83]Hu Xingbiao, Li Yong, Superposition formulae of a fifth-order KdV equation and its modified equation, Acta Mathematicae Applicatae Sinica,1988,4(1):46-54.
    [84]Hu Xingbiao, Clarkson P A, Backlund transformations and nonlinear superposi-tion formulae of a diferential-diference KdV equation, Journal of Physics A,1998, 31(5):1405-1414.
    [85]Hu Xingbiao, Zhu Zuonong, A Backlund transformation and nonlinear super-position formula for the Belov-Chaltikian lattice, Journal of Physics A,1998, 31(20):4755-4761.
    [86]Hirota R, Hu Xingbiao, Tang Xiaoyan, A vector potential KdV equation and vec-tor Ito equation:soliton solutions, bilinear Backlund transformations and Lax pairs, Journal of Mathematical Analysis and Applications,2003,288(1):326-348.
    [87]Xiao Ting, Zeng Yunbo, A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources, Physica A,2005,353(1):38-60.
    [88]Zeng Yunbo, Zhu Yiqing, Xiao Ying et al, Canonical explicit Backlund transforma-tions with spectrality for constrained flows of soliton hierarchies, Physica A,2002, 303(3-4):321-338.
    [89]Zeng Yunbo, New factorization of the Kaup-Newell hierarchy, Physica D,1994, 73(3):171-188.
    [90]Li Yishen, Ma Wenxiu, Zhang Jin E, Darboux transformations of classical Boussi- nesq system and its new solutions, Physics Letters A,2000,275(1):60-66.
    [91]Li Yishen, Zhang Jin E, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Physics Letters A,2001,284(6):253-258.
    [92]Li Yishen, Zhang Jin E,-Bidirectional soliton solutions of the classical Boussinesq system and AKNS system, Chaos, Solitons and Fractals,2003,16(2):271-277.
    [93]王明亮,白雪,齐次平衡原则与BTs,兰州大学学报,2000,36(3):12-17.
    [94]王明亮,李志斌,周宇斌,齐次平衡原理及其应用,兰州大学学报,1999,35(3):8-16.
    [95]Li Zhibin, Wang Mingliang, Travelling wave solutions to the two-dimensional KdV-Burgers equation, Journal of Physics A,1993,26(21):6027-6031.
    [96]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17(1):81-89.
    [97]Ma Wenxiu, Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources, Chaos, Solitons and Fractals,2005,26(5):1453-1458.
    [98]耿献国,二维Sawada-Kotera方程的Darboux变换,高校应用数学学报,1989,4(4):494-497.
    [99]Li Wenmin, Geng Xianguo, Darboux transformation of a differential-difference equation and its explicit solutions, Chinese Physics Letters,2006,23(6):1361-1364.
    [100]耿献国,变形Boussinesq方程的Lax对和Darboux变换,应用数学学报,1998,11(3):324-328.
    [101]耿献国,MKP方程和Darboux变换,数学年刊(A辑),1990,11(3):265-268.
    [102]Zhou Ruguang, Jiang Qiaoyun, A Darboux transformation and an exact solution for the relativistic Toda lattice equation, Journal of Physics A,2005,38(35):7735-7742.
    [103]Gardner C S, Green J M, Kruskal M D et al, Method for solving the Korteweg-de Vries equation, Physical Review Letters,1967,19:1095-1097.
    [104]Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Com-munications On Pure And Applied Mathematics,1968,21 (5):467-490.
    [105]Zakharov V E, Shabat A B, Exact theory of two-dimensional self-focusing and one-dimensional modulation instability of waves in a nonlinear media, Soviet Physics JETP,1972,34(1):62-69.
    [106]郭柏灵,庞小峰,孤立子.北京:科学出版社,1987.
    [107]Zakharov V E, Shabat A B, Interaction between solitons in a stable medium, Soviet Physics JETP,1973,37(5):823-828.
    [108]Ablowitz M J, Kaup D J, Newell A C et al, Method for solving the Sine-Gordon equation, Physical Review Letters,1973,30:1262-1264.
    [109]Ablowitz M J, Kaup D J, Newell A C et al, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Applied Mathematics,1974,53:249-315.
    [110]Ablowitz M J, Segur H, Solitons and the Inverse Scattering Transform. Philadel-phia:Society for Industrial and Applied Mathematics (SIAM),1981.
    [111]Wahlquist H D, Estabrook F B, Prolongation structures of nonlinear evolution equations, Journal of Mathematical Physics,1975,16(1):1-7.
    [112]Estabrook F B, Wahlquist H D, Prolongation structures of nonlinear evolution equations. II, Journal of Mathematical Physics,1976,17(7):1293-1297.
    [113]Wu Ke, Guo Hanying, Wang Shikun, Prolongation structures of nonlinear systems in higher dimensions, Communications in Theoretical Physics,1983,2:1425-1442.
    [114]Wang Shikun, Guo Hanying, Wu Ke, Inverse scattering transform and reg-ular Riemann-Hilbert problem, Communications in Theoretical Physics,1983, 2:1169-1175.
    [115]李翊神,汪克林,郭光灿等,非线性科学选讲.合肥:中国科学技术大学出版社,1992.
    [116]屠规彰,非巍兰方程的逆散射解法,应用数学和计算数学,1979,1:21-43.
    [117]李翊神,一类发展方程和谱的变形,中国科学(A辑),1982,25(5):385-390.
    [118]Case K M, Kac M, A discrete version of the inverse scattering problem, Journal of Mathematical Physics,1973,14(5):594-603.
    [119]Flaschka H, On the Toda lattice. Ⅱ-inverse-scattering solution, Progress of Theo-retical Physics,1974,51(3):703-716.
    [120]Ablowitz M J, Ladik J F, Nonlinear differential-difference equations, Journal of Mathematical Physics,1975,16(3):598-603.
    [121]刘希强,非线性发展方程显式解的研究:[博士学位论文].北京:中国工程物理研究院,2002.
    [122]倪皖荪,魏荣爵,水槽中的孤波.上海:上海科技教育出版社,1997.
    [123]Fokas A S, Its A R, The nonlinear Schrodinger equation on the interval, Journal of Physics A,2004,37(23):6091-6114.
    [124]Fokas A S, Its A R, Sung L Y, The nonlinear Schrodinger equation on the half-line, Nonlinearity,2005,18(4):1771-1822.
    [125]Dolye P W, Separation of variables for scalar evolution equations in one space dimension, Journal of Physics A,1996,29(23):7581-7595.
    [126]Doyle P W, Vassiliou P J, Separation of variables for the 1-dimensional non-linear diffusion equation, International Journal of Nonlinear Mechanics,1998, 33(2):315-326.
    [127]Zhdanov R Z, Separation of variables in the nonlinear wave equation, Journal of Physics A,1994,27(9):L291-L297.
    [128]Zhdanov R Z, Revenko I V, Fushchych W I, Orthogonal and non-orthogonal sepa-ration of variables in the wave equation utt-uxx+V(x)u=0, Journal of Physics A,1993,26(17):5959-5972.
    [129]曹策问,AKNS族的Lax方程组的非线性化,中国科学(A辑),1989,32(7):701-707.
    [130]Cao Cewen, Nonlinearization of the Lax system for AKNS hierarchy, Science in China (A),1990,33(5):528-536.
    [131]Cao Cewen, Geng Xianguo, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, Journal of Physics A,1990,23(18):4117-4125.
    [132]Cao Cewen, Geng Xianguo, Wu Yongtang, From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation, Journal of Physics A,1999,32(46):8059-8078.
    [133]Cheng Yi, Li Yishen, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Physics Letters A,1991,157(1):22-26.
    [134]Li Yishen, Ma Wenxiu, Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos, Solitons and Fractals,2000, 11(5):697-710.
    [135]Lou Senyue, Chen Lili, Formal variable separation approach for nonintegrable models, Journal of Mathematical Physics,1999,40(12):6491-6500.
    [136]Zeng Yunbo, Separation of variables for the constrained flows, Journal of Mathe-matical Physics,1997,38(1):321-329.
    [137]Zeng Yunbo, Ma Wenxiu, Separation of variables for soliton equations via their binary constrained flows, Journal of Mathematical Physics,1999,40(12):6526-6557.
    [138]Zeng Yunbo, Ma Wenxiu, The construction of canonical separated variables for binary constrained AKNS flow, Physica A,1999,274(4):505-515.
    [139]Ma Wenxiu, Geng Xianguo, New completely integrable Neumann systems related to the perturbation KdV hierarchy, Physics Letters B,2000,475(l):56-62.
    [140]Ma Wenxiu, Chen Min, Do symmetry constraints yield exact solutions? Chaos, Solitons and Fractals,2007,32(4):1513-1517.
    [141]Qiao Zhijun, Modified r-matrix and separation of variables for the modified Korteweg-de Vries (MKdV) hierarchy, Physica A,1997,43(1):129-140.
    [142]Qiao Zhijun, Zhou Ruguang, Discrete and continuous integrable systems possess-ing the same non-dynamical r-matrix, Physics Letters A,1997,235(1):35-40.
    [143]Zhou Zixiang, Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation, Journal of Mathematical Physics,1998,39(2):986-997.
    [144]Zhou Ruguang, Ma Wenxiu, Classical r-matrix structures of integrable mappings related to the Volterra lattice, Physics Letters A,1997,235(1):35-40.
    [145]Lou Senyue, Lu Jizong, Special solutions from the variable separation approach: the Davey-Stewartson equation, Journal of Physics A,1996,29(14):4209-4215.
    [146]Lou Senyue, On the coherent structures of the Nizhnik-Novikov-Veselov equation, Physics Letters A,2000,277(2):94-100.
    [147]Lou Senyue, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, Journal of Physics A,2002,35(49):10619-10628.
    [148]Tang Xiaoyan, Lou Senyue, Zhang Ying, Localized excitations in (2+1)-dimensional systems, Physical Review E,2002,66(4):046601-046617.
    [149]Tang Xiaoyan, Lou Senyue, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems, Journal of Mathematical Physics,2003,44(9):4000-4025.
    [150]Zhdanov R Z, Conditional Lie-Backlund symmetry and reduction of evolution equations, Journal of Physics A,1995,28(13):3841-3850.
    [151]Qu Changzheng, Group classification and generalized conditional symmetry reduc-tion of the nonlinear diffusion-convection equation with a nonlinear source, Studies in Applied Mathematics,1997,99(2):107-136.
    [152]Qu Changzheng, Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method, IMA Journal of Applied Mathematics, 1999,62(3):283-302.
    [153]Qu Changzheng, Zhang Shunli, Liu Ruochen, Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source, Physica D,2000, 144(1):97-123.
    [154]Qu Changzheng, He Wenli, Dou Jihong, Separation of variables and exact solutions of generalized nonlinear Klein-Gordon equations, Progress of Theoretical Physics, 2001,105(3):379-398.
    [155]Qu Changzheng, Estevez P G, On nonlinear diffusion equations with x-dependent convection and absorption, Nonlinear Analysis,2004,57(4):549-577.
    [156]Zhang Shunli, Lou Senyue, Qu Changzheng, Variable separation and exact solu-tions to generalized nonlinear diffusion equations, Chinese Physics Letters,2002, 19(12):1741-1744.
    [157]Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for generalized (1+2)-dimensional nonlinear diffusion equations, Chinese Physics Let-ters,2005,22(5):1029-1032.
    [158]Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for ex-tended (1+2)-dimensional nonlinear wave equations, Chinese Physics Letters,2005, 22(11):2731-2734.
    [159]Zhang Shunli, Lou Senyue, Variable separation and derivative-dependent func-tional separable solutions to generalized nonlinear wave equations, Communications in Theoretical Physics,2004,41(2):161-174.
    [160]Zhang Shunli, Lou Senyue, Derivative-dependent functional separable solutions for the KdV-type equations, Physica A,2004,335(3):430-444.
    [161]Zhang Shunli, Lou Senyue, Qu Changzheng, New variable separation ap-proach:application to nonlinear diffusion equations, Journal of Physics A,2003, 36(49):12223-12242.
    [162]Zhang Shunli, Lou Senyue, Qu Changzheng, The derivative-dependent func-tional variable separation for the evolution equations, Chinese Physics,2006, 15(12):2765-2776.
    [163]Hirota Ryogo, Exact solution of the Korteweg-de Vries equation for multiple col-lisions of solitons, Physical Review Letters,1971,27(18):1192-1194.
    [164]Hirota Ryogo, Satsuma Junkichi, A variety of nonlinear network equations gener-ated from the Backlund transformation for the Toda lattice, Progress of Theoretical Physics Supplement,1976,59:64-100.
    [165]Matsuno Y, Bilinear Transformation Method. New York:Academic Press,1984.
    [166]Hu Xingbiao, Rational solutions of integrable equations via nonlinear superposi-tion formulae, Journal of Physics A,1997,30(23):8225-8240.
    [167]Hu Xingbiao, Zhu Zuonong, Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superposition formula, Journal of Mathemat-ical Physics,1998,39(9):4766-4772.
    [168]Wu Yongtang, Hu Xingbiao, A new integrable differential-difference system and its explicit solutions, Journal of Physics A,1999,32(8):1515-1521.
    [169]Hu Xingbiao, Tam Honwah, Some new results on the Baszak-Marciniak 3-field and 4-field lattices, Reports on Mathematical Physics,2000,46(1):99-105.
    [170]Tam Honwah, Ma Wenxiu, Hu Xingbiao et al, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, Journal of the Physical Society of Japan, 2000,69(1):45-52.
    [171]Hu Xingbiao, Ma Wenxiu, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Physics Letters A,2002, 293(3-4):161-165.
    [172]Boiti M, Leon J J P, Manna M et al, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems,1986,2(3):271-279.
    [173]Boiti M, Leon J J P, Manna M et al, On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane, Inverse Problems,1987,3(1):25-36.
    [174]Radha R, Lakshmanan M, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations, Journal of Mathemati-cal Physics,1994,35(9):4746-4756.
    [175]Lou Senyue, Generalized dromion solutions of the (2+1)-dimensional KdV equa-tion, Journal of Physics A,1995,28(24):7227-7232.
    [176]Zhang Jiefang, Abundant dromion-like structures to the (2+1) dimensional KdV equation, Chinese Physics,2000,9(1):1-4.
    [177]Lou Senyue, Ruan Hangyu, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation, Journal of Physics A,2001,34(2):305-316.
    [178]Wang Mingliang, Solitary wave solutions for variant Boussinesq equations, Physics Letters A,1995,199(3-4):169-172.
    [179]Wang Mingliang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A,1996,213(5-6):279-287.
    [180]Wang Mingliang, Zhou Yubin, Li Zhibin, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A,1996,216(1):67-75.
    [181]Tian Bo, Gao Yitian, New families of exact solutions to the integrable disper- sive long wave equations in 2+1-dimensional spaces, Journal of Physics A,1996, 29(11):2895-2903.
    [182]Fan Engui, Zhang Hongqing, A note on the homogeneous balance method, Physics Letters A,1998,246(5):403-406.
    [183]Fan Engui, Zhang Hongqing, New exact solutions to a system of coupled KdV equations, Physics Letters A,1998,245(5):389-392.
    [184]张解放,长水波近似方程的多孤子解,物理学报,1998,47(9):1416-1420.
    [185]张解放,变更Boussinesq方程和Kupershmidt方程的多孤子解,应用数学和力学,2000,21(2):171-175.
    [186]闫振亚,张鸿庆,Brusselator反应扩展模型的Auto-Darboux变换和精确解,应用数学和力学,2001,22(5):477482.
    [187]Bluman G, Cole J, General similarity solution of the heat equation, Journal of Mathematics and Mechanics,1969,18(5):1025-1042.
    [188]Bluman G, Kumei S, Symmetries and Differential Equations. New York:Springer-Verlag,1989.
    [189]Olver P J, Applications of Lie Groups to Differential Equations. Berlin:Springer-Verlag,1986.
    [190]Clarkson P A, Kruskal M D, New similarity reductions of the Boussinesq equation, Journal of Mathematical Physics,1989,30(10):2201-2213.
    [191]Clarkson P A, Nonclassical symmetry reductions for the Boussinesq equation, Chaos, Solitons and Fractals,1995,5(12):2261-2301.
    [192]Clarkson P A, Mansfield E L, Symmetry reductions and exact solutions of shallow water wave equations, Acta Applicandae Mathematicae,1995,39(1-3):245-276.
    [193]Alexeyev A A, A multidimensional superposition principle:classical solitons Ⅲ, Physics Letters A,2005,335(2-3):197-206.
    [194]Conte R, Invariant painleveanalysis of partial differential equations, Physics Let-ters A,1989,140(7-8):383-390.
    [195]Pickering A, A new truncation in Painleve analysis, Journal of Physics A,1993, 26(17):4395-4405.
    [196]Pickering A, The singular manifold method revisited, Journal of Mathematical Physics,1996,37(4):1894-1927.
    [197]Parkes E J, Duffy B R, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Computer Physics Communica- tions,1996,98(3):288-300.
    [198]Malfliet Willy, Solitary wave solutions of nonlinear wave equations, American Journal of Physics,1992,60(7):650-654.
    [199]Malfliet Willy, Hereman Willy, The tanh method:I. Exact solutions of nonlinear evolution and wave equations, Physica Scripta,1996,54(6):563-568.
    [200]Malfliet Willy, Hereman Willy, The tanh method:II. Perturbation technique for conservative systems, Physica Scripta,1996,54(6):569-575.
    [201]Fan Engui, Extended tanh-function method and its applications to nonlinear equa-tions, Physics Letters A,2000,277(4-5):212-218.
    [202]Wazwaz A M, A sine-cosine method for handling nonlinear wave equations, Math-ematical and Computer Modelling,2004,40(5-6):499-508.
    [203]Lou Senyue, Ni Guangjiong, The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations, Journal of Mathematical Physics, 1989,30(7):1614-1620.
    [204]Hereman W, Banerjee P P, Korpel A et al, Exact solitary wave solutions of nonlin-ear evolution and wave equations using a direct algebraic method, Journal of Physics A,1986,19(5):607-628.
    [205]田畴,李群及其在微分方程中的应用.北京:科学出版社,2001.
    [206]田畴,Burgers方程的新的强对称、对称和李代数,中国科学(A辑),1987,30(10):1009-1018.
    [207]李翊神,朱国城,一个谱可变演化方程的对称,科学通报,1986,31(19):1449-1453.
    [208]Li Yishen, Zhu Guocheng, New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations,Ⅱ. AKNS system,1986, Journal of Physics A,19(18):3713-3725.
    [209]朱国城,季孝达,可积方程新的对称、李代数及谱可变演化方程,科学通报,1988,33(13):972-976.
    [210]Lou Senyue, A note on the new similarity reductions of the Boussinesq equation, Physics Letters A,1990,151(3-4):133-135.
    [211]Lou Senyue, Similarity solutions of the Kadomtsev-Petviashvili equation, Journal of Physics A,1990,23(13):L649-L654.
    [212]Lou Senyue, Ruan Hangyu, Chen Defang et al, Similarity reductions of the KP equation by a direct method, Journal of Physics A,1991,24(7):1455-1467.
    [213]Lou Senyue, Tang Xiaoyan, Lin Ji, Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, Journal of Mathematical Physics,2000,41(12):8286-8303.
    [214]Lou Senyue, Symmetries of the Kadomtsev-Petviashvili equation, Journal of Physics A,1993,26(17):4387-4394.
    [215]Tian Lixin, Yin Jiuli, New peakon and multi-compacton solitary wave solu-tions of fully nonlinear sine-Gordon equation, Chaos, Solitons and Fractals,2005, 24(1):353-363.
    [216]Zhang Jiefang, Dai Chaoqing, Xu Changzhi et al, Solutions with separated vari-ables and breather structures in the (1+1)-dimensional nonlinear systems, Physics Letters A,2006,352(6):511-519.
    [217]Liu Zhengrong, Lin Qingmei, Li Qixiu, Integral approach to compacton solutions of Boussinesq-like B(m,n) equation with fully nonlinear dispersion, Chaos, Solitons and Fractals,2004,19(5):1071-1081.
    [218]Liu Zhengrong, Long Yao, Compacton-like wave and kink-like wave of GCH equa-tion, Nonlinear Analysis:Real World Applications,2007,8(1):136-155.
    [219]Yan Zhenya, New compacton-like and solitary patterns-like solutions to non-linear wave equations with linear dispersion terms, Nonlinear Analysis,2006, 64(5):901-909.
    [220]Yan Zhenya, An improved algebra method and its applications in nonlinear wave equations, Chaos, Solitons and Fractals,2004,21(4):1013-1021.
    [221]Inc Mustafa, Exact and numerical solitons with compact support for nonlinear dispersive K(m,p) equations by the variational iteration method, Physica A,2007, 375(2):447-456.
    [222]Inc Mustafa, New compact and noncompact solutions of the K(k, n) equations, Chaos, Solitons and Fractals,2006,29(4):895-903.
    [223]Wazwaz Abdul-Majid, Exact and explicit travelling wave solutions for the nonlin-ear Drinfeld-Sokolov system, Communications in Nonlinear Science and Numerical Simulation,2006,11(3):311-325.
    [224]Wazwaz Abdul-Majid, The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K(n, n)-Burger equations, Physica D,2006, 213(2):147-151.
    [225]Wazwaz Abdul-Majid, Compacton solutions of the Kawahara-type nonlinear dis-persive equation, Applied Mathematics and Computation,2003,145(1):133-150.
    [226]张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,1978,17(3):23-27.
    [227]范恩贵,孤立子和可积系统:[博士学位论文].大连:大连理工大学,1998.
    [228]张鸿庆,吴方向,一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报,1992,24(6):700-707.
    [229]张鸿庆,吴方向,构造板壳问题基本解的一般方法,科学通报,1993,38(7):671-672.
    [230]张鸿庆,冯红,构造弹性力学位移函数的机械化算法,应用数学和力学,1995,16(4):315-322.
    [231]张鸿庆,冯红,非齐次线性算子方程组一般解的代数构造,大连理工大学学报,1994,34(3):249-255.
    [232]闫振亚,张鸿庆,一类非线性演化方程新的显式行波解,物理学报,1999,48(1):1-5.
    [233]闫振亚,张鸿庆,具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解,物理学报,1999,48(11):1957-1961.
    [234]闫振亚,张鸿庆,非线性浅水波近似方程组的显式精确解,物理学报,1999,48(11):1962-1968.
    [235]Li Jibin, Zhang Lijun, Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation, Chaos, Solitons and Fractals,2002,14(4):581-593.
    [236]Zhang Lijun, Li Jibin, Bifurcations of traveling wave solutions in a coupled non-linear wave equation, Chaos, Solitons and Fractals,2003,17(5):941-950.
    [237]Li Jibin, Li Hong, Li Shumin, Bifurcations of travelling wave solutions for the generalized Kadomtsev-Petviashili equation, Chaos, Solitons and Fractals,2004, 20(4):725-734.
    [238]Li Jibin, Li Ming, Bounded travelling wave solutions for the (n+1)-dimensional sine-and sinh-Gordon equations, Chaos, Solitons and Fractals,2005, 25(5):1037-1047.
    [239]Li Jibin, Exact explicit travelling wave solutions for (n+l)-dimensional Klein-Gordon-Zakharov equations, Chaos, Solitons and Fractals,2007,34(3):867-871.
    [240]Geng Yixiang, He Tianlan, Li Jibin, Exact travelling wave solutions for the (n+1)-dimensional double sine- and sinh-Gordon equations, Applied Mathematics and Computation,2007,188(2):1513-1534.
    [241]Shen Jianwei, Xu Wei, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos, Solitons and Fractals, 2005,26(4):1149-1162.
    [242]Shen Jianwei, Li Jibin, Xu Wei, Bifurcations of travelling wave solutions in a model of the hydrogen-bonded systems, Applied Mathematics and Computation, 2005,171(1):242-271.
    [243]Shen Jianwei, Xu Wei, Jin Yanfei, Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation, Applied Mathematics and Computation,2005, 171(2):677-702.
    [244]Shen Jianwei, Xu Wei, Smooth and non-smooth travelling wave solutions of gen-eralized Degasperis-Procesi equation, Applied Mathematics and Computation,2006, 182(2):1418-1429.
    [245]Liu Zhengrong, Chen Can, Compactons in a general compressible hyperelastic rod, Chaos, Solitons and Fractals,2004,22(3):627-640.
    [246]Liu Zhengrong, Yang Chenxi, The application of bifurcation method to a higher-order KdV equation, Journal of Mathematical Analysis and Applications,2002, 275(1):1-12.
    [247]冯大河,非线性波方程的精确解与分支问题研究:[博士学位论文].昆明:昆明理工大学,2007.
    [248]Feng Dahe, Li Jibin, Lu Junliang et al, The improved Fan sub-equation method and its application to the Boussinesq wave equation, Applied Mathematics and Computa-tion, in press,2007.
    [249]Feng Dahe, Li Jibin, Exact explicit travelling wave solutions for the (n+1)-dimensional Φ6 field model, Physics Letters A,2007,369(4):255-361.
    [250]Li Jibin, Shen Jianwei, Travelling wave solutions in a model of the helix polypep-tide chains, Chaos, Solitons and Fractals,2004,20(4):827-841.
    [251]Li Jibin, Zhang Jixiang, Bifurcations of travelling wave solutions for the gener-alization form of the modified KdV equation, Chaos, Solitons and Fractals,2004, 21(4):899-913.
    [252]Li Hong, Sun Shaorong, Li Jibin, Bifurcations of travelling wave solutions for the Boussinesq equations, Applied Mathematics and Computation,2006,175(1):61-71.
    [253]Feng Dahe, He Tianlan, Lu Junliang, Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation, Applied Mathematics and Computa-tion,2007,185(1):402-414.
    [254]Feng Dahe, Lii Junliang, Li Jibin et al, Bifurcation studies on travelling wave solu-tions for nonlinear intensity Klein-Gordon equation, Applied Mathematics and Com-putation,2007,189(1):271-284.
    [255]Shen Jianwei, Xu Wei, Li Wei, Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons, Chaos, Solitons and Fractals,2006, 27(2):413-425.
    [256]Cole J D, Perturbation Methods in Applied Mathematics. Waltham:Blaisdell Pub-lishing Company,1968.
    [257]Nayfeh A H, Problems in Perturbation. New York:John Wiley & Sons,1985.
    [258]Murdock J A, Perturbations:Theory and Methods. New York:John Wiley & Sons, 1991.
    [259]戴世强,邓学莹,段祝平等,20世纪理论和应用力学十大进展,力学进展,2001,31(3):322-326.
    [260]汪淳,同伦分析方法在流体力学中的应用:[博士学位论文].上海:上海交通大学,2003.
    [261]廖世俊,超越摄动—同伦分析方法导论.北京:科学出版社,2006.
    [262]Hilton P J, An Introduction to Homotopy Theory. Cambridge:Cambridge Univer-sity Press,1953.
    [263]Sen S, Topology and Geometry for Physicists. Florida:Academic Press,1983.
    [264]Liao Shijun, An approximate solution technique not depending on small param-eters:A special example, International Journal of Non-Linear Mechanics,1995, 30(3):371-380.
    [265]Liao Shijun, A kind of approximate solution technique which does not depend upon small parameters-Ⅱ. An application in fluid mechanics, International Journal of Non-Linear Mechanics,1997,32(5):815-822.
    [266]Liao Shijun, An explicit, totally analytic approximate solution for Blasius'viscous flow problems, International Journal of Non-Linear Mechanics,1999,34(4):759-778.
    [267]Liao Shijun, An analytic approximation of the drag coefficient for the viscous flow past a sphere, International Journal of Non-Linear Mechanics,2002,37(1):1-18.
    [268]Liao Shijun, A uniformly valid analytical solution of two-dimensional viscous flow over a semi-infinite flat plate, Journal of Fluid Mechanics,1999,385:101-128.
    [269]Liao Shijun, Campo A, Analytic solutions of the temperature distribution in Blasius viscous flow problems, Journal of Fluid Mechanics,2002,453:411-425.
    [270]He Jihuan, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals,2004,19(4):847-851.
    [271]He Jihuan, Application of homotopy perturbation method to nonlinear wave equa-tions, Chaos, Solitons and Fractals,2005,26(3):695-700.
    [272]He Jihuan, Homotopy perturbation method for bifurcation of nonlinear prob-lems, International Journal of Nonlinear Sciences and Numerical Simulation,2005; 6(2):207-208.
    [273]王雨顺,孤立波方程的辛和多辛算法的构造和计算:[博士学位论文].北京:中国科学院数学和系统科学研究院,2001.
    [274]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1881,7(3):375-422.
    [275]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1882,8:251-296.
    [276]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1885,1(4):167-244.
    [277]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1986,2:151-217.
    [278]Birkhoff G D, Dynamical systems. New York:American Mathematical Society College Publication,1927.
    [279]Birkhoff G D, Stability and the equations of dynamics, American Journal of Math-ematics,1927,49(1):1-38.
    [280]Birkhoff G D, Stabilita e periodicita nella dinamica, Periodico di Matematiche, 1926,6(4):262-271.
    [281]Andronov A A, Pontryagin, Systemes Grossiers, Doklady Akademii Nauk SSSR, 1937,14:247-251.
    [282]李继彬,冯贝叶,稳定性,分支与混沌.昆明:云南科技出版社,1995.
    [283]张芷芬,丁同仁,黄文灶等,微分方程定性理论.北京:科学出版社,2003.
    [284]时宝,张德存,盖明久,微分方程理论及其应用.北京:国防工业出版社,2005.
    [285]高慧贞,黄启宇,微分方程定性与稳定性理论.福州:福建科学技术出版社,1993.
    [286]刘式达,刘式适,叶其孝,非线性演化方程的显式行波解,数学的实践与认识,1998,28(4):289-301.
    [287]刘式达,刘式适,孤立波与同宿轨道,力学与实践,1991,13(4):9-15.
    [288]Rosenau Philip, Nonlinear dispersion and compact structures, Physical Review Letters,1994,73(13):1737-1741.
    [289]Rosenau Philip, On nonanalytic solitary waves formed by a nonlinear dispersion, Physics Letters A,1997,230(5-6):305-318.
    [290]Rosenau Philip, On a class of nonlinear dispersive-dissipative interactions, Physica D,1998,123(4):525-546.
    [291]Li Y A, Olver P J, Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I:Compactons and peakons, Discrete and Continuous Dynamical Systems,1997,3(3):419-432.
    [292]Li Y A, Olver P J, Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system Ⅱ:Complex analytic behavior and convergence to non-analytic aolutions, Discrete and Continuous Dynamical Systems,1998, 4(1):159-191.
    [293]Li Y A, Olver P J, Rosenau P, Non-analytic solutions on nonlinear wave models, Technical Report 1591, Institute of Mathematics and Applications, Minnesota,1998.
    [294]Li Jibin, Liu Zhengrong, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling,2000,25(1):41-56.
    [295]Li Jibin, Liu Zhengrong, Traveling wave solutions for a class of nonlinear disper-sive equations, Chinese Annals of Mathematics,2002,23(3):397-418.
    [296]Li Jibin, Wu Jianhong, Zhu Huaiping, Travelling waves for an integrable higher or-der KdV type wave equations, International Journal of Bifurcation and Chaos,2006, 16(8):2309-2324.
    [297]Li Jibin, Dai Huihui, On the Study of Singular Nonlinear Travelling Wave Equa-tions:Dynamical System Approach. Beijing:Science Press,2007.
    [298]李继彬,浑沌与Melnikov方法.重庆:重庆大学出版社,1989.
    [299]Byrd P F, Friedman M D, Handbook of Elliptic Integrals for Engineers and Physi-cists. Berlin:Springer-Verlag,1954.
    [300]Perring JK, Skyrme TH, A model unified field equation, Nuclear Physics,1962, 31:550-555.
    [301]Lamb G L, Elements of Soliton Theory, New York:Interscience,1980.
    [302]Zakrzewski W J, Low Dimensional Sigma Models, Bristol:Hilger,1989.
    [303]Jackiw R, Teitelboim C, in Quantum Theory of Gravity, Bristol:Hilger,1984.
    [304]Davidov A S, Soli tons in molecular systems, Dordrecht:Kluver,1981.
    [305]Rajaraman R, Soliton and Instantons:An Introduction to Solitons and Instantons in Quantum Field Theory, Amsterdam:NorthHolland,1982.
    [306]kasai Y, Tanda S, Hatakenaka N, Takayanagi H, Fluxon dynamics in isolated long Josephson junctions, Physica C,2001,352:211-214.
    [307]Narita K, Deformed sine-and sinh-Gordon equations, deformed Liuville equation, and their discrete models, Journal of Physics Society Japan,2003,72(6):1339-1349.
    [308]Konopelchenko B G, Schief W k, Rogers C, A (2+1)-dimensional sine-Gordon system:its auto-Backlund transformation, Physics letters A,1992,172:39-48.
    [309]Lou Senyue, Symmetry analysis and exact solutions of the 2+1 dimensional sine-Gordon system, Journal of Mathematical Physics,2000,41:6509-6524.
    [310]Kobayashi K K, Izutsu M, Exact solution of n-dimensional sine-Gordon equation, Journal of Physics Society Japanan,1976,41(3):1091-1092.
    [311]Vitanov N K, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, Journal of Physics A,1996,29:5195-5207.
    [312]Dubrovsky V G, Formusatik I B, New solutions of two-dimensional integrable sine-Gordon equation generated by nontrivial singular boundaries, Physcis Letters A,2001,278:339-347.
    [313]Batiha B, Noorani MSM, Hashim I, Numerical solution of sine-Gordon equation by variational iteration method, Physics Letters A,2007,370:437-440.
    [314]Sirendaoreji, Jiong S, A direct method for sloving sine-Gordon type equations, Physics Letters A,2002,298:133-139.
    [315]Wazwaz A M, The tanh method:exact solutions of the sine-Gordon and the sinh-Gordon equations, Applied Mathematic and Computation,2005,167(2):1196-210.
    [316]Wazwaz A M, The tanh method and a variable separated ODE method for solving duoble sine-Gordon equation, Physics Letter A,2006,350:367-370.
    [317]Wazwaz A M, A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations, Chaos, Solitons and Fractals,2007,33:703-710.
    [318]Li Jibin, Li Ming, Bounded Travelling Wave Solutions for the (n+l)-Dimensional Sine-and Sinh-Gordon Equations, Chaos, Solitons and Fractals,2005,25:1037-1047.
    [319]Liu Shikuo, Fu Zuntao, Liu Shida, Exact solutions to sine-Gordon-type equations, Physics Letter A,2006,351:59-63.
    [320]韩茂安,顾圣士,非线性系统的理论和方法.北京:科学出版社,2001.
    [321]韩茂安,朱德明,微分方程分支理论.北京:煤炭工业出版社,1994.
    [322]张锦炎,冯贝叶,常微分方程几何理论与分支问题.北京:北京大学出版社,2000.
    [323]罗定军,张祥,董梅等,动力系统的定性与分支理论.北京:科学出版社,2001.
    [324]Wiggins S, Global Bifurcations and Chaos. New York:Springer-Verlag,1988.
    [325]Calogero F, Reduction technique for matrix nonliner evolution equations solvable by the spectral transform, Journal of Mathematical Physics,1981,22:23-31.
    [326]Fokas A S, A symmetry approach to exactly solvable evolution equations, Journal of Mathematical Physics,1980,21:1318-1325.
    [327]Ablowitz M J, Clarkson P A, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press,1991.
    [328]Lakshmanan M, Kaliappan P, Lie Transformations, nonlinear evolution equations, and Painleve forms, Journal of Mathematic Physics,1983,24:795-805.
    [329]Hlavaty L, Painleve analysis of the Calogero-Degasperis-Focas equation, Physics Letter A,1985,113:177-178.
    [330]Kouichi Toda, Song-ju Yu, Note on an extension of the CDF equation to (2+1) dimensions, Reports on Mathematical Physics,48(2001)255-262.
    [331]Gandarias M L, Saez S, On the Calogero-Degasperis-Focas equation in (2+1)di-mensions, Physica A,2006,362:261-276.
    [332]Teoman Ozer, New exact solutions to the CDF equations, Chaos, Solitons and Fractals(2007),doi:10.1016/j.chaos,2007.05.018.
    [333]Fan Engui, Dai Huihui, A direct approach with computerized symbolic computa-tion for finding a series of travelling waves to nonlinear equations, Computer Physics Commuications,2003,153:17-30.
    [334]Pavlov M V, Relationships between differential substitutions and Hamiltonian structures of the Korteweg-de Vries equation, Physics Letters A,1998,243:295-300.
    [335]Chen H H, On biquadratic exchange interactions in Spin-I system, Physics Letters A,1974,50:363-364.
    [336]Weiss J, The painleve property for partial differential equation. Ⅱ:Backlund transformation, Lax pairs, and the Schwarzian derivative, Journal of Mathematical Physics,1983,24:1405-1413.
    [337]Berezin F A, Shubin MA, The Schrodinger Equation. Boston, MA:Kluwer,1991.
    [338]Agrawal GP, Nonlinear Fiber Optics. San Diego:Academic Press,1995.
    [339]Akhmediev NN, Ankiewica A, Soliton:Nonlinear Pulse and Bean. London:Chap-man and Hall,1997.
    [340]Hasegawa A, Optical Solitons in Fibers. New York:Springer-Verlag,1989.
    [341]Hasegawa A, Tappert F, Transmission of stationary nonlinear optical pulses in dis-persive dielectric fibers, Appl. Physics Letter,1973,23:142-170.
    [342]Shaw J K, Mathematical principles of optical fiber communications, SIAM, Philadelphia,2004.
    [343]Van Saarloos, Hohenberg P C, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D,1992,56:303-367.
    [344]Ibrahim R S, El-kalaawy O H, Extended tanh-function method and reduction of nonlinear Schrodinger-type euations to a quadrature, Chaos, Solitons and Fractals, 2007,31:1001-1008.
    [345]Guo Boling, Wu Yaping, Orbital stability of solitary waves for the nonlinear deriva-tive Schrodinger equation, Journal of Differential Equations,1995,123(1):35-55.
    [346]Mathieu Colin, Masahito Ohta, Stability of solitary waves for derivative nonlinear Schrodinger equation, Annales de L'Institut Henri Poincare-Analyse Non Lineaire, 2006,23:753-764.
    [347]Hayashi N, Ozawa T, On the derivative nonlinear Schrodinger equation, Physica D,1992,55:14-36.
    [348]Hayashi N, Ozawa T, Finite energy solutions of nonlinear Schrodinger equation of derivative type, SIAM Journal on Mathematical Analysis,1994,25:1488-1503.
    [349]Huang Dingjiang, Li Desheng, Zhang Hongqing, Explicit and exact travelling wave solutions for the generalized derivative Schrodinger equation, Chaos, Solitons and Fractals,2007,31:586-593.
    [350]Zhu Shundong, Exact solutions for the high-order dispersive cubic-quintic non-linear Schrodinger equation by the extened hyperbolic auxiliary equation method, Chaos, Solitons and Fractals,2007,34:1608-1612.
    [351]Yan Zhenya, Envelope compactons and solitary patterns, Physics Letters, A(2006), 355:212-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700