海藻生物质热解与燃烧的试验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭和环境恶化问题的日趋严重,开发洁净的可再生能源已经成为了当前全球紧迫的问题。生物质能作为一种丰富的可再生能源,受到世界各国的重视,诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的研究,并形成了各具特色的生物质能源研究与开发体系。但目前全世界大范围对能源植物的利用主要是木材与农作物,实际上美国《科学》杂志称,在某些情况下,用粮食作物等制造生物燃料不仅达不到减缓气候变化的目的,反而有可能增加温室气体排放。同时发展生物质能要处理好能源与粮食的关系,因此开发新型的生物质就显得尤其重要。海藻类生物质生活在海洋里,不占用耕地,其资源开发的潜力巨大。特别是我国拥有广阔的海洋优势,高效、清洁、合理地利用丰富的海藻资源,对于我国在日后国际能源竞争中占据有利的地位有重大的理论意义与工程应用价值。当今世界范围内,各国对海藻这类海洋生物质的研究还比较少,属于崭新课题。本文主要对典型大型海藻热化学转化过程(燃烧和热解)进行了系统的试验与理论研究。
     研究海藻的燃料特性是进行海藻生物质利用的基础。第二章从工业分析和元素分析上分析了海藻生物质,发现其高灰低热值,高含水量,含氧量低于陆上生物质。海藻生物质灰熔点普遍不高,尤其长松藻极低的灰熔点导致其不适合热化学利用。我国国家标准(GB)与美国ASTM标准规定的灰化温度都不适合海藻类生物质,同时江蓠与马尾藻在较高灰化温度下,生成了较多的高熔点物,影响了灰熔点的判断。低温(530℃)下制得灰样的灰熔点更具有参考性。通过灰成分分析、X射线衍射方法、热显微镜观察及TG-DTG-DTA联用试验,对3种海洋生物质——海藻的灰熔融过程进行了研究。研究表明:海藻灰渣中都有大量碱金属氯化物结晶相,随着灰化温度的升高,结晶相强度减弱,发生了碱金属的蒸发,因而海藻热化学转化能源利用时必须考虑碱金属的蒸发问题。
     同时文中还使用NETZSCH DSC404型差示量热扫描仪(DSC)测定了3种海洋生物质-海藻在40~550℃温度范围内的比热容,并在传统求解方法的基础上根据失重值对结果进行了修正。结果表明:海藻在升温过程中水分挥发,挥发分大量释放,半焦状态3个主要区间内的比热容相差较大,其原因为其残留物性质发生了变化。3种海藻总体相比较而言,江蓠的比热容最大,条浒苔次之,马尾藻最小。文中还给出了海藻在40~550℃温度范围内的比热容与温度的关联式。研究结果可供大型海藻生物质热化学转换能源利用及其相应的数值模拟参考使用。
     热分析是分析海藻热解与燃烧过程的重要方法,因而第三章主要在DTG-60H热分析仪上进行了海藻生物质的热解与燃烧试验。海藻热解失重过程由脱水,快速失重和慢速失重以及固体残留物的分解过程。海藻热解温度比陆上生物质低,因为海藻的主要成分不同于陆上生物质的纤维素、半纤维素、木质素。FTIR分析用于测量样品热解时成分的变化;TG-MS用来分析海藻热解过程中的气体产物。随着升温速率增加,海藻热解初析温度提高,最大热解速率值增大,对应的峰值温度后移,挥发分热解活化能也随之增加。对海藻生物质的热解过程使用Coats–Redfern积分法处理。二级反应机理函数适用于江蓠与海带的热解动力学分析;条浒苔和马尾藻热解低温区采用Zhuralev,Lesokin and Tempelman机理函数,高温区仍采用二级反应机理。海藻的着火方式为均相着火,着火温度较低容易着火。海藻的燃烧过程由脱水阶段,挥发分析出与燃烧阶段,过渡阶段,固定碳燃烧和高温反应阶段组成。文中还分析了着火温度、最大燃烧速率、燃尽温度等燃烧参数。海藻燃烧特性与方式与陆上木质类生物质存在差异,究其原因为挥发分的不同。TG-MS也用来分析燃烧的气体产物。各海藻CO_2和NO_2释放趋势与DTG曲线相吻合。SO_2释放曲线稍有差异,燃烧段的生成主要与含硫多糖有关,高温阶段主要是含硫灰分的分解作用。海藻低温段生成的含氮化合物(NOx)主要是由于挥发分分解阶段蛋白质的分解。最后利用一元二次方法计算了海藻的燃烧活化能。
     本文第四章在小型流化床试验台上研究了海藻颗粒(条浒苔与马尾藻)的流化床燃烧。海藻在流化床内的挥发分析出燃烧时间较短,都在1分钟左右。条浒苔颗粒在流化床中燃烧先进行脱水和挥发分的燃烧;接着发生焦炭燃烧,其燃烧过程符合缩核模型,炭核由外向内逐层燃烧,而灰层半径几乎不变。但马尾藻颗粒进入流化床后,由于挥发分的大量快速释放而迅速膨胀破碎成屑。另外通过对条浒苔颗粒及不同燃烧时间后收集的焦炭颗粒剖面的SEM扫描电镜观察,发现随着燃烧的进行,颗粒内孔隙增大,微孔表面粗糙,但局部甚至出现融化。在进行流化床连续燃烧海藻颗粒燃料实验时,当条浒苔给料与配风搭配合适时,能在750℃左右稳定燃烧,无结渣,温度波动不大。底灰中灰分粒径分布主要集中较大值和较小值左右。而马尾藻虽然在低温下能够燃烧,但随着燃烧的进行会出现严重结渣,主要是由于其灰熔点太低的缘故。因而可见条浒苔适合流化床燃烧而马尾藻不太适合。最后对条浒苔原样和流化床燃烧后收集的底灰进行孔隙结构分析,燃烧后灰比原样孔隙增多,内部孔隙扩张,孔容积和比表面积增大。通过分形分析可知海藻原样表面光滑,燃烧后表面粗糙不规则。
     为了进一步了解海藻单颗粒燃料在流化床内的燃烧特征,第五章详细研究了两种单颗粒海藻颗粒(条浒苔与马尾藻)在流化床内单次投料下的焚烧试验。随着床温的升高,条浒苔释放NOx相对浓度增加,CO相对浓度减少。而马尾藻释放气体中SO_2与NOx含量相对条浒苔有所增加,随着床温的升高,CO相对浓度减少。床温的升高使得床内传热速率加快,两种海藻挥发分的析出提前,燃尽时间缩短。条浒苔与马尾藻随着风速的升高各烟气相对浓度无床温影响般明显规律性变化。风速的升高使得两种海藻燃烧容易,燃尽时间缩短。随着床层高度的变化,两种海藻各气体析出都没有出现明显规律性变化。床高的升高使得热载体增多也一定程度上有利于燃烧,燃尽时间也有缩短。通过分析床高、床温、流化风速三种因素对条浒苔颗粒燃烧后剩余质量和固定碳残留率的影响,可以看出床高因素对海藻颗粒在流化床内燃烧的影响最小。利用灰色关联分析得到各工况因素影响固定碳燃尽主次依次是:床层温度(℃)>流化数>床层高度(mm),可见在研究工况范围内床层温度是影响燃烧的最主要因素。最后建立了条浒苔单颗粒在流化床内燃烧的数学模型,模拟结果与试验对比基本符合。
     第六章里详细研究了海藻类生物质的快速热裂解过程,分析了各工况参数对海藻类生物质热裂解特性的影响规律。热解反应温度对海藻生物油的产率有一定影响。反应温度的增加有利于热解气的生成而不利于生成炭。在500℃左右存在最大产油率。停留时间(载气流量)对海藻生物油产率影响不大;停留时间减少,生物油产率略有提高。蛋白质快速热裂解产油率很高,产生焦炭很少,试验结果表明蛋白质容易裂解。热解反应温度升高,热解生成炭中挥发分的比例下降,而固定碳的比例则增加,这说明在较高温度时有更多的挥发分析出。检测结果表明海藻类生物油相比陆上一般生物质具有较高的碳氢含量,较低的含氧量的优点。最后讨论认为海藻热裂解中得到的炭和不凝气能够提供热裂解的热量需求,实现海藻热解制油-半焦与不凝气燃烧供热能量自平衡。
     为了进一步了解海藻生物油的特点,第七章通过对海藻生物质(条浒苔、马尾藻)不同工况下热解制得的生物油进行GC-MS分析,得到了海藻油的主要成分。海藻类生物油的主要成分为一些烃类、酮类、醛类、醇类和酚类化合物,以及较大分子量的羧酸及其衍生物,并包含了少量呋喃、吡喃、吡啶等衍生物的杂环化合物。条浒苔油中羧酸及其衍生物和烃类物质较多,而马尾藻生物油中甾族和醇类化合物较多,也检测出油酸和棕榈酸酯,花生酸。不同工况下产生的生物油在组成成分上非常相似,只是相对含量有所不同。热解温度对海藻油组分的分布起了重要作用,而载气流量对热解海藻油成分分布的影响就不明显了。
     本章还初步研究了海藻生物质热解产油的机理。海藻热解油中大多数含氮化合物的形成都是与蛋白质的热分解有关。海藻油中的烃类物质生成主要与碳水化合物和脂类物质有关。蛋白质的热解一般包括肽和氨基酸分子的热解。氨基酸热解主要机理是分子中脱去CO_2反应,以及Strecker聚解反应,继续进行裂解反应,形成含羰基和双羰基化合物。海藻含量较少的脂类物质也能在热解过程中发生脱羧、取代等反应生成烃类或酯类等。
     本文最后总结了全文,展望了今后的研究工作。
As a limited energy source, fossil fuel could hardly afford long-lasting consumption. And environmental contamination becomes an apparent and serious issue. All facts hasten a growing concern to the exploitation and application of biomass. Many countries pay attention to the importance of biomass that is an abundant renewable energy resource. Such as Denmark, the Netherlands, Germany, France, Canada, Finland and other countries has been conducting their own research and formed a distinctive biomass energy R&D system for many years. But the energy plants around the world is mainly focus on wood and crops, in fact the U.S. Science magazine said that in some cases, the use of food crops such as bio-fuel, not only fail to mitigate climate change, it actually are likely to increase greenhouse gas emissions.
     The development of biomass energy properly handles the relationship between energy and food, so the development of new biomass sources becomes particularly important. Seaweed biomass live in the sea, not occupy area land. Its resources development has great potential. In particular, China are surrounded by wide coastal areas and territorial seas. If those rich seaweeds sources are explored efficiently and put into clean and proper use, they may contribute a lot to the future of our country in the competition of the worldwide energy usage, both theoretically and industrially.
     The research on this seaweed biomass is still relatively small around world, which is a novel topic. In this paper, the thermochemical conversion processes (combustion and pyrolysis) of the typical large seaweed were studied using a systematic experimental and theoretical method.
     Researching fuel characteristics is the foundation of studying seaweed biomass. In chapter 2, the seaweed biomass is studied from proximate and ultimate analysis. It is found that the heating values of the seaweed samples are low and the moisture and ash contents of seaweed are high. In relation to the elementary analysis, seaweed has a lower oxygen content than terrestrial biomass. The low ash fusion temperatures of seaweed make the ashing temperatures recommended by both GB and ASTM norms to exceed the limit of temperature to prepare seaweed ash. At a high ashing temperature, Gracilaria cacalia and Sargassum natans will generate some high-melting matters which influence the identification of the ash fusion points. So it is more exact and referenced that the seaweed biomasses were ashed at a lower temperature (such as 530oC). The ash fusing characteristics on three sorts of seaweed (a kind of marine biomass) were studied by using thermal microscope, X-ray diffractometer, ash composition analysis, and simultaneous thermogravimetry/differential thermal analysis. It was presented that there were lots of alkali metals especially K and Na in all seaweed ash samples. XRD analysis shows that the crystalline phase intensities of alkali chlorides reduce with increasing the ashing temperature, due to the evaporization of alkali chlorides. Therefore the evaporization of alkali chlorides in seaweed biomass should be considered during the thermal conversion.
     At the same time, the specific heat capacities of three sorts of seaweed (a kind of marine biomass) during 40 oC -550 oC were measured by using the NETZSCH DSC404 differential scanning calorimeter, which were modified with the mass loss on the base of traditional solution method. The results show that the heating process are composed of three main intervals, dehydration, large devolatilization seni-coke state, during which the specific heat capacities are great different. The cause is that the residues in every interval are changed. Comparing the specific heat capacities of three sorts of seaweed, Gracilaria cacalia is the largest, Enteromorpha clathrata the second and Sargassum natans the lowest. In this paper, the mathematic relations for specific heat capacities and temperatures are presented during 40 oC -550 oC. The results can be a reference for the thermal chemical conversion energy utilization and numerical simulation of seaweed biomass.
     Thermal analysis was a important method used to analyze the pyrolysis and combustion process. In chapter 3, pyrolysis and combustion experiments of Enteromorpha clathrata (ENT) (a species of seaweed) have been conducted using a DTG-60H Thermal Analyzer. The results indicated that the non-isothermal mass loss process of samples is composed of dehydration, rapid mass loss, slow mass loss and solid residue decomposition. The devolatilization stage of ENT started earlier than that of woody biomass because the basic components in seaweed are preferable for pyrolysis compared to lignocellulosic materials. The FTIR analysis was employed to investigate the changes in the main components of sample, while the TG-MS analysis was used for the gaseous products analysis during the pyrolysis. The characteristic parameters of pyrolysis at different heating rates showed that the maximum rate of pyrolysis mass loss, the peak temperature, the initial and final temperature for devolatilization, and the heat release would increase with increasing heating rate. The kinetic parameters were calculated by using the Coats–Redfern method, which indicated that the second order mechanism function was suitable for the pyrolysis of Gracilaria cacalia and Laminaria japonica. The Zhuralev,Lesokin and Tempelman mechanism function was suitable for the pyrolysis of Enteromorpha clathrata and Sargassum natans at a low temperature; the second order mechanism function was also suitable for their pyrolysis at a high temperature. The ignition mode of seaweed was homogeneous and the ignition temperature was low. The combustion process was composed of dehydration, the pyrolysis and combustion of volatile, transition stage, the combustion of char and the reaction at high temperature. And the combustion characteristic parameters were obtained such as ignition temperature, maximum rate of combustion, burnout temperature etc. The combustion models of these seaweeds were also analyzed. The combustion characteristics and model differences between the seaweed and woody biomass were caused by the differences of volatile components. TG-MS analysis was used for the gaseous products analysis during the combustion. During the combustion of seaweeds, NO2 emissions were similar with CO2 emission. They were both accord the mass loss peaks in DTG curve and exothermic peaks in DTA curve.
     The obvious SO2 in the combustion stage were likely caused from the decomposition and oxidization of sulfated polysaccharide. However the SO2 emission at the high temperature was about the decomposition of S-containing ash. Several NO emission peaks in the low temperature region were obvious. The cause was mainly associated with the protein in seaweed. At last, activation energies were determined using Arrhrnius model that was solved by binary linear regression method.
     In the chapter 4, the fluidized bed combustion of seaweed particles (Enteromorpha clathrata and Sargassum natans) was studied in a bench scale combustor. The devolatilization times of seaweed in fluidized were short, are about 1 minute. When Enteromorpha clathrata particles were put into the fluidized bed, dehydration and the release and combustion of volatile happened, followed by burning char that accorded with the shrinking core model. The carbon burnt layer by layer from outside to inside the nuclear, while the ash layer was almost constant radius. Sargassum natans particles fractured immediately soon after they were fed into the fluidized bed, which was due to the release of a large number of volatile. SEM analysis was used to study the cross-sections of Enteromorpha clathrat particles at different fluidization times. With the combustion of EN particle, the pores inside the particle increase. The micro-pore surface appeared rough, and even partial happened to melt. During the continuous combustion experiments in fluidized bed, if the feeding Enteromorpha clathrat matched the air, they can burn stability at 750 oC. Slagging and big temperature fluctuations were not been found. Particle size distribution of bottom ash mainly concentrated around the value of larger and smaller values. Sargassum natans can burn at low temperatures, but there would be a serious slagging with the combustion process, which mainly due to its low ash melting point. Therefore the fluidized bed combustion was suitable for Enteromorpha clathrata, while Sargassum natan was opposite. At last, Enteromorpha clathrata and its bottom ash were collected for pore structure analysis. The number of porosity, pore volume and specific surface area increased after combustion. The expansion internal pore can be seen in ash. Fractal analysis showed that original seaweed has smooth surface. After combustion, the surface was irregular and rough.
     In order to know more about the combustion characteristics of single seaweed particle in fluidized bed, the fluidized combustion experiment of several seaweed particles (Enteromorpha clathrata, while Sargassum natan) were studied. When Enteromorpha clathrata particles were burning, the relative concentration of NOx increases, while the relative concentration of CO decreased. The SO2 and NOx released from Sargassum natan were more than that from Enteromorpha clathrata. The CO concentration also decreased with increasing the bed temperature. The devolatilization of two kinds of seaweed in advance, and the burnout times are both shorten, because the rate of heat transfer increases due to the raise of bed temperature. However the velocity of air flow had no regular influence as bed temperature on the gas concentration of Enteromorpha clathrata and Sargassum natan. Increasing the velocity of air flow made two kinds of seaweed burn easily. With the change in bed height, two kinds of seaweed were not found in the gas precipitation significant to change regularly. The increasing in bed height made the heat carrier increase, which helped to burn. The combustion time had also been shortened.
     By analyzing the influence of three factors (bed height, bed temperature, fluidized air velocity) on the fixed carbon residue of Enteromorpha clathrata particles after combustion, the result showed that the bed height is the minimum factor on the fluidized combustion of seaweed. The influential extent of operating parameters on the burnout of fixed carbon was sequenced by the gray relation analysis: bed temperature (℃)> fluidized air velocity(m/s) > bed height (mm). The result showed that the bed temperature was the main influence factor on the combustion in the range of working conditions.
     At last, the mathematical model for the fluidized bed combustion of Enteromorpha clathrata single particle was established. The simulation resulted generally consistent with the experimental comparison.
     In chapter 6, seaweed biomass fast pyrolysis process was studied. Analysis of working parameters of various types of seaweed biomass pyrolysis characteristics were investigated. This chapter analyzed the effects of main factors of seaweed biomass pyrolysis work condition on pyolysis characteristics.
     Pyrolysis reaction temperature had a certain influence on the bio-oil yield of seaweed. The increase in reaction temperature was benefit to generate pyrolysis and no good for generation of carbon. At about 500℃, there was the maximum liquid yield. Retention time (carrier gas flow rate) had little effect on the seaweed bio-oil yield. The bio-oil yield increased slightly with reducing the residence time. The liquid yield from protein pyrolysis was high. The fast pyrolysis of protein produced little char. The result indicated that the protein was easier to pyrolysis. The volatile proportion in char pyrolyized decreased with the increasing the pyrolytic reaction temperature, while the fixed carbon proportion increased, which indicated that the higher temperatures had more volatile released. The testing results showed that seaweed bio-oil has high hydrocarbon content and the advantage of low oxygen content compared with the general land biomass. At last, the chapter discussed that the char and incondensable gas obtained from pyrolysis of seaweed can provide the heat that is needed in pyrolysis process. Therefore the energy self-balance, seaweed fast pyrolysis for bio-oil production and combustion of semi-coke and incondensable gas, can be achieved.
     To further understand the characteristics of seaweed bio-oil, Chapter 7 analyzed two kinds of seaweed bio-oil (Enteromorpha clathrata and Sargassum natans) obtained under different conditions by using GC-MS analysis. The main components of seaweed bio-oil were obtained. A number of major components of seaweed bio-oil were hydrocarbon, ketones, aldehydes, alcohols and phenolic compounds, as well as large molecular weight carboxylic acids and their derivatives, and includes a small amount of heterocyclic compounds (derivatives of furan, pyran, pyridine, etc.).
     There were lots of hydrocarbons, carboxylic acids and their derivatives in Enteromorpha clathrata oil. While Sargassum natans oil contains many steroids and alcohols compounds. The oleic acid, palmitate, and peanut acid were also detected in Sargassum natans oil. The bio-oils pyrolyzed under different work conditions were very similar in composition, but the relative contents of compositions were different. Pyrolysis temperature played an important role on the distribution of seaweed oil compositions, while the influence function of the carrier gas flow rate was not obvious.
     The chapter also studied the mechanism of fast pyrolysis of seaweed biomass. The majority of nitrogen-containing compounds in seaweed oil are related to the thermal decomposition of the protein. The hydrocarbon materials are mainly consistent with carbohydrate and lipid substances. Pyrolysis of proteins includes the thermal decomposition of peptides and amino acids in general. The main mechanism of pyrolysis of amino acids is draw off CO2 molecules reaction, as well as the Strecker reaction of poly solution, and then continue to pyrolysis reaction resulting the formation of carbonyl-containing and two carbonyl compounds. Little lipid in seaweed can also generate hydrocarbons and esters from the decarboxylation and substitution reaction during pyrolysis process.
     The dissertation ends with summary and research prospects.
引文
[1]李改莲,王远红,杨继涛,等.中国生物质能的利用状况及展望.河南农业大学学报, 2004, 38(1): 100–104.
    [2] Kaygusuz K., Trker M.F. Biomass energy potential in Turkey. Renewable Energy, 2002, 26(4): 661–678.
    [3]宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性.节能与环保, 2003, (9): 29–31.
    [4]易维明,生物质利用导论,中国农业科技出版社, 1996, 8.
    [5] Streets D.G. and Waldhoeff S.T. Biofuel use in asia and acidifying emissions. Energy, 1998, 23 (12):1029–1042.
    [6] McKendry P. Energy production from biomass (part 2): Conversion technologies. Bioresource technology, 2002, 83(1): 47–54.
    [7]郭培军.生物质能利用技术比较与分析.科技信息, 2008, (22): 370–371.
    [8]朱锡锋.生物质热解油气化试验研究.可再生能源, 2003, (01): 11–13.
    [9]赵军,王述洋.我国生物质能资源与利用.太阳能学报, 2008, 29(1): 90–94.
    [10]辕振宏.环境、可再生能源和节能国际研讨会, 2003, pp. 11, 29.
    [11]徐书瑞.我国生物质能发电蓬勃发展.农村电工, 2008, (7): 45.
    [12]王久臣,戴林,田宜水,等.中国生物质能产业发展现状及趋势分析.农业工程学报, 2007, 23(9): 276–282.
    [13]黎大爵.开发甜高粱产业,解决能源、粮食安全及三农问题.中国农业科技导报, 2004, 6(5): 55–58.
    [14]杨勇平,董长青,张俊姣.生物质发电技术.北京:中国水利水电出版社, 2007.
    [15] Miller R.S., Bellan J. A generalized biomass pyrolysis model based on superimposed celluose, hemicellulose and lignin kinetics. Combustion Science and Technology, 1997, 126(1-6): 97–137.
    [16] Wang G., Li W., Li B.Q., Chen H.K. TG study on pyrolysis of biomass and its three components under syngas. Fuel, 2008, 87(4-5): 552–558.
    [17] He F., Yi W. M., Bai X.Y. Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer. Energy Conversion and Management, 2006, 47(15-16): 2461–2469.
    [18] Williams P.T. and Serpil H. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, 1996, 7(3): 233–250.
    [19] Schr?der E. Experiments on the pyrolysis of large beechwood particles in fixed beds. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 669–694.
    [20] Tsamba A.J., Yang W.H., Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Processing Technology, 2006, 87(6): 523–530.
    [21] Whitely N.; Ozao R.; Cao Y.; Pan W.P. Multi-utilization of chicken litter as a biomass source. Part II. Pyrolysis. Energy Fuels, 2006, 20(6): 2666–2671.
    [22] Calvo L.F., Sánchez M.E., Morán A. and García A.I. TG-MS as a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge. Journal of Thermal Analysis and Calorimetry, 2004, 78(2): 587–598.
    [23] Senneca O., Ciaravolo S., Nunziata A. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 234–243.
    [24]孙学信,陈建元.煤粉燃烧物理化学基础.武汉:华中理工大学出版社, 1991, pp. 148–154, 192-193.
    [25] Sun C.L., Kozinski J.A. Ignition Behavior of Pulp and Paper Combustible Wastes. Fuel, 2000, 79(13): 1587–1593.
    [26] Sun C.L., and Zhang M.Y. Ignition of Coal Particles at High Pressure in a Thermogravimetric Analyzer. Combustion and Flame, 1998, 115(1-2): 267–274.
    [27] Katalambula H., Hayashi J., Chiba T. Mechanism of Single Coal Particle Ignition under Microgravity Condition. Journal of Chemical Engineering of Japan, 1997 ,30 (1) :146–153.
    [28] Grotkj?r T., Dam-Johansen K., Jensen A.D., Glarborg P. An experimental study of biomass ignition. Fuel, 2003, 82(7): 825–833.
    [29] Senneca O., Chirone R., Salatino P. A Thermogravimetric Study of Nonfossil Solid Fuels. 2. Oxidative Pyrolysis and Char Combustion. Energy Fuels, 2002, 16 (3): 661–668.
    [30]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究.煤炭学报, 2005, 30(1): 104–108.
    [31] Otero M., Díez C., Calvo L.F., García A.I., Morán A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass and Bioenergy, 2002, 22(4): 319–329.
    [32] Guo X.F., Wang Z.Q., Li H.B., Huang H.T., Wu C.Z., Chen Y. A Study on Combustion Characteristics and Kinetic Model of Municipal Solid Wastes. Energy & Fuels, 2001, 15(6): 1441–1446.
    [33] Okasha F. Staged combustion of rice straw in a fluidized bed. Experimental Thermal and Fluid Science, 2007, 32(1): 52–59.
    [34] Fabrizion S., Riccardo C. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels. Biomass & bioenergy, 2008, 32(3): 252–266.
    [35] Bakker R.R., Jenkins B.M., Williams R.B. Fluidized Bed Combustion of Leached Rice Straw. Energy & Fuels, 2002, 16(2): 356–365.
    [36] Stubington John F, Ng Ken W.K., Moss B., et al. Comparison of Experimental Methods for Determining Coal Particle Devolatilization Times under Fluidized Bed Combustor Conditions. Fuel, 1997, 76(3): 233–240.
    [37] de Diego L.F., García-Labiano F., Abad A., Gayán P., Adánez J. Coupled drying and devolatilisation of non-spherical wet pine wood particles in fluidised beds. Journal of Analytical and Applied Pyrolysis, 2002, 65(2): 173–184.
    [38] Jung Kujong, Stanmore Brian R. Fluidized Bed Combustion of Wet Brown Coa. Fuel, 1980, 59(2): 74–80.
    [39] Pillai K.K. Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds. Journal of the Institute of Energy, 1981, 54: 142–150.
    [40]王民,郭康权,朱文荣.秸秆制作成型燃料的试验研究.农业工程学报, 1993, 9(1): 99–103.
    [41]张百良,李保谦,赵朝会,等. HPB-Ⅰ型生物质成型机的应用研究.太阳能学报, 1999, 20 (3): 234–238.
    [42] Lehtikangas P. Storage effects on pelletised sawdust, logging residues and bark. Biomass andBioenergy, 2000, 19(5): 287–293.
    [43] Chirone R., Salatino P., Scala F., Solimene R., Urciuolo M. Fluidized bed combustion of pelletized biomass and waste-derived fuels. Combustion and Flame, 2008, 155(1-2): 21–36.
    [44] Scala F., Chirone R. Combustion and Attrition of Biomass Chars in a Fluidized Bed. Energy & Fuels, 2006, 20(1): 91–102.
    [45] Chirone R., Salatino P., Scala F. The relevance of attrition to the fate of ashes during fluidized-bed combustion of a biomass. Proceedings of the Combustion Institute, 2000, 28: 2279–2286.
    [46] Scala F., Chirone R. Fluidized Bed Combustion of Alternative Solid Fuels. Experimental Thermal and Fluid Science, 2004, 28(7): 691–699.
    [47] Gulyurtlu I., Reforco A., Cabrita I. Fluidized Combustion of Cork Waste. Proceedings of the 11th International Conference on Fluidized Bed Combustion. ASME. New York. 1991: 1421–1424.
    [48]马玉峰,王辉,姜秀民,刘建国,袁德权,任庚坡.水煤浆球在流化床内的燃烧试验及灰色关联分析.中国电机工程学报, 2007, 27(5): 61–66.
    [49]朱炳辰.化学反应工程,第三版.北京:化学工业出版, 2000, pp 349–360.
    [50]王国金,王剑秋,李术元,钱家麟,朱亚杰.煤和油页岩颗粒燃烧的数学模拟进展.煤炭转化, 1995, 18(3): 13–16.
    [51] Peters B. Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame, 2002, 131(1-2): 132-146.
    [52] Sreekanth M., Ruben Sudhakar D., Prasad B.V.S.S.S., Kolar A.K., Leckner B. Modelling and experimental investigation of devolatilizing wood in a ?uidized bed combustor. Fuel,2008, 87 (12): 2698–2712.
    [53]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行.北京:中国电力出版社,1998, pp 314–316.
    [54]陈义胜,贺友多,陈春元,纪福忠.单颗粒煤粉燃烧数学模型.钢铁研究学报, 1997, 9(3): 1–5.
    [55] Boukis I., Maniatis K., Bridgwater a.v., et al. Flash pyrolysis of biomass in an air blown circulatingfluidized-bed reactor. BRIDGWATER A V. Advances in Thermochemical Biomass Conversion. Blackie, 1994, 1257–1264.
    [56] Grange P., Laurent E., Maggi R., Centeno A. and Delmon B. Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study. Catalysis Today, l996, 29(1-4): 297–301.
    [57] Putun A.E., Gercel H.F., Kockar O.M.,et al.Oil production from an arid-land plant:fixed-bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel, 1996, 75(11): 1307–1312.
    [58] Tsai W.T., Lee M.K., Cheng Y.M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 230–237.
    [59] Ac?kgoz C., Onay O., Kockar O.M. Fast pyrolysis of linseed: product yields and compositions.Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 417–429.
    [60] Scott D.S., Piskorz J., Bergougnou M.A., Graham R., Overend R.P. The role of temperature in the fast pyrolysis of cellulose and wood. Industrial & Engineering Chemistry Research, 1988, 27(1): 8–15.
    [61]王琦,王树荣,王乐,谭洪,骆仲泱,岑可法.生物质快速热裂解制取生物油试验研究.工程热物理学报, 2007, 28(1): 173–176.
    [62] Brage C., Yu Q., Sjostrom K. Characteristics of evolution of tar from wood pyrolysis in a fixed-bed reactor. Fuel, 1996, 75(2): 213–219.
    [63] Guell A .J., L i C .Z ., Herod A.A., Stokes B.J., Hancock P., Kandiyot R. Effect of H2 pressure on the structures of bio-oils from the mild hydropyrolysis of biomass. Biomass and bioenergy, 1993, 5(2): 155–171.
    [64] Maggi R., Delmon B. Comparison between‘slow’and‘flash’pyrolysis oils from biomass. Fuel, 1994, 73 (5): 671–677.
    [65] Maggi R., Delmon B. Characterization and upgrading of bio-oils produced by rapid thermal processing. Biomass and bioenergy, 1994, 7 (1-6): 245–249.
    [66]夏邦美.中国海藻志:第二卷,红藻门,第三册,石花菜目隐丝藻目胭脂藻目.北京:科学出版社, 2004, pp 1–5.
    [67] Moll B., Deikman J. Enteromorpha Clathrata: A Potential Seawater-Irrigated Crop. Bioresource Technology 1995, 52(3): 225–260.
    [68] Huber G.W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098.
    [69] Jeong J. H., Jin H. J., Sohn C. H., Suh K.H., Hong Y.K. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Analytical and Applied Pyrolysis, 2000, 12(1): 37–43.
    [70] Senthilkumar R., Vijayaraghavan K., Thilakavathi M., Iyer P.V.R., Velan M. Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions. Journal of Hazardous Materials, 2006, 136(3): 791–799.
    [71]王君,李德茂,张明旭,等.三种海藻的热解特性及动力学分析.海洋与湖泊, 2006, 37(4): 304–308.
    [72] Wang J., Wang G.C., Zhang M.X. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood Process. Biochemistry, 2006, 41(8): 1883–1886.
    [73] Miao X.L., Wu Q.Y., Yang C.Y. Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 855–863.
    [74] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2004, 45(5): 651–671.
    [75]日本能源学会编史仲平,华兆哲译.生物质和生物能源手册.北京:化学工业出版社, 2007,pp 323–326.
    [76] Ginzburg B.Z. Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renewable Energy, 1993, 3(2-3): 249–252.
    [77] Wu Q.Y., Dai J.B., Shiraiwa Y., Sheng G. Y., Fu J. M. A renewable energy source-hydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic alga Emiliania huxleyi. Journal of Analytical and Applied Pyrolysis, 1999, 11(2): 137–142.
    [78] Minowa T., Yokoyama S., Kishimoto M., et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 1995, 74 (12): 1735–1738.
    [79] Dote Y., Sawayama S., Inoue S., et al. Recovery of liquid fuel from hydrocarbon- rich microalgae by thermochemical liquefaction. Fuel , 1994 , 73 (12): 1855-1857.
    [80]彭卫民,李祥书,吴庆余,葛月云.采用热解技术将湖泊浮游藻类用于燃料生产.环境污染治理技术与设备, 2000, 1(3): 24–28.
    [81]王爽,姜秀民,韩向新,王辉,刘建国.海藻生物质的异密度循环流化床燃烧处理方法.中国发明专利, CN101182925, 2008.05.21.
    [82] Nagle N., Lemke P. Production of methyl ester fuel from microalgae. Applied Biochemistry and Biotechnology, 1990, 24-25(1): 355–361.
    [83] Milne T.A., Evans R.J., Nagle N. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass, 1990, 21(3): 219–232.
    [84] Minowa T., Yokoyama S., Kishimoto M., et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 1995, 74 (12): 1735–1738.
    [85]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用.可再生能源, 2003, (3): 13–16.
    [86]王爽,姜秀民,韩向新,王辉,刘建国.利用海藻与陆上生物质共同热解制取生物油的方法.中国发明专利, CN101333447, 2008.12.31.
    [87]姜秀民,王爽,韩向新,刘建国,刘加勋,王辉.海藻生物质综合利用的方法.中国发明专利, CN101475860, 2009.07.08.
    [88] Peng W.M., Wu Q.Y., Tu P.G. Zhao N.M. Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 2001, 80(1): 1–7.
    [1]蔡明招.实用工业分析.广州:华南理工大学出版社, 1999年8月第1版, p1.
    [2]米铁,陈汉平,吴正舜,等.生物质灰化学特性的研究.太阳能学报, 2004, 25(2): 236–241.
    [3]彭担任,赵再春,禹申友.煤的比热容及其影响因素研究.煤, 1998, 7(4): 1–4.
    [4]张佳丽,刘全润,张如意.煤焦高温比热容的实验研究.中国煤炭, 2005, 31(2): 55–56.
    [5]郑嘉明,阮湘泉,郭崇淘. DSC法测定煤的比热.煤化工, 1996, (2): 18–21.
    [6] Jones D.B., Rajeshwar K., Dubow J.B. Specific heats of Colorado oil shales. A differential scanning calorimetry study. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(1): 125–128.
    [7] Rajeshwar K., Dubow J.B. Thermophysical properties of Devonian shales. Fuel, 59(11): 790–794.
    [8]吉宏武,邵海艳,章超桦,洪鹏志,熊皓平.长松藻化学成分及其营养评价.食品与发酵工业, 2007, 33(7): 129–131.
    [9]李来好,杨贤庆,吴燕燕,等.马尾藻的营养成分分析和营养学评价.青岛海洋大学学报, 1997, 27(3): 319–325.
    [10]范志林,张军,林晓芬,等.关于生物质基本性质分析的问题.东南大学学报(自然科学版), 2004, 34(3): 352–355.
    [11] Olsson J.G., J?glid U., Pettersson J.B.C., et al. Alkali metal emission during pyrolysis of biomass. Energy & Fuels, 1997, 11(4): 779–784.
    [12] Buerger M.J., Venkatakrishnan V. Serendibite, a Complicated, New, Inorganic Crystal Structure. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(11): 4348–4351.
    [13] Bapat D.W., Kulkarni S.V., Bhandarkar V.P. Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash. Preto FDS. Proceedings of the 14th International Conference on Fluidized Bed Combustion, Vancouver, New York, 1997, 165–174.
    [14] Miles T.R., Miles Jr T.R., Baxter L.L., et al. Boiler deposits from firing biomass fuels. Biomass Bioenergy, 1996, 10(2-3): 125–138.
    [15] Baxter L.L., Miles T.R., Miles Jr T.R., et al. The behaviour of inorganic material in biomass fired power boilers: field and laboratory experiencies. Fuel Processing Technology, 1998, 54(1-3): 47–78.
    [16] Ghaly A.E., Ergüdenler A., Laufer E. Study of agglomeration characteristics of silica sand-straw ash mixtures using scanning electronic microscopy and energy dispersion X-ray techniques. Bioresource Technology, 1994, 48(2): 127–134.
    [17]张军,范志林,林晓芬,等.灰化温度对生物质灰特征的影响.燃料化学学报, 2004, 32(5): 547–551.
    [18] Olanders B., Steenari B.M. Characterization of ashes from wood and straw. Biomass and Bioenergy, 1995, 8(2): 105–115.
    [19] Tortosa MasiáA.A., Buhre B.J.P., Gupta R.P., Wall T.F. Characterising ash of biomass and waste. Fuel Processing Technology, 2007, 88(11-12): 1071–1081.
    [20] Skrifvars B.J., ?hman M., Nordin A., et al. Predicting Bed Agglomeration Tendencies for Biomass Fuels Fired in FBC Boilers: A Comparison of Three Different Prediction Methods. Energy & Fuels, 1999, 13(2): 359–363.
    [21] Fernández Llorente M.J., Murillo Laplaza J.M., Escalada Cuadrado R., et al. Ash behaviour of lignocellulosic biomass in bubbling fluidized bed combustion. Fuel, 2006, 85(9): 1157–1165.
    [22] Heinzel T., Siegle V., Spliethoff H., et al. Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility. Fuel Processing Technology, 1998, 54(1-3): 109–125.
    [23] Fernández Llorente M J, Carrasco GarcíJ.E. Comparing methods for predicting the sintering of biomass ash in combustion. Fuel, 2005, 84(14-15): 1893–1900.
    [24] Wang S., Jiang X.M., Wang N., et al. Research on Pyrolysis Characteristics of Seaweed. Energy & Fuels, 2007, 21(6): 3723–3729.
    [25]王廷芬,陆绍信,朱亚杰.我国油页岩热性质的研究Ⅱ油页岩、半焦和页岩灰比热容的测定.燃料化学学报, 1987, 15(4): 311–316.
    [1]陈镜泓,李传儒.热分析及其应用.北京,科学出版社, 1985, pp1-4.
    [2] Whitely N., Ozao R., Cao Y., Pan W.P. Multi-utilization of Chicken Litter as Biomass Source. Part II. Pyrolysis. Energy Fuels, 2006, 20(6): 2666–2671.
    [3] Ozao R., Pan W.P., Whitely N., Okabe T. Coal-like thermal behavior of a carbon-based environmentally benign new material: Woodceramics. Energy Fuels 2004, 18(3): 638–643.
    [4] Otero M., Díez C., Calvo L.F., García A.I., Morán A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass and Bioenergy 2002, 22(4): 319–329.
    [5]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用.可再生能源, 2003, (3): 13–16.
    [6]彭卫民,李祥书,吴庆余,等.采用热解技术将湖泊浮游藻类用于燃料生产环境.污染治理技术与设备, 2000, 1(3): 24–28.
    [7] Wang J., Wang G.C., Zhang M.X., Chen M.Q., Li D.M., Min, F. F., Chen M.G., Zhang S.P., Ren Z.W., Yan Y.J. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochemistry 2006, 41(8): 1883–1886.
    [8]王爽,姜秀民,韩向新,王辉,刘建国.利用海藻与陆上生物质共同热解制取生物油的方法.中国发明专利, CN101333447, 2008.12.31.
    [9] Marcilla A., Gómez-Siurana A., Gomis C., Chápuli E., CataláM.C., Valdés F.J. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta 2009, 484(1-2): 41–47.
    [10] Thipkhunthod, P.; Meeyoo, V.; Rangsunvigit, P.; Rirksomboon, T. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 78–85.
    [11]徐建国.河南电网主要动力用煤热解特性实验研究.北京:华北电力大学, 1997.
    [12]于娟,章明川,沈轶,等.生物质热解特性的热重分析.上海交通大学学报, 2002, 36(10): 1475–1478.
    [13]张睿智,罗永浩,段佳,刘春元,陈祎.生物质高温分解产物析出特性的试验研究,动力工程, 2009, 29(6): 590–595.
    [14] Xu L., Yang J.L., Li Y.M., Liu Z.Y. Behavior of organic sulfur model compounds in pyrolysisunder coal-like environment. Fuel Processing Technology, 2004, 85(8-10): 1013–1024.
    [15] Coats A.W., Redfern J.P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(1): 68–69.
    [16] Haykiri-Acma H., Yaman S., Kucukbayrak S. Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy, 2006, 31(6): 803–810.
    [17] Guo J., Lua A.C. Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model. Biomass and Bioenergy, 2001, 20(3): 223–233.
    [18]何芳,易维明,孙容峰,等.小麦和玉米秸秆热解反应与热解动力学分析.农业工程学报, 2002, 18(4): 10–13.
    [19]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较.燃料化学学报, 2003, 31(4): 312–316.
    [20] Kastanaki E., Vamvuka D., Grammelis P., et al. Thermogravimetric studies of the behavior of lignite biomass blends during devolatilization. Fuel Processing Technology, 2002, 77-78(20): 159–166.
    [21]李余增.热分析.北京:清华大学出版社, 1987. P94–97, 107–108.
    [22] Du X.Y., Gopalakrishnan C., Annamalai K. Ignition and combustion of coal particle streams. Fuel, 1995, 75(4): 487–494.
    [23] Du X.Y., Annamalai K. The transient ignition of isolated coal particle. Combustion and Flame, 1994, 97(3-4): 339–354.
    [24] Sun C.L., Koziński J.A. Ignition behaviour of pulp and paper combustible wastes. Fuel, 2000, 79(13): 1587–1593.
    [25] Sun C.L., Zhang M.Y. Ignition of Coal Particles at High Pressure in a Thermogravimetric Analyzer Combustion and Flame, 1998, 115(1-2): 267–274.
    [26] Senneca O., Chirone R., Salatino P. A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy fuels, 2002, 16 (3): 661–668.
    [27]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究.煤炭学报, 2005, 30(1): 104–108.
    [28] Blasi C.D., Portoricco G., Borrelli M., Branca C. Oxidative degradation and ignition of loose-packed straw beds. Fuel, 1999, 78(13): 1591–1598.
    [29] Wang C.P., Wang F.Y., Yang Q.R., Liang R.G. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass and Bioenergy 2009, 33(1): 50–56.
    [30] Huang, X. Y.; Jiang, X. M.; Han, X. X.; Wang, H. Combustion Characteristics of Fine-and Micro-pulverized Coal in the Mixture of O2/CO2. Energy & Fuels, 2008, 22 (6): 3756–3762.
    [31] Jiang X.M., Zheng C.G., Qiu J.R., Li J.B., Liu D.C. Combustion Characteristics of Super Fine Pulverized Coal Particles. Energy Fuels, 2001, 15(5): 1100–1102.
    [32] Yorulmaz S.Y., Atimtay A.T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 2009,90(7-8): 939–946.
    [33] Munir S., Daood S.S., Nimmo W., Cunliffe A.M., Gibbs B.M. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology, 2009, 100(3): 1413–1418.
    [1] Stubington J.F., Sumaryono. Release of Volatiles from Large Coal Particles in a Hot Fluidized Bed. Fuel. 1984, 63(7): 1013–1019.
    [2] De Diego L.F., García-Labiano F., Abad A., Gayán P., Adánez J. Coupled drying and devolatilisation of non-spherical wet pine wood particles in fluidised beds. Journal of Analytical and Applied Pyrolysis, 2002, 65(2): 173–184.
    [3] Chirone R., Salatino P., Scala F., Solimene R., Urciuolo M. Fluidized bed combustion of pelletized biomass and waste-derived fuels. Combustion and Flame, 2008, 155(1-2): 21–36.
    [4] Sundback C.A., Beer J.M., Sarofim A.F. Fragmentation behavior of single coal particle in afluidized bed. 20th Symposium on Coal Combustion. London: 1984, 1495–1520
    [5]严继民,张启元,高敬琮.吸附与凝聚固体的表面与孔第二版.北京:科学出版社, 1979. pp118–124.
    [6] Avnir D., Farin D., Pfeifer P. Molecular fractal surfaces. Nature, 1984, 308(5956): 261–263.
    [7] Avnir D., Farin D., Pfeifer P. Surface geometric irregularity of particulate materials: The fractal approach. Journal of Colloid and Interface Science, 1985, 103(1): 112–123.
    [1]马玉峰,王辉,姜秀民,刘建国,袁德权,任庚坡.水煤浆球在流化床内的燃烧试验及灰色关联分析.中国电机工程学报, 2007, 27(5): 61–66.
    [2]李爱民,池涌,严建华,倪明江,岑可法.大颗粒炭在流化床中燃烧的热应力破碎理论.煤炭学报, 1998, 23(2): 208–211.
    [3]顾璠,沈红梅.大颗粒煤燃烧传递动力学破碎理论模型.煤炭转化, 1994, 17(4): 21–25.
    [4]刘向军,赵燕,徐旭常.循环流化床内煤粉颗粒团燃烧行为理论分析.中国电机工程学报, 2006, 26(1): 30–34.
    [5] Chirone R., Salatino P., Scala F., Solimene R., Urciuolo M. Fluidized bed combustion of pelletized biomass and waste-derived fuels. Combustion and Flame, 2008, 155(1-2): 21–36.
    [6] Scala F., Salatino P. Fluidized Bed Combustion of a Biomass Char (Robinia pseudoacacia). Energy & Fuels, 2000, 14(4): 781–790.
    [7] Jia L., Becker H.A., Code R.K. Devolatilization and Char Burning Of Coal Particles in a Fluidized Bed Combustor. Canadian. Journal of Chemical Engineering, 1993, 71(1): 10–19.
    [8]张雪平,殷国富.基于层次灰色关联的产品绿色度评价研究.中国电机工程学报, 2005, 25(17): 78–82.
    [9]董伟,陈海耿,李瑞阳,郁鸿凌.多目标灰色局势决策在加热炉动态操作中的应用.化工学报, 2003, 54(11): 1575–1579.
    [10]刘德昌.流化床燃烧技术的工业应用.北京:中国电力出版社,1999.
    [11]王树荣.生物质热裂解制油的试验与机理研究.浙江大学博士论文, 1999, pp115.
    [12] Reid R.C., Prausnitz J.M., Poling B.E. The properties of gas and liquids. - New York: McGraw Holl, 1987
    [13]巴苏P.,弗雷泽S.A.循环流化床锅炉的设计与运行.岑可法等译.北京:科学出版社, 1994. pp97
    [1] Miao X.L., Wu Q.Y., Yang C.Y. Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 855–863.
    [2] Pütün A.E., ?zcan A., Pütün E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: yieldsand structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis, 1999, 52 (1): 33–49.
    [3] Ozlem Onay, O. Mete Kockar. Slow, fast and ?ash pyrolysis of rapeseed. Renewable Energy,2003, 28 (15): 2417–2433.
    [4]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究.农业工程学报, 2008, 24(5): 187–190.
    [5]王树荣.生物质热裂解制油的试验与机理研究.浙江大学博士论文, 1999, pp51-55, 69.
    [6]董芃,齐国利,王丽,翟明.生物质快速热解制取生物质油.太阳能学报, 2007, 28(2): 223–226.
    [7]李天舒,刘荣厚.生物质快速热裂解主要参数对生物油产率的影响2006, 7(11): 18–22.
    [8]刘荣厚,王华.生物质快速热裂解反应温度对生物油产率及特性的影响,农业工程学报, 2006, 22(6): 138–143.
    [9]栾敬德,刘荣厚,武丽娟,王佳文,李天舒.生物质快速热裂解制取生物油的研究.农机化研究, 2006(12): 206–210.
    [10]王丽红,柏雪源,易维明,孔凡霞,李永军,何芳,李志合.玉米秸秆热解生物油特性的研究.农业工程学报, 2006, 22(3): 108–111.
    [11] Ates F., Putun E., Putun A.E. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis, 2004(71): 779–790.
    [12]朱锡锋,陆强,郑冀鲁,郭庆祥,朱清时.生物质热解与生物油的特性研究.太阳能学报, 2006, 27(12): 1285–1289.
    [13] Stiles H.N., Kandiyoti R. Secondary reactions of flash pyrolysis tars measured in a fluidized bed pyrolysis reactor with some novel design features. Fuel, 1989, 68(3): 275–282.
    [14]王琦,王树荣,王乐,谭洪,骆仲泱,岑可法.生物质快速热裂解制取生物油试验研究,工程热物理学报, 2007, 28(1): 173–176.
    [15] Maschio G., Koufopanos C., Lucchesi A. Pyrolysis, a promising route for biomass utilization. Bioresource technology, 1992, 42(3): 219–231.
    [16]王树荣,骆仲泱,谭洪,洪军,董良杰,方梦祥,岑可法.生物质热裂解生物油特性的分析研究.工程热物理学报, 2004, 25(6): 1049–1052.
    [17] Zheng J.L., Yi W.M. Wang N.N. Bio-oil production from cotton stalk. Energy Conversion and Management, 2008, 49(6): 1724–1730.
    [18]杜洪双,常建民,王鹏起,李瑞.木质生物质快速热解生物油产率影响因素分析.林业机械与木工设备, 2007, 35(3): 15–20.
    [19]王爽,姜秀民,韩向新,王辉,刘建国.利用海藻与陆上生物质共同热解制取生物油的方法.中国发明专利, CN101333447, 2008.12.31.
    [20]南占东,杨湄,韩伟,刘昌盛,黄凤洪.油料作物秸秆快速热解及其生物油特性的研究.中国油料作物学报, 2008, 30(4): 501–505.
    [21] Pütün A.E., Uzun B.B., Apaydin E., Pütün E. Bio-oil from olive oil industry wastes: Pyrolysisof olive residue under different conditions Fuel Processing Technology 87 (2005) 25–32
    [22] Yanik J., Kornmayer C., Saglam M., Yüksel M. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products Fuel Processing Technology, 2007, 88(10): 942–947.
    [23]戴先文.循环流化床反应器固体生物质的热解液化.太阳能学报, 2001, 22(2): 124–130.
    [24]姜秀民,王爽,韩向新,刘建国,刘加勋,王辉.海藻生物质综合利用的方法.中国发明专利, CN101475860, 2009.07.08.
    [1]刘荣厚,张春梅.我国生物质热解液化技术的现状.可再生能源, 2004 (3): 11–14.
    [2]杨巧利,刘一真,张瑞芹. GC-MS分析生物质热解油的研究.郑州大学学报(理学版), 2007, 39(3): 140–144.
    [3]王树荣.生物质热裂解制油的试验与机理研究.浙江大学博士论文, 1999, pp51-55, 69. pp87, 81–84.
    [4]周良模.气相色谱新技术.北京:科学出版社, 1994. pp2-3.
    [5]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术.化学工业出版社, 2006 pp1-3.
    [6]王擎,施正学.美拉德反应机理研究新进展.食品科学, 1993(7): 7–9.
    [7]杨昌炎,姚建中,杨学民,林伟刚.生物质热解过程中灰分对热解油的影响. 2002中国生物质能技术研讨会论文集, 2003.
    [8] Miller I.J., Robert Saunders E. Reactions of acetaldehyde, acrolein, acetol, ans related condensaed compounds under cellulose liquefaction conditions. Fuel, 1987, 66(1): 130–135.
    [9]董芃,齐国利,王丽,翟明.生物质快速热解制取生物质油,太阳能学报2007, 28(2): 223–226.
    [10]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究.农业工程学报, 2008, 24(5): 187–190.
    [11]王丽红,柏雪源,易维明,孔凡霞,李永军,何芳,李志合.玉米秸秆热解生物油特性的研究.农业工程学报, 2006, 22(3): 108–111.
    [12]朱满洲,朱锡锋,郭庆祥,朱清时.以玉米秆为原料的生物质热解油的特性分析.中国科学技术大学学报, 2006, 36(4): 374–377.
    [13] Maggi R., Delmon B. Comparison between slow and flash pyrolysis oils from biomass. Fuel, 1994, 73 (5): 671–677.
    [14] Raemy A., Hurrell R.F., Lgliger J. Thermal behaviour of milk powers studied by differential thermal analysis and heat flow calorimetry. Thermochimica Acta, 1983, 65(1): 81–92.
    [15] Raemy A., Lambelet P. A calorimetric study of self-heating in coffee and chicory. Journal of Food Technology, 1982, 17(4): 451–460.
    [16] Raemy, A., Loeliger, J. Thermal behavior of cereals studied by heat flow calorimetry, Cereal Chemistry, 1982, 59(3): 189–191.
    [17] Richards G.N. Glycoaldehyde from pyrolysis of cellulose. Journal of analytical and applie pyrolysis, 1987, 10(2): 251–255.
    [18]廖晓芬.纤维素热裂解机理试验研究.浙江大学博士论文, 2003, pp125–127.
    [19] Chapter 12. Analytical Pyrolysis of Protein. Techniques and Instrumentation in Analytical Chemistry, 1998, 20, 217–315.
    [20]王辉宪,罗明道,屈松生,欧阳礼,罗大林.天冬氨酸热解机理的MNDO研究.化学学报, 1994, 52(11): 1041–1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700