油污泥的流化床焚烧处理方法及其燃烧机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油污泥是石油开采和加工过程中的“伴生品”,是一种危险废弃物,产生在石油生产的各个环节(原油的开采、运输、原油的精加工)。在我国每年有近百万吨的油污泥产量,而到目前为止还没有成熟完善的油污泥处理方法。由于工业生产所带来的环境问题越来越受到社会的关注,对油污泥进行无害化处理已是一个迫在眉睫的问题,科学、有效地解决含油污泥处理难题对石油行业的可持续发展具有重要意义。
     焚烧工艺被世界各国认为是污泥处理中的最佳实用技术之一,它以处理速度快,减量化程度高,能源再利用等突出特点而著称。针对目前国内油污泥的处理现状和污泥处理的发展趋势,文本提出了油污泥流化床焚烧处理方法,油污泥经过焚烧处理后,污泥中的有机质被高温分解并燃烧,同时残渣体积小,热能可以利用。油污泥在流化床内燃烧是一个崭新的课题,关于油污泥在流化床内燃烧的研究鲜见报道。其中油污泥在流化床内的燃烧特性及机理是实现油污泥流化床焚烧处理和稳定运行的关键,本文针对此关键问题较为系统地展开了实验、理论和应用研究工作。
     油污泥的理化特性是油污泥流化床焚烧的基础,本文第二章对油污泥的化学成分、热化学特性、升温过程中的挥发分析出及组分等进行了实验研究,在实验中采用了多种实验方法,主要包括:利用萃取方法分析了油污泥的有机组分;应用色谱质谱联用仪(GC/MS)确定了有机组分的化学成分;利用热重分析分析了油污泥在程序升温过程中的热解、燃烧特性;利用带有火焰离子检测器的油气评价系统分析了程序升温过程中的烃类物质的挥发释放特性;应用固定床反应器研究了一定升温速率下热解挥发分组分随温度的析出规律。从油污泥的特性分析入手,基于其工业分析、元素分析、成分分析及热重分析等基础数据,根据不同升温速率下热解的烃析出曲线采用等转化率法求解了热解过程中烃析出活化能随反应程度的变化规律,并讨论了其变化机理。
     在油污泥流化床处理系统中,石英砂作为惰性床料其在床内的破碎和磨损规律对流化床的稳定运行有重要影响。本文第三章在热态实验台上进行了石英砂破碎、磨损规律的实验研究。在破碎实验中考虑了颗粒尺寸(2.5~6mm)和床温(650~950℃)对破碎的影响。研究结果发现破碎随着床温的升高和颗粒尺寸的增大而加剧,对于较小颗粒在床温较低的情况下,破碎主要发生在颗粒表面,破碎的主要动力是温度梯度引起的在颗粒表面产生的压应力,其特征为产生大量的细小颗粒,而平均粒径不发生明显变化。对于较大颗粒在床温较高的情况下,颗粒会由于颗粒中心处的拉应力超过颗粒的抗拉极限而发生热破碎,其特征是母颗粒会分裂成几个大小相当的子颗粒,使平均粒径明显减小。采用正交实验的设计方法在热态实验台上进行了石英砂床料的磨损实验,通过对不同运行参数(颗粒平均直径、床温、流化数、床料高度)对石英砂床料磨损影响的级差分析,得到不同运行参数对石英砂床料磨损影响程度的主次关系依次是流化数、平均粒径、床温、料层高度。基于灰色预测理论推导了GM(1, 5)灰色模型,预测了石英砂在流化床内的磨损,实验结果验证了GM(1, 5)模型的准确性,其平均预测误差仅为0.508%。
     本文第四章在小型热态流化床上进行了单颗粒油污泥球的热解和燃烧实验以及油污泥的连续燃烧实验。实验中考虑了油污泥球径的变化对热解过程中挥发分组分和热解时间的影响;分析了燃烧过程中油污泥球径、床温、流化风速和水分含量对燃尽时间、烟气组分和浓度的影响。在单颗粒油污泥球燃烧实验结果的基础上,研究了油污泥连续燃烧过程中表观流化风速和床温对燃烧的影响,分析了炉膛高度方向上的烟气成分的变化规律;最后讨论了油污泥在流化床内燃烧的成灰特性,并在小型实验台上进行了油污泥灰的扬析实验,得到了扬析速率常数Ki*与相关因素的实验关联式。
     结合油污泥流化焚烧工艺专利,在深入研究分析油污泥流化床燃烧特点的基础上,在本文的第五章确定了油污泥洁净焚烧装置的结构设计参数,优化设计了一套完整的洁净焚烧装置。
     在本文第6章对所设计的20t/h油污泥循环流化床燃烧锅炉进行了系统的性能测试。研究了油污泥-水煤浆混烧的燃烧特性、气体污染物排放特性、灰渣特性。通过分析沿床高的温度分布总结了油污泥-水煤浆混烧比对燃烧的影响,分析表明,采用水煤浆作为伴烧燃料可以非常灵活地调节密相区的运行温度。应用油污泥-水煤浆流化燃烧综合数学模型,对油污泥-水煤浆流化床炉内床高方向上的温度分布及烟气组分分布进行了数值模拟,通过对模型模拟结果和实测结果的比较,表明该模型可以描述油污泥-水煤浆流化燃烧过程的主要特征。
Oil sludge is a kind of hazardous petroleum waste, and accumulates from all kinds of craft processes in petroleum production including exploitation, transporting and refining processes. In China, more than 1000 000 tones of oil sludge are generated annually. However, there is not a method or craft can efficiently treat this kind of oil sludge by now. Environment issues in industries production have attracted more and more attention; the treatment and disposal of petroleum oily sludge represent major challenges for petroleum industries.
     Incineration technology is thought as one of the most practicable technology in the field of sludge treatment in the world. Aiming at existing state of treatment technology in China and development trend of treatment technology of sludge, fluidized bed (FB) incineration technology of treating oily sludge are proposed with its obvious advantages such as fast disposal speed, decreasing components efficiently and recycle energy as well. Incineration of oil sludge in FB a now subject, not much has been reported on the combustion mechanism of oily sludge in a fluidized bed. This research considered the application of incineration principles to petroleum oily sludge using a new technique. The fundamental fuel properties and its combustion process and mechanism in a fluidized bed are concerned.
     Physicochemical characteristics are basis for the oil sludge combustion in a FB, the petroleum oily sludge taken from the bottom of crude oil storage tanks was investigated by a series of experiment to gain organic group compositions, the chemical components, the thermal properties including pyrolysis and combustion and evolution of volatile and hydrocarbon release. For these proposes, various approaches including solvent extraction, GC/MS, thermogravimetric analysis (TGA), electrically heated fixed bed quartz reactor coupled with Vario Plus emission monitoring system, and oil-gas evaluation workstation (OGE-II) equipped with a flame ionization detector (FID) were used. The CHs (hydrocarbons) data from the OGE-II were used for kinetic analysis by Vyazovkin model-free iso-conversion approach to obtain activation energy (Eα) dependency on conversion (α) in the pyrolysis of oil sludge. The mechanism of the dependency of the activation energy on the degree of conversion was also discussed.
     Fragmentation and attrition of bed materials are very important for stable operation of the oil sludge incinerator. In the chapter 3, the fragmentation and attrition of bed materials in a hot FB were investigated. In the fragmentation experiment, the influences of a variety of factors such as the bed temperature (650-950oC), the size of particles (2.5-6mm) on the fragmentation of quartzite particles are studied. The research results show that the extent of fragmentation increases with increasing bed temperature and particle size. For the small particles at low bed temperature, the research shows that, it is compressive stresses within the outer region of particles cause the particle to fracture, with the characteristics that many small fragments peeled from the surface of the particles and the average particle size after fragmentation change very little. However, for the large particle at high bed temperature, it is tense stresses within the center of particle causing the particle to fracture, the particle is divided into several equivalent size particles, as a consequence, and a more intense size reduction after fragmentation is gained. In the attrition experiment, the influence of operating parameters such as bed temperature, mean diameter of bed particles, fluidizing number and height of bed materials on attrition process is investigated. The influential extent of operating parameters on attrition is sequenced by mean of the range analysis. The result is shown as follow: fluidizing number>mean diameter of particles >bed temperature> height of bed materials. Based on the grey theory, a grey forecasting model GM (1, 5) is developed to predict the attrition of the quartzite particles in a hot FB. The result demonstrates that the forecasted values are in good agreement with the experimental data with the average residual error lower than 0.508%.
     In the chapter 4, the combustion experiment of the oil sludge was carried out in a laboratory scale thermal fluidized bed. Firstly the pyrolysis and combustion properties of oil sludge ball in the hot FB are investigated. In pyrolysis experiment, the influence of oil sludge ball diameter on volatiles release time and contents of volatiles are considered; in the combustion experiment, the influences of bed temperature, ball diameter, superficial fluidization velocity and moisture content on combustion are studied. Secondly, under the stable combustion state of oil sludge in the fluidized bed, the influences of bed temperature and superficial fluidization velocity on combustion process are studied; the gas compositions along the bed height are analyzed. Finally, ash formation and its properties in the combustion process in the hot FB are discussed. The elutriation experiment was conducted in order to determine the elutriation rate constant of oil sludge ash in the fluidized bed.
     Based on the patent of oil sludge incineration in a FB and combustion mechanism oily sludge in a FB, a craft process and technical characteristics of an incineration treatment system of oily sludge are described in chapter 5, the design parameters and structure of a 20t/h circulating fluidized bed (CFB) boiler are introduced.
     In the chapter 6, the field test of the combustion of the oil sludge was carried out in the 20t/h CFB boiler treating oil sludge. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash characteristics. The combustion along the furnace height was also investigated in order to understand the influences of feeding rate of oil sludge on temperature distribution along the furnace height. The study results show CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. A one-dimention comprehensive mathematical CFB model for describing the co-firing process of oil sludge with CWS in a CFB is tested against the experimental data from the 20t/h FB boiler. The model results for the axial temperatures and gas concentrations along the furnace height are compared to experimental measurement. The general agreement is reached between the calculated and measured parameters.
引文
[1] N. Vasudevan, P. Rajaram, Bioremediation of oil sludge contaminatedsoil, Environ. Int., 2001, 26: 409–411.
    [2] M.D. Ferrari, E. Neirotti, C. Albornoz, M.R. Mostazo, M. Cozzo, Biotreatment of hydrocarbons from petroleum tank bottom sludge’s in soil slurries, Biotechnol. Lett., 1999, 18: 1241–1246.
    [3]赵玉鹏,李性伟,吴大军,张坤灵,宋家泽.油田采出液中含油污泥无害化处理研究.石油规划设计,1999, (02)
    [4]黄松芝,刘真凯,赖晓雪.孤东油田含油污泥现状及处理技术.油气田环境保护, 2002, 3 (1): 88-92
    [5]赵东风,赵朝成,路帅.焦化法处理含油污泥工艺流程研究.环境科学研究, 2000, 13 (2):55-57
    [6]赵东风,路帅.含油污泥焦化处理反应条件的优化.石油大学学报(自然科学版), 2002, 26 (4): 90-91
    [7] N.G. Swoboda-Colberg, in: L.Y. Young, C.E. Cerniglia (Eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals, Wiley-Liss, New York, 1995, pp. 27–74.
    [8] T.L. Propst, R.L. Lochmiller, C.W. Qualls, K. Mcbee, In situ (mesocosm) assessment of immunotoxicity risk to small mammals inhabiting petrochemical waste sites, Chemosphere, 1999, 38: 1049–1067.
    [9] M.E. Zappi, B.A. Rogers, C.L. Teeter, D. Gunnison, R. Bajpai, Bioslurry treatment of a soil contaminated with low concentrations of total petroleum hydrocarbons, J. Hazard. Mater., 1996, 46: 1–12.
    [10]国家危险废物名录(1998年1月4日,国家环保局、国家经贸委、外经贸部、公安部颁布, 1998年7月1日实施环发[1998]089号)
    [11] http://www.zhb.gov.cn/eic/649645345759821824/20050323/6305.shtml
    [12] B.K. Gogoi , N.N. Dutta , P. Goswami , T.R. Krishna Mohan. A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Advances in Environmental Research , 2003, 7: 767–782
    [13] M.H. Houseman, K.O.J. Moore. Compositional changes during land farming of weathered Michigan crude oil contaminated soil, J. Soil. Contam., 1993, 2: 245–264.
    [14] I.D. Bossert, G.C. Compeau, Clean-up of petroleum hydrocarbon contamination in soil, in: Y.L. Young, C.E. Cerniglia (Eds.), Microbial Transformation and Biodegradation of Toxic Organic Chemicals, vol. 77–125, Wiley-Liss, New York, USA, 1995.
    [15] I. Lazar , S. Dobrota, A. Voicu, M. Stefanescu, L. Sandulescu, I.G. Petrisor. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields. Journal of Petroleum Science and Engineering , 1999, 22: 151–160
    [16] I.M. Head, R.P.J. Swannell. Bioremediation of petroleum hydrocarbon contaminants in marine habitats, Curr. Opin. Biotechnol., 1999, 10: 234–239.
    [17] N. Vasudevan, P. Rajaram. Bioremediation of oil sludge-contaminated soil. Environment International, 2001, 26: 409-411
    [18] A.N. Shkidchenko, E.N. Kobzev, S.B. Petrikevich, V.A. Chugunov, V.P. Kholodenko, A.M. Boronin. Biodegradation of black oil by microflora of the Bay of Biscay and biopreparations. Process Biochemistry, 2004, 39: 1671–1676
    [19] B. Mrayyan, M. N. Battikhi. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. Journal of Hazardous Materials, 2005, B120: 127–134
    [20]王洪君,张忠智,李庆忠.堆肥法处理含油污泥研究进展.环境污染治理技术与设备, 2002, 04.
    [21] R.F. Hejazi, T. Husain, F.I. Khan. Landfarming operation of oily sludge in arid region—human health risk assessment. Journal of Hazardous Materials, 2003, B99: 287–302
    [22] L. Suominen, M.M. Jussila, K. Ma kelainen, M. Romantschuk, K. Lindstrom. Evaluation of the GalegaaaaRhizobium galegae system for the bioremediation of oil-contaminated soil. Environmental Pollution, 2000, 107: 239—244
    [23] R.C. Loehr, M.T. Webster. Perfornance of long-term, field-scale bioremediation processes. Journal of Hazardous Materials, 1996, 50: 105-128
    [24]李凡修.含油污泥无害化处理及综合利用的途径.油气田环境保护, 1998, 03.
    [25] W. Ouyang, H. Liu, V. Murygina, Y. Yu, Z. Xiu, S. Kalyuzhnyi. Comparison of bio-augmentation and composting for remediation of oily sludge: A field-scale study in China . Process Biochemistry, 2005, 40 (12): 3763-3768
    [26]金一中,陈小平,陈雪明等含油污泥处理技术进展.环境污染与防治, 1998, 20 (4): 30-32
    [27] R. Boopathy. Factors limiting bioremediation technologies, Bioresour. Technol., 2000, 74: 63–67.
    [28]张中杰.炼厂含油污泥处理技术综述.中国科技信息, 2005, 03.
    [29] J. J. Santoleri. Heat recovery—an economic benefit to hazardous waste incineration systems. Journal of Heat Recovery Systems, 1983, 3 (2): 145-155
    [30] K.R.G. Hein, J.M. Bemtgen. EU clean coal technology—co-combustion of coal and biomass. Fuel Processing Technology, 1998, 54: 159–169
    [31] J. Werther, T. Ogada. Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25: 55–116
    [32] J. Corella, J.M. Toledo. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. Journal of Hazardous Materials, 2000, B80: 81–105
    [33] G. W. Lee, S. J. Lee, J. Jurng , J. Hwang. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator. Journal of Hazardous Materials ,2003, B101: 273–283
    [34]刘安平.含油污水中固体废物固化与燃煤混烧的可行性.油气田环境保护, 2005,01.
    [35] B. Leckner, L.E. ?mand, K. Lücke, J. Werther. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel, 2004, 83: 477–486 .
    [36] T. Malkow. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Management, 2004, 24: 53–79.
    [37] P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral. Thermal processing of sewage sludge. Applied Thermal Engineering , 2006, 26: 1420–1426
    [38] G. Mininni,V. Lotito, R. Passino, L. Spinosa. Influence of sludge cake concentration on the operating variables in incineration by different types of furnaces. Wat. Sci. Tech., 1998, 38 (2): 71-78.
    [39] X. Li, J. Yan, Y. Chin, M. Ni, K. Cen. Development of municipal solid waste incineration technologies, in: Better air Quality in Asian and Pacific Rim Cities 16 December 2002–18 December 2002, Hong Kong SAR PS-18-1.
    [40] A. White, D. Mayrose, J. F. Mullen. Replacement of a multiple hearth by a fluid bed incinerator the Greensboro case history. Waste Managenment, 2000, 20: 703-709.
    [41]赵虎仁,苏燕京,叶艳,马文臣,刘光全.石油炼厂含油污泥无害化处理初步研究.石油与天然气化工, 2003,06.
    [42] Z. Liu, Z. Liu, X. Li. Status and prospect of the application of municipal solid waste incineration in China. Applied Thermal Engineering, 2006, 26: 1193–1197.
    [43]刘晓娟,刘静,张宁生.油气田污泥无害化处理途径探讨.油气田环境保护, 2004,02.
    [44] J. Latva-somppi, M. Moisio, E. I. Kauppinen, T. Valmari, P. Ahnonen, U. Tapper, J. Keskinen. Ash formation during fluidized-bed incineration of paper mill waste sludge. J. Aerosol Sci., 1998, 29 (4):461-480.
    [45] E. J. Anthony. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Progress in Energy and Combustion Science, 1995, 21 (3): 239-268
    [46] M.Y. Tsai, K.T. Wu, C.C. Huang, H.T. Lee. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler. Waste Management, 2002, 22: 439–442.
    [47] K. Laursen, J.R. Grace. Some implications of co-combustion of biomass and coal in a fluidized bed boiler. Fuel Processing Technology, 2002, 76: 77– 89.
    [48] F. Scala, R. Chirone. Fluidized bed combustion of alternative solid fuels. Experimental Thermal and Fluid Science, 2004, 28: 691–699.
    [49] I. Petersen, J. Werther. Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed .Chemical Engineering and Processing, 2005, 44: 717–736.
    [50] R. Yan, D.T. Liang, L. Tsen. Case studies––Problem solving in fluidized bed waste fuel incineration. Energy Conversion and Management, 2005, 46: 1165–1178.
    [51] S. C. Saxena and C. K. Jotshi. Fluidized-bed incineration of waste materials .Progress in Energy and Combustion Science, 1994, 20 (4): 281-324.
    [52]姜秀民,马玉峰,于立军,等.水煤浆流化悬浮高效洁净燃烧技术研究与应用.化学工程, 2006, 34: 62-65
    [53]李晓东;黄国权,李爱民,等.异重流化床垃圾焚烧技术的试验研究.动力工程, 1998,18 (6) : 21-25
    [54]姜秀民.油污泥的异密度循环流化床燃烧处理方法.中国发明专利, CN200410089304. 6, 2005.06.08
    [55] P. Dacombe, M. ourkashanian, A.Williams, L.Yap. Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 1999, 78: 1847-857.
    [56] H.T Zhang, K.F. Cen, J.H. Yan, M, J.Ni. The fragmengtation of coal particles during the coal combustion in a fluidized bed. Fuel, 2002, 81: 1835-1840.
    [57] S.H. Lee, S.K.Kim, D.H.Lee. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor. Fuel, 2003, 81:1633-1639.
    [58] Jung Kujong, Stanmore Brian R. Fluidized Bed Combustion of Wet Brown Coal. Fuel.1980, 59: 74-80.
    [59] KK. Pillai. Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds. Journal of the Institute of Energy, 1981, 54: 142-150.
    [60] J. F. Stubington, K. Sumaryono. Release of Volatiles from Large Coal Particles in a Hot Fluidized Bed. Fuel. 1984, 63: 1013-1019.
    [61] J. F. Stubington, G. Huang, A.W. Scaroni. Devolatilization Times of mm-size Coal Particles. Fuel, 1991, 70: 1105-1108.
    [62] J. F. Stubington, K. W. K. Ng, B. Moss, P. K.Peeler. Comparison of Experimental Methods for Determining Coal Particle Devolatilization Times under Fluidized Bed Combustor Conditions. Fuel, 1997, 76: 233-240.
    [63] L. Jia, H.A. Becker, R. K. Code. Devolatilization and Char Burning Of Coal Particles in a Fluidized Bed Combustor. Canadian Journal of Chemical Engineering, 1993, 71: 10-19.
    [64] J. Werther, T. Ogada, V.A. Borodulya, V.I. Dikalenko. Devolatilisation and combustion kinetic parameters of wet sewage sludge in a bubbling fluidised bed furnace. In: Proc. Inst. Of Energy’s 2nd International Conference on Combustion and Emission Control. London, UK, 1995, pp149–158.
    [65] M. Saito, K. Amagai, G. Ogiwara, M. Arai. Combustion characteristics of waste material containing high moisture. Fuel, 2001, 80:1201-1209.
    [66] P.A. Vesilind, T.B. Ramsey. Effect of drying temperature on the fuel value of wastewater sludge. Wastewater Management and Research, 1996, 14: 189–196.
    [67] V. Raczeck. Experimental investigation of the emissions and combustion characteristics of sewage sludges in a semi-pilot scale fluidised bed combustor.Ph.D. Dissertation, Technical University Hamburg, Hamburg, Germany, 1992.
    [68] T. Ogada, J. Wether. Combustion characteristics of wet sludge in a fluidized bed. Fuel, 1996 75 (5): 617-626.
    [69] P. Punnaruttanakun, V. Meeyoo, C. Kalambaheti, P. Rangsunvigit, T. Rirksomboon, B. Kitiyanan. Pyrolysis of API separator sludge. J. Anal. Appl. Pyrolysis, 2003, 68-69: 547-560.
    [70] N.J. Saikia, P. Sengupta, P.K. Gogoi, P.C. Borthakur. Physico-chemical and cementitious properties of sludge from oil field effluent treatment plant. Cement and Concrete Research , 2001, 31: 1221–1225.
    [71] E. K. Ioannis, L. Lushi, D.B. Keith, et al. Effect of Freeboard Residence Time on the Molecular Mass Distributions of Fluidized Bed Pyrolysis Tars. Fuel. 1990, 69: 172-176.
    [72] Krüger-Betz M. Recovery of valuable products from industrial sludge in an indirectly heated fluidized bed with consideration of heavy metals distribution in the product fractions. Ph.D. Thesis, University of Hamburg, Germany, 1986.
    [73] A.B. Kummer. Pyrolysis of digested sewage sludge in a fluidised bed, an alternative disposal method. Ph.D. Thesis, University of Hamburg, Germany, 1989.
    [74] J. Koch, W. Kaminsky. Pyrolysis of a refinery sewage sludge, a material recycling process. Science and Techn Bd, 1993; 46.
    [75] T. Augustin. Recovery of valuable materials through pyrolysis of sewage sludge in a fluidized bed and product analysis. Ph.D. Thesis, University of Hamburg, Germany, 1986.
    [76] G. Yue J. Lu, H. Zhang, et al. Design Theory of Circulating Fluidized Bed Boilers. In: Proceedings of the 18th International Fluidized Bed Combustion Conference. Toronto Canada, May 18-21, 2005
    [77] La Nauze RD. Fundamentals of coal combustion in fluidized beds. Chem. Engng. Res. Des., 1985, 63: 3–33.
    [78] V.A. Borodulya, V.I. Dikalenko, G.I. Palchonok, L.K. Stanchits. Fluidized bed combustion of solid organic waste and lowgrade coal, research and modelling. In: Heinschel KJ, editor. Proceedings 13th International Conference on Fluidized Bed Combustion. Orlando, FL: ASME, 1995:135–142.
    [79] L. Mühlhaus. Combustion of sewage sludge in a fluidized bed. In: VDI-Seminar, Kl?rschlammentsorgung II. Düsseldorf, 1993.
    [80] M. Fiorentino, A. Marzocchell a, P. Salatino, Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor––I. Model development, Chem. Sci., 1997, 52: 1893–1908.
    [81] M. Fiorentino, A. Marzocchell a, P. Salatino, Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor––II. Experimental, Chem.Eng. Sci., 1997, 52: 1909–1922.
    [82]金晓钟,吕俊复,乔锐等.循环床锅炉燃烧份额分布的实验研究和理论分析.洁挣煤技术, 1999, 5 (1 ): 26-29
    [83] F. Scala, P. Salatino. Modelling fluidized bed combustion of high-volatile solid fuels. Chem. Eng. Sci, 2002, 57: 1175–1196.
    [84]李岩.宽筛分低循环倍率循环床密相区燃烧份额的理论和实验研究.硕士学位论文.清华大学, 1991
    [85]李政.循环流化床锅炉通用整体数学模型、仿真与性能预测.博士学位论文,清华大学, 1994
    [86]冯俊凯,岳光溪,昌俊复.循环流化床燃烧锅炉.中国电力出版社, 2003
    [87] K. Kato, S. Kanbara, T. Tajima, H. Shibasaki, K. Qazwa, T. Takarada. Effect of particle size on elutriation rate constant for a fluidized bed. J. Chem. Eng. Jpn., 1987, 20: 498–504.
    [88] J.H. Choi, K.B. Choi, P. Kim, D. W.Shun, S.D. Kim. The effect of temperature on particle entrainment rate in a gas fluidized bed. Powder Technol., 1997, 92: 127–133.
    [89] G. Marban, J.J. Pis, A.B. Fuertes. Characterizing.Fuels for Atmospheric Fluidized Bed Combustion. Combustion and Flame, 1995, 103: 41-58.
    [90] D. Geldart, N. Harnby, A.C. Wong, Fluiding of cohesive powder Powder Technol., 1987, 37: 25.
    [91] C.Y.Wen, L.H.Chen. Fluidized bed freeboard phenomena: entrainment and elutriation. AIChE Journal., 1982, 28 (1): 117-128.
    [92] D. Merrick, J. Highley. Particle size reduction and elutriation in a fluidized bed process. AIChE Symp. ,1974, 137: 366-378.
    [93] Y.D. Liu, S. Kimura. Fluidization and entrainment of difficult-fluidize-fine powdermixed with easy-to fluidize large particles. Powder Technol., 1993, 75: 189.
    [94] Y.M. Chang, C.M. Chou, K.T. Su, C.Y. Hung, C.H. Wu. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment. Waste Management, 2005, 25 (3): 249-263.
    [95] A. Cammarota, R. Chirone, P. Salatino, F. Scala, M. Urciuolo .Attrition phenomena during fluidized bed combustion of granulated and mechanically dewatered sewage sludges. Proceedings of the Combustion Institute, 2005, 30: 3017–3024.
    [96] M. Saènger, J. Werther, T. Ogada. NOx and N2O emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge. Fuel, 2001, 80: 167-177.
    [97] H. Lopes, T. Trindade, I. Gulyurtlu, I. Cabrita. Characterization of FBC ashes from co-combustion of coal with oily residues. Fuel, 2001, 80: 785-793.
    [98] P. Kouvoa, R. Backman. Estimation of trace element release and accumulation in the sand bed during bubbling fluidised bed co-combustion of biomass peat and refuse-derived fuels. Fuel, 2003, 82: 741–753.
    [99] B.B. miller, D. R. Dugwell, R. Kandiyoti. Partitioning of trace elements during the combustion of coal and biomass in suspension-firing reactor. Fuel, 2002, 81:159-171.
    [100] D. Marani, C.M. Braguglia, G. Mininni, F. Maccioni. Behavior of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidized bed furnace. Waste Management, 2003, 23: 117–124.
    [101] L. E. ?mand, B. Leckner. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed. Fuel, 2004, 83: 1803–1821.
    [102] F. S. Zhang, S.I. Yanasaki, M. Nanzyo, K. Kimura. Evaluation of cadmium and other metal losses from various municipal wastes during incineration disposal. Environmental pollution, 2001, 115: 253-260.
    [103] G.Qian, Y. Cao, P. Chui, J. Tay. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of Hazardous Materials, 2006, B129: 274–281.
    [104] P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral. Thermal processing of sewage sludge. Applied Thermal Engineering, 2006, 26: 1420–1426.
    [105] C.R. Cheeseman, G.S. Virdi. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 2005, 45: 18–30.
    [106] C. Ferreira A. Ribeiro L. Ottosen. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, 2003, B96: 201–216.
    [107] C.T. Li, W.J. Lee, H.H. Mi, C.C. Su. PHA emission from the incineration of waste oily sludge and PE plastic mixtures. The Science of the Total Environment, 1995, 170: 171-183.
    [108] J.H. Yan, T. Chen, X.D. Li, J. Zhang, S.Y. Lu, M.J. Ni and K.F. Cen . Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials, 2006, 135 (1-3): 47-51.
    [109]李国学,周立祥,李彦明.固体废弃物处理与资源化.中国环境科学出版社,北京, 2005 , p283
    [110]李国学,周立祥,李彦明.固体废弃物处理与资源化.中国环境科学出版社,北京, 2005 , p286
    [111]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行.北京:中国电力出版社, 1998: 10–12.
    [112] P. Basu, S. Fraser. Circulating Fluidized Bed Boilers. Butterworth-Heinemann, a division of reed Publishing (USA) Inc.1991
    [113]马玉峰,姜秀民,万启科,秦玉琨.水煤浆流化-悬浮高效洁净燃烧技术在胜利油田的应用.热能动力工程, 2006, 21(6): 644-647
    [114]姜秀民,马玉峰,于立军,等.水煤浆流化-悬浮高效洁净燃烧技术研究与应用.化学工程, 2006, 34 (1): 62-65
    [1]赵东风,路帅.含油污泥焦化处理反应条件的优化.石油大学学报(自然科学版), 2002, 26(4): 90-91
    [2] N.G. Swoboda-Colberg, in: L.Y. Young, C.E. Cerniglia (Eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York, 1995, pp. 27–74.
    [3]李淑培.石油加工工艺学(上册).中国石化出版社, 1991
    [4] Prame P, Vissanu M, Chatvalee K, et al. Pyrolysis of API separator sludge. J. Anal. Appl. Pyrolysis, 2003, 68-69: 547-560.
    [5] N.J. Saikia, P. Sengupta, P.K. Gogoi, P.C. Borthakur. Physico-chemical and cementitious properties of sludge from oil field effluent treatment plant. Cement and Concrete Research, 2001, 31:1221–1225
    [6] Ogad T, Wether J. Combustion characteristics of wet sludge in a fluidized bed. Fuel, 1996, 75(5): 617-626.
    [7] J. Werther, T. Ogada, V.A. Borodulya, V.I. Dikalenko. Devolatilisation and combustion kinetic parameters of wet sewage sludge in a bubbling fluidised bed furnace. In: Proc. Inst. Of Energy’s 2nd International Conference on Combustion and Emission Control. London, UK, 1995, pp149–158.
    [8] M. Saito, K. Amagai, G. Ogiwara, M. Arai. Combustion characteristics of waste material containing high moisture. Fuel, 2001, 80:1201-1209.
    [9] S. Vyazovkin and C.A. Wight. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta, 1999, 340-341: 53-68.
    [10] C.D. Doyle. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci., 1961, 5: 285-292.
    [11] S. Vyazovkin and D. Dollimore. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in Solids. J. Chem. Inf. Comp. Sci., 1996, 36: 42-45.
    [12] S. Vyazovkin. Advanced isoconversional method. J. Therm. Anal., 1997, 49: 1493-1499.
    [13] L.F. Calvo, M. Otero, B.M. Jenkins, A.I. García, A. Morán. Heating process characteristics andkinetics of sewage sludge in different atmospheres. Thermochim. Acta., 2004, 409: 127-135.
    [14] B. Saha, A.K. Maiti, A.K. Ghoshal. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim. Acta., 2006, 444: 46-52.
    [15] S. Vyazovkin, V. Goriyachko. Potentialities of software for kinetic processing of thermoanalytical data by the isoconversion method. Thermochim. Acta. , 1992, 194: 221-230.
    [16] S. Vyazovkin. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project - the light at the end of the tunnel? Thermochim. Acta. , 2000, 355: 155-163.
    [17] S. Vyazovkin, C.A. Wight. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem. Mater. , 1999, 11: 3386-3393.
    [18] S. Vyazovkin. A unified approach to kinetic professing of nonisothermal data. Int. J. Chem. Kinet. , 1996, 28: 95-101.
    [19] S. Vyazovkin, N. Sbirrazzuoli. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. , 2006, 27: 1515-1532.
    [20] J.D. Peterson, S. Vyazovkin, C.A. Wight, Kinetics of the thermal and thermo-oxidative degradation of polystyrene and poly propylene. Macromol. Chem. Phys., 2001, 202: 775-784.
    [21] B. Saha, A.K. Ghoshal. Model-free kinetics analysis of waste PE sample. Thermochim. Acta. , 2006, 451: 27-33.
    [22] A.W. Coats, J.P. Redfern. Thermal studied on some metal complexes of hexamethy leniminecarbodithioate. Nature, 1964, 1: 68-69.
    [23] V.M. Gorbachev. A solution of exponential integral in the nonisothermal kinetics for linear heating. J .Therm. Anal. Calorimetry, 1975, 8: 349-350.
    [24] R.K Agrawal. Integral approximation for nonisothermal kinetics. AIChE J., 1987, 33: 1212-1214.
    [25] C.H. Li. An integral approximation formula for kinetic analysis of nonisothermal TGA data. AIChE J., 1985, 31: 1037-1038.
    [26] M.J. Starink. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim. Acta., 1996, 288: 97-104
    [27] J. Cai, F. Yao, W. Yi, F. He. New temperature integral approximation for nonisothermal kinetics. AIChE J., 2006, 52: 1554-1557.
    [28] M. V. K?k, O. Karacan. Pyrolysis analysis and kinetics of crude oils. J. Therm. Anal. Calorim, 1998, 52 (3): 781-788.
    [29] A. Ciajolo, R. Barbella. Pyrolysis and oxidation of heavy fuel oils and their fractions in a thermogravimetric apparatus. Fuel, 1984, 63: 657-661.
    [1]姜秀民,马玉峰,万启科等.水煤浆流化悬浮清洁燃烧技术.中国发明专利, ZL02109852. 2, 2002.
    [2] E.J. Anthony. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Progress in Energy and Combustion Science, 1995, 21: 239-268.
    [3]别如山,杨励丹,周定.焚烧含盐有机废液添加剂对流化床床料烧结的影响.化工学报, 2002, 53 (12): 1235-1259.
    [4] X. Li, J. Yan, M. Ni, K. Cen. Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal, 2001, 84 (2): 161-166.
    [5] J. Werther, T. Ogada. Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25: 55–116.
    [6]姜秀民,马玉峰,于立军.水煤浆流化悬浮高效洁净燃烧技术研究与应用.化学工程, 2006, 34(1): 62-65.
    [7]李晓东,李宏俊,徐茂蓉,等.流化床焚烧处理有机浓缩废液的结焦结渣特性.化工学报, 2005, 56 (11): 1266-1271.
    [8] P. Dacombe, M. ourkashanian, A. Williams, L. Yap. Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 1999, (78): 1847-857.
    [9] H.T Zhang, K.F. Cen, J.H. Yan, M.J. Ni. The fragmentation of coal particles during the coal combustion in a fluidized bed. Fuel, 2002, (81): 1835-1840
    [10] S.H. Lee, S.K.Kim, D.H.Lee. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor. Fuel, 2003, 81:1633-1639.
    [11]李爱民,池涌,严建华等.大颗粒炭在流化床中燃烧的热应力破碎理论.煤炭学报, 1998, 3(2): 208-211.
    [12] A.Elliot Martin.煤利用化学(中册).范辅弼等译.北京:化学工业出版社, 1991, 144-149, 332-333.
    [13] J.R. ed. Howard. Fluidized beds combustion and applications. London and New York: Applied Science Publishers, 1983: 55-70.
    [14] C.Y. King. Internal Fracture of Glass by Thermal Shock[R] .Materials Sci. Center Rep. # 411,Cornell University, 1965 pp 168,.
    [15] H. S. Carslaw, J. C. Jaeger. Conduction of Heat in Solids (2nd Ed.). Clarendon Press, Oxford, 1959.
    [16] S. Timoshenko, J. N. Goodier. Theory of elasticity (2nd Ed.). McGraw - Hill, New York, 1951.
    [17]张晶瑶,张凤鹏,马万昌,等.加热温度变化对岩石强度的影响.金属矿山, 1996, (12): 6-8.
    [18] G. Donsi, L. Massimilla, M. Miccio. Carbon Fines Production and Elutriation from the Bed of a Fluidized Coal Combustor. Combustion & Flame, 1981,41:57-69
    [19] A. Di Benedetto, P. Salatino. Modeling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology,1998,95:119-128
    [20] D. Merrick, J. Highley. Particle size reduction and elutriation in a fluidized bed process. AIChE Symp. Ser. Rec. Adv. Air Pollut. Control, 1974, 70 (137): 366-378.
    [21] Y. Ray, T. Jiang, C.Y. Wen. Particle attrition phenomena in a fluidized bed. Powder Technol. 1987, 49, 193-206.
    [22] P. R. Tardin, Jr., L. Goldstein, Jr., G. Lombardi, J. D. Pagliuso. On the mechanical attrition and fragmentation of particles in a fast fluidized bed. Ind. Eng. Chem. Res., 2001, 40(9): 4141-4150.
    [23] Y.D. Liu, S. Kimura. Fluidization and entrainment of difficult-fluidize-fine powder mixed with easy-to fluidize large particles. Powder Technol., 1993, 75(2): 189-196.
    [24]胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社, 2000: 203
    [25] J.L. Deng. Gray system theories tutorial. Wuhan: Huazhong University of Science and Technology Press, 1990 (in Chinese).
    [26] C. Fu, J. Zheng, J. Zhao, et al.. Application of grey relational analysis for corrosion failure of oil tubes, Corrosion Sci., 2001, 43(5): 881-889.
    [27] J. L. Deng. Properties of multivariable grey model GM (1, N), J. Grey Syst., 1989, 1(1): 125–141.
    [28] F.M. Tseng, H.C. Yu, G. H. Tzeng. Applied hybrid grey model to forecast seasonal time series, Technol. Forecast. Soc. Change, 2001, 67: 291–302.
    [29] C.T. Lin, S.Y. Yang. Forecast of the output value of Taiwan’s opto-electronics industry using the Grey forecasting model. Technol. Forecast. Soc. Change 2003, 70: 177–186.
    [30] H. Zhang, Z.G. Li, Z.N. Chen. Application of grey modeling method to fitting and forecasting wear trend of marine diesel engines. Tribol. Int. 2003, 36: 753–756.
    [31] S.C. Chang, H.C. Lai, H.C. Yu. A variable P value rolling Grey forecasting model for Taiwan semiconductor industry production. Technol. Forecast. Soc. Change 2005, 72: 623–640.
    [1] E. K. Ioannis, L. Lushi, D.B. Keith, et al. Effect of Freeboard Residence Time on the Molecular Mass Distributions of Fluidized Bed Pyrolysis Tars. Fuel, 1990, 69: 172-176.
    [2] Krüger-Betz M. Recovery of valuable products from industrial sludge in an indirectly heated fluidized bed with consideration of heavy metals distribution in the product fractions. Ph.D. Thesis, University of Hamburg, Germany, 1986.
    [3] A.B. Kummer. Pyrolysis of digested sewage sludge in a fluidised bed, an alternative disposal method. Ph.D. Thesis, University of Hamburg, Germany, 1989.
    [4] J. Koch, W. Kaminsky. Pyrolysis of a refinery sewage sludge, a material recycling process. Science and Techn Bd, 1993; 46.
    [5] T. Augustin. Recovery of valuable materials through pyrolysis of sewage sludge in a fluidized bed and product analysis. Ph.D. Thesis, University of Hamburg, Germany, 1986.
    [6] J. F. Stubington, G. Huang, A.W. Scaroni. Devolatilization Times of mm-size Coal Particles. Fuel, 1991, 70: 1105-1108.
    [7] Jung Kujong, Stanmore Brian R. Fluidized Bed Combustion of Wet Brown Coal. Fuel, 1980, 59: 74-80.
    [8] KK. Pillai. Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds. Journal of the Institute of Energy, 1981, 54: 142-150.
    [9] J. F. Stubington, K. Sumaryono. Release of Volatiles from Large Coal Particles in a Hot Fluidized Bed. Fuel, 1984, 63: 1013-1019.
    [10] J. F. Stubington, K. W. K. Ng, B. Moss, P. K.Peeler. Comparison of Experimental Methods for Determining Coal Particle Devolatilization Times under Fluidized Bed Combustor Conditions. Fuel, 1997, 76: 233-240.
    [11] L. Jia, H.A. Becker, R. K. Code. Devolatilization and Char Burning Of Coal Particles in a Fluidized Bed Combustor. Canadian Journal of Chemical Engineering, 1993, 71: 10-19.
    [12] J. Werther, T. Ogada, V.A. Borodulya, V.I. Dikalenko. Devolatilisation and combustion kinetic parameters of wet sewage sludge in a bubbling fluidised bed furnace. In: Proc. Inst. Of Energy’s 2nd International Conference on Combustion and Emission Control. London, UK, 1995, pp149–158.
    [13] V. Raczeck. Experimental investigation of the emissions and combustion characteristics of sewage sludges in a semi-pilot scale fluidised bed combustor.Ph.D. Dissertation, Technical University Hamburg,Hamburg, Germany, 1992.
    [14]顾璠,沈红梅.大颗粒煤燃烧传递动力学破碎理论模型.煤炭转化, 1994,17(4):21~25.
    [15]于敦喜,徐明厚.煤焦破碎的模拟研究.中国电机工程学报, 2005,25(9): 90~93.
    [16]俞云,徐明厚,于敦喜等.燃烧过程中焦炭的膨胀特性及其对颗粒物形成的影响.中国电机工程学报, 2005, 25(21): 112~116.
    [17]马利强,路霁鸰,岳光溪.流化床条件下煤的一次爆裂特性的试验研究.燃料化学学报, 2000, 28(1): 44~48.
    [18] M. Saito, K. Amagai, G. Ogiwara, M. Arai. Combustion characteristics of waste material containing high moisture. Fuel, 2001, 80:1201-1209.
    [19] M.G. Rasul, V. Rudolph. Fluidized bed combustion of Australian bagasse Fuel, 2000, 79: 123–130.
    [20] F. Scala, R. Chirone. Fluidized bed combustion of alternative solid fuels. Experimental Thermal and Fluid Science, 2004, 28: 691–699.
    [21] L. Mühlhaus. Combustion of sewage sludge in a fluidized bed. In: VDI-Seminar, Kl?rschlammentsorgung II. Düsseldorf, 1993.
    [22] M. Fiorentino, A. Marzocchell a, P. Salatino. Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor––I. Model development. Chem. Sci., 1997, 52: 1893–1908.
    [23] M. Fiorentino, A. Marzocchell a, P. Salatino. Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor––II. Experimental. Chem.Eng. Sci., 1997, 52: 1909–1922.
    [24] M. Saènger, J. Werther, T. Ogada. NOx and N2O emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge. Fuel, 2001, 80: 167-177.
    [25]赵济洲.燃烧水煤浆产生的污染物及排放量分析.陕西煤炭技术, 1996, 4:16~18
    [26] R. Yan, D.T. Liang, L. Tsen. Case studies––Problem solving in fluidized bed waste fuel incineration. Energy Conversion and Management, 2005, 46: 1165–1178.
    [27] C.T. Li, W.J. Lee, H.H. Mi, C.C. Su. PHA emission from the incineration of waste oily sludge and PE plastic mixtures. The Science of the Total Environment, 1995, 170: 171-183.
    [28] J.H. Yan, T. Chen, X.D. Li, J. Zhang, S.Y. Lu, M.J. Ni and K.F. Cen . Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials, 2006, 135 (1-3): 47-51.
    [29] H. Lopes, T. Trindade, I. Gulyurtlu, I. Cabrita. Characterization of FBC ashes from co-combustion of coal with oily residues. Fuel, 2001, 80: 785-793.
    [30] JoséCorella, JoséM. Toledo. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals.I. Pilot plant used and results. Journal of Hazardous Materials, 2000, B80: 81–105.
    [31] P. Kouvoa, R. Backman. Estimation of trace element release and accumulation in the sand bed during bubbling fluidised bed co-combustion of biomass peat and refuse-derived fuels. Fuel, 2003, 82: 741–753.
    [32] B.B. miller, D. R. Dugwell, R. Kandiyoti. Partitioning of trace elements during the combustion of coal and biomass in suspension-firing reactor. Fuel, 2002, 81:159-171.
    [33] D. Marani, C.M. Braguglia, G. Mininni, F. Maccioni. Behavior of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidized bed furnace. Waste Management, 2003, 23: 117–124.
    [34] L. E. ?mand, B. Leckner. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed.Fuel, 2004, 83: 1803–1821.
    [35] F. S. Zhang, S.I. Yanasaki, M. Nanzyo, K. Kimura. Evaluation of cadmium and other metal losses from various municipal wastes during incineration disposal Environmental pollution, 2001, 115: 253-260.
    [36]刘安平.含油污水中固体废物固化与燃煤混烧的可行性.油气田环境保护, 2005,01.
    [37] P. Dacombe, M. ourkashanian, A.Williams, L.Yap. Combustion-induced fragmentation behavior of isolated coal particles. Fuel, 1999, 78: 1847-857.
    [38] H.T Zhang, K.F. Cen, J.H. Yan, M,J.Ni. The fragmengtation of coal particles during the coal combustion in a fluidized bed. Fuel, 2002, 81: 1835-1840.
    [39] S.H. Lee, S.K.Kim, D.H.Lee. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor. Fuel, 2003, 81:1633-1639.
    [40] F. Scala, R. Chirone. Fluidized bed combustion of alternative solid fuels. Experimental Thermal and Fluid Science, 2004, 28: 691–699.
    [41]杨海瑞,肖显斌,吕俊复等. CFB锅炉内成灰特性的试验研究方法.化工学报, 2003, 54(8): 1183~1187.
    [42] H. Kono. Attrition Rates of Relatively Coarse Solid Particles in Various Types of Fluidized Beds. AIChE Symposium Series, 1981, (205): 107~115.
    [43] W. G. Vaoux. Kinetics of Attrition in the Bubbling Zone of a Fluidized Bed. AIChE Symposium Series, 1983, (222): 97~102.
    [44] K. Kato, S. Kanbara, T. Tajima, H. Shibasaki, K. Qazwa, T. Takarada. Effect of particle size on elutriation rate constant for a fluidized bed. J. Chem. Eng. Jpn., 1987, 20: 498–504.
    [45] J.H. Choi, K.B. Choi, P. Kim, D. W.Shun, S.D. Kim. The effect of temperature on particle entrainment rate in a gas fluidized bed. Powder Technol., 1997, 92: 127–133.
    [46] G. Marban, J.J. Pis, A.B. Fuertes. Characterizing.Fuels for Atmospheric Fluidized Bed Combustion. Combustion and Flame, 1995, 103: 41-58.
    [47] D. Geldart, N. Harnby, A.C. Wong, Fluiding of cohesive powder. Powder Technol., 1987, 37: 25.
    [48] C. Y. Wen, L. H. Chen. Fluidized bed freeboard phenomena: entrainment and elutriation.. AIChE Journal., 1982, 28 (1):117-128.
    [49] Y. D. Liu, S. Kimura. Fluidization and entrainment of difficult-fluidize-fine powdermixed with easy-to fluidize large particles. Powder Technol., 1993, 75: 189.
    [50] Y.M. Chang, C.M. Chou, K.T. Su, C.Y. Hung, C.H. Wu. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment. Waste Management, 2005, 25 (3): 249-263.
    [51] A. Cammarota, R. Chirone, P. Salatino, F. Scala, M. Urciuolo .Attrition phenomena during fluidized bed combustion of granulated and mechanically dewatered sewage sludges. Proceedings of the Combustion Institute, 2005, 30: 3017–3024.
    [52] Grace, J. R. Fluidized bed hydrodynamics. Handbook of Multiphase System, G. Hestroni, ed., Hemisphere, Washington, Chap. 8.1, 1982
    [53]岑可法,倪明江,骆仲泱等.循环流化床锅炉的理论、设计和运行.北京,中国电力出版社,1997.5
    [54] Young Tag Kim, Byung Ho Song I, Sang Done Kim.Entrainment of solids in an internally circulating fluidized bed with draft tube, Chemical Engineering Journal, 1997,66: 105-l 10
    [55] R.C. Darton, R.D. LaNauze, J.F. Davidson, D. Harrison. Trans.Inst. Chem. Eng., 1977, 55: 274.
    [1] Z. Liu, Z. Liu, Li L. Xiao. Status and prospect of the application of municipal solid waste incineration in China. Applied Thermal Engineering, 2006,26: 1193–1197
    [2] Y. Jian, J. Yan, Y. Chi, X. Li, Z. Ma, X. Jiang, et al., Combustion characteristics of municipal solid wastes in China, Environment Science, 2002, 23 (3): 107–110.
    [3] X. Li, J. Yan, Y. Chin, M. Ni, K. Cen. Development of municipal solid waste incineration technologies, in: Better air Quality in Asian and Pacific Rim Cities 16 December 2002–18.
    [4]姜秀民.油污泥的异密度循环流化床燃烧处理方法.中国发明专利, CN200410089304. 6, 2005.06.08.
    [5]姜秀民,马玉峰,于立军,等.水煤浆流化悬浮高效洁净燃烧技术研究与应用.化学工程, 2006, 34(1): 62-65
    [6]李晓东;黄国权,李爱民,等.异重流化床垃圾焚烧技术的试验研究.动力工程, 1998, 18(6):21-25
    [7]孙学君,袁建国,张瑾,等.含油污泥在油田开发中的应用研究.石油钻采工艺, 1999, 21(01): 68-70
    [8]姜秀民.组合式高温旋涡分离器.中国发明专利, CN96121228. 4, 1998.05.20.
    [1] X.M. Jiang, X.X. Han, Z.G. Cui, Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energ. Combust., 2007, 33: 552-579.
    [2] T. Hirama, H. Takeuchi, M. Horio. Nitric oxide emission from circulating fluidized bed coal combustion. In: J.P. Mustonen, (Ed.), Proceedings of the 9th International Conference on Fluidized Bed Combustion, ASME, New York 1,1987, pp898-903.
    [3] D. Marani, C.M. Braguglia, G. Mininni, F. Maccioni. Behavior of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidized bed furnace. Waste Management, 2003, 23: 117–124.
    [4] L. E. ?mand, B. Leckner. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed. Fuel, 2004, 83: 1803–1821.
    [5]刘安平.含油污水中固体废物固化与燃煤混烧的可行性.油气田环境保护, 2005,01.
    [6] M.R. Hyre, L.R. Glicksman. Axial and lateral solids distribution modeling in the upper region of circulating fluidized beds, Powder Technology, 2000, 110: 98–109.
    [7]马玉峰.水煤浆流化-悬浮燃烧与预燃室燃烧技术研究,哈尔滨工业大学博士论文, 2007
    [8]杨晨,何祖威,辛明道.大型循环流化床锅炉固体颗粒流动及分布的数值模拟.燃烧科学与技术, 2000, 6(3): 238-243
    [9]王文选.循环流化床中石油焦与煤混烧特性研究.东南大学博士学位论文, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700