城市污水处理厂数据挖掘及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂存在着“数据丰富,但信息贫乏”的现象。同时污水处理过程作为一个复杂的工业过程,它的数据跟商业、金融、生物学等领域的数据相比具有不同的特点:1.数据量巨大、高维且有较强的耦合性;2.工业噪声和过程中的不确定性;3.动态性与数据类型的多样性;4.多时标性与不完整性;5.多模态性。基于这样一个事实,本文从数据预处理技术、城市污水量的非线性动力学分析和预测、城市污水处理厂异常检测与异常征兆模式挖掘、活性污泥工艺仿真平台的构建和扩展等多个方面研究了城市污水处理厂数据挖掘的理论和方法,主要工作和创新总结如下:
     1.在数据预处理技术方面,对数据集成、数据清洗、数据转换和数据归约等一系列的数据预处理技术进行了研究,并给出了相应的一系列算法。在这些研究的基础上,提出主题和应用双层导向的数据预处理技术,并利用这种技术设计了三个不同主题应用的数据预处理过程。
     2.在城市污水量的非线性动力学分析和预测方面,首先对Grassberger & Procaccia(GP)算法、虚假近邻法、Cao方法、自相关函数法、互信息量法和CC算法等相空间重构技术进行了研究,并用这些技术进行了相空间重构。在此基础上,通过最大Lyapunov指数、邻近返回点图分析(CRP,Close returns plot)和替代数据法分析判断城市污水水量时间序列存在混沌。基于这一结论对时间序列进行预测。利用神经网络对相空间重构的输入、输出矢量进行学习和训练得到一个能拟合输入、输出的神经网络模型。然后利用此模型对城市污水水量进行短时预测,取得了较为满意的预测效果。
     3.在城市污水处理厂异常检测与异常征兆模式挖掘方面,针对污水处理厂数据类分布极不平衡和代价敏感等特点,利用R_(WLOO)(α)对支持向量机(Support Vector Machine,SVM)进行改进,用于污水处理过程的异常检测。利用遗传算法(Genetic Algorithm,GA)对改进支持向量机的全局最优化问题进行求解。此外为这种改进的支持向量机设计了一种简化算法,提高了运算速度。实际的运算结果显示,这种改进的支持向量机与标准的SVM和神经网络比较,对城市污水处理厂的异常的检测可以取得较好的效果。异常产生前会出现一些征兆,为了尽早地识别这些征兆以便及时的采取相应措施,避免异常的产生,本文利用异常征兆模式挖掘的方法来解决这一问题。首先定义序列模式相异度来区别正常模式与异常征兆模式,在此基础上提出基于滑动窗口的异常征兆模式挖掘算法。实际应用的结果表明,该算法可以提前识别出异常的征兆模式
     4.在活性污泥工艺仿真平台的构建和扩展方面,首先对国际水协会(International Water Association,IWA)和欧洲科学技术研究合作组织(European Co-operation in the field of Scientific and Technical Research,COST 624)提出的污水仿真标准平台进行了研究。在此基础上,对COST的污水仿真标准平台进行扩展,使扩展后的平台能够对处理过程的异常进行仿真。其中扩展的重点是活性污泥膨胀模型:生物反应器的部分用模型概括了动力学选择理论、微生物衰减理论、营养物扩散理论和有机物贮存理论,二沉池部分根据丝状菌骨架理论对双指数沉降模型进行了改进。整个模型能够模拟污水量、曝气量、底物浓度和氮浓度四个变量引发的污泥膨胀。模拟结果跟理论分析是一致的。此外模型还在传感器故障和执行装置故障等方面进行了扩展,使扩展后的平台能仿真污水处理过程的大部分异常。扩展后的仿真平台在过程模型化、控制策略构造和评价、员工培训、趋势预报、环境风险评测等方面有广泛的应用前景。
The phenomenon of "data rich, but the information is deficient" in urban waste water treatment plant (WWTP) is serious. As a complex industrial process, waste water treatment process is different from business, finance and biology in data characteristics: 1. Large amount and dimension, strongly coupled; 2. process noise and uncertain; 3. dynamic and type varied; 4. multi-temporal and incomplete; 5. Multi-modal. Because of these backgrounds, several techniques in following different aspect: data preprocessing, nonlinear dynamic analysis and forecast of influent time series, fault diagnosis and sign pattern mining, construction and extension of the IWA COST simulation benchmark are investigated in this dissertation. The main contributions of this dissertation are described as follows.
     1. In data preprocessing phase, a series of studies of data integration, cleaning, transformation and reduction are made, and a lot of corresponding algorithms are proposed. Based on these, subject and application oriented data preprocessing technique is presented, which is used to design 3 different data preprocessing course.
     2. In nonlinear dynamic analysis and forecast of influent time series phase. Firstly, the phase space reconstruction techniques of Grassberger-Procaccia (GP) algorithm, False Near Neighbor (FNN) method, Cao method, Autocorrelation Function method, Mutual Information method and CC algorithm are studied, and are used to reconstruct the phase space. Based on these, using the largest Lyapunov exponent, Close returns plot (CRP) and surrogate data analyses, it is concluded that influent time series of WWTP is chaos. Based on this conclusion, the time series is forecasted. A neural network (NN) is used to learn and train according to the results of phase space reconstruction, and then a good fitted of input/output NN model is gain. The trained NN model is used to forecast the influent time series of WWTP, and the results indicate that reasonable forecasting is achieved through such a method.
     3. In fault diagnosis and sign pattern mining phase. Because of the unbalanced distribution of the fault classes data quantity or importance, the risk functional R_(WLOO) with weight coefficient based on leave-one-out errors is presented; then Genetic Algorithm (GA) is used to globally optimize the risk functional R_(WLOO) Because of the size of the data is large, a simple algorithm of R_(WLOO) is presented to reduce the amount of calculation. The improved Support Vector Machine (SVM) is used to classify dataset of WWTP, and the results indicate that compared with the standard SVM and neural network (NN), the improved one can gain higher classification accuracy. There were some signs before faults. For distinguishing these signs from normal quickly, to apply necessary measures, then avoid fault, fault sign pattern mining is proposed. Firstly, serial pattern dissimilarity measure is used to distinguishing fault sign from normal. Then based on dissimilarity measure, a fault sign pattern mining arithmetic based on sliding window is proposed. The practical application of the fault sign pattern mining arithmetic indicates that fault sign pattern can be identified beforehand.
     4. In construction and extension of simulation benchmark phase. Firstly, the simulation benchmark, proposed by International Water Association (IWA) and European Co-operation in the field of Scientific and Technical Research (COST), is studied. Then the IWA COST simulation benchmark is extended to simulate faults of activated sludge treatment process. The highlight of the extension is activated sludge bulking model: kinetic selection theory, bacterial decay theory, nutrient diffusion theory and storage theory are included in the reactor part; Double-exponential settling model is improved, according to filamentous backbone theory. The extended model can simulate bulking caused by influent, aeration rate, organic substrates and N-NH concentration. The simulation results conform to theoretical analysis. Further, extensions include faults caused by sensors and actuator. The extended model can simulate major faults of activated sludge treatment process, which illustrates a good prospect of application in process modeling, construction and evaluate of control strategy, staff training, trend prediction and environmental risk assessment.
引文
[1] 联合国环境规划署.全球环境展望.北京:中国环境科学出版社,2002
    [2] 中华人民共和国水利部.2004年中国水资源公报.http://www.mwr.gov.cn/zt bd/zgszygb/20050914/65830.asp.2007-01-14
    [3] 中华人民共和国国家统计局.中华人民共和国2005年国民经济和社会发展统计公报.http://www, stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20060227_402307427.htm, 2007-01-14
    [4] Fayyad U.M., Piatetsky S.G., Smyth P. et al. Advances in knowledge discovery and data mining. Menlo Park, California: AAAI/MIT Press, 1996, 307-328
    [5] 朱明.数据挖掘.合肥:中国科技大学出版社,2002
    [6] MIT. Technology Review January 2002. http://www.technologyreview.com, 2007-01-14
    [7] Han J.W.,Kamber M.数据挖掘概念与技术.范明,孟小峰译.北京:机械工业出版社,2001
    [8] 陈国萍,李巍,刘仲英.数据挖掘中概念树的标准、生成和实现.计算机工程,2000,26(12):107-109
    [9] Jiawei Han. Mining Knowledge at Multiple Concept Levels. In: Proceedings of the 4th international conference on Information and knowledge management. New York, ACM Press, 1995, 19-24
    [10] Sreerama K.M. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 1998, 2: 345-389
    [11] 李伟明.多元描述统计方法.上海:华东师范大学出版社,2001
    [12] Xie Y.B. A Study of fuzzy Clustering Algorithm to Knowledge Discovery in Databases. Computer Engineering, 2002, 28(1): 100-102
    [13] Huang Z.X. Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304
    [14] Kaufman L., Rousseeuw P.J. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990
    [15] Zhang T., Ramakrishnan R., Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD international conference on Management of data. Montreal, 1996, 103-114
    [16] Guha S., Rastogi R., Shim K. Cure: An efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data. Seattle, 1998, 73-84
    [17] Guha S., Rastogi R., Shim K. ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings of the 15th International Conference on Data Engineering. Washington DC, 1999, 512-521
    [18] Karypis G., Han E., Kumar V. Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer, 1999, 32(8): 68-75
    [19] Ester M., Kriegel H.P., Sander J. et al. A density-based algorithm for discovering clusters in large spatial databases with Noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA, 1996, 226-231
    [20] Ankerst M., Breunig M., Kriegel H.P. et al. Optics:Ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on Management of data. Philadelphia, 1999.49-60
    [21] Wang W., Yang J., Muntz R.R. STING: A Statistical Information grid Approach to Spatial Data Mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, 1997, 186-195
    [22] Sheikholeslami G., Chatterjee S., Zhang A. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In: Proceedings of the 24rd International Conference on Very Large Data Bases. New York, 1998, 428-439
    [23] Agrawal R., Gehrke J., Gunopulos D. et al. Authomatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data. Seattle, 1998, 94-105
    [24] Fisher D.H. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 1987, 2(2): 139-172
    [25] Gennari J.H., Langely P., Fisher D. Models of incremental concept formation. Artificial Intelligence, 1989, 40(1-3): 11-61
    [26] 丁艺明,金远平.利用降维排序求多维数据模糊聚类.小型微型计算机系统,2001,22(1):66-69
    [27] Castro V.E., Lee I. Fast Spatial Clustering with Different Metrics and in the Presence of Obstacles.In:Proceedings of the 9th ACM international symposium on Advances in geographic information systems.New York,2001,142-147
    [28] Ester M.,Kriegel H.P.,Sander J.et al.Incremental Clustering for Mining in a Data Warehousing Environment.In:Proceedings of the 24rd International Conference on Very Large Data Bases.New York,998,323-333
    [29] 张蓉,彭宏.一种基于快速分解模拟退火算法的数据聚类算法.计算机工程,2002,28(8) :88-89
    [30] Ganti V.,Gehrket J.,Ramakrishnant R.CACTUS-Clustering Categorical Data Using Summaries.In:Proceedings of the 5th ACM SIGKDD international conference on Knowledge discovery and data mining.Philadelphia,1999. 73-83
    [31] Agrawal R.,Imielinski T.,Swami A.Mining Association Rules between Sets of Items in Large Databases.In:Proceedings of the 1993 ACM SIGMOD international conference on Management of data.Washington,1993. 207-216
    [32] Agrawal R.,Srikant R.Fast Algorithms for Mining Association Rules.In:Proceedings of the 20th International Conference on Very Large Data Bases.Santiago de Chile,1994,487-499
    [33] Mannila H.,Toivonen H.,and Verkamo A.Efficient algorithm for discovering association rules.AAAI Workshop on Knowledge Discovery in Databases,Seattle,1994,181-192
    [34] Park J.S.,Chen M.S.,Yu P.S.Efficient parallel data mining of association rules.In:4th International Conference on Information and Knowledge Management,Baltimore,Maryland,1995,395-403
    [35] Han J.,Fu Y.Discovery of multiple-level association rules from large databases.In:Proceedings of the 21th International Conference on Very Large Data Bases.Zurich,1995,402-431
    [36] Park J.S.,Chen M S.,Yu P.S.An effective hash-based algorithm for mining association rules.In:Proceedings of 1995 ACM SIGMOD International Conference on Management of Data,San Jose,1995,175-186
    [37] Savasere A.,Omiecinski E.,Navathe S.An efficient algorithm for mining association rules in large databases.In:Proceedings of the 21st International Conference on Very Large Database,Zurich,1995,432-443
    [38] Toivonen H.Sampling large databases for association rules.In:Proceedings of the 22nd International Conference on Very Large Database,Bombay,1996,134-145
    [39] Brin S., Motwani R., Ullman J.D. et al. Dynamic itemset counting and implication rules for market basket data. In: Proceedings of 1997 ACM SIGMOD International Conference On the Management of Data. Tucson, 1997, 255-264
    [40] Han J.W., Pei J., Yin Y.W. Mining Frequent patterns without candidate generation. In: Proceedings of 2000 ACM SIGMOD International Conference On the Management of Data. Dallas, 2000, 1-12
    [41] Liu B., Hsu W., Ma Y.M. Mining Association Rules with Multiple Minimum Supports. In: Proceedings of 1999 ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, 1999, 337-341
    [42] 王振宇,白石磊,熊范纶.多最小支持度策略的关联规则挖掘方法.小型微型计算机系统,2002,23(8):972-974
    [43] Wang K., He Y., Cheung D.W. Mining Confident Rules Without Support Requirement. In: Proceedings of 2001 international conference on Information and knowledge management. New York, 2001, 89-96
    [44] 王玮,陈恩红,王煦法.关联规则的相关性研究.计算机工程,2000,26(7):6-8
    [45] 周欣,沙朝锋,朱扬勇等.兴趣度--关联规则的又一个阈值.计算机研究与发展,2000,37(5):627-633
    [46] 许龙飞,杨晓昀.KDD中广义关联规则发现技术研究.计算机工程与应用,1998,34(9):32-35
    [47] 肖利,金远平,徐宏炳等.一个新的挖掘广义关联规则算法.东南大学学报,1997,27(6)76-81
    [48] 王翔,袁兆山.关联规则的扩展模型.小型微型计算机系统,2001,22(1):73-74
    [49] 李学明,刘勇国,彭军等.扩展型关联规则和原关联规则及其若干性质.计算机研究与发展,2002,39(12):1740-1750
    [50] Cover, T., and Hart, P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 1967. 13:21-27
    [51] Vapnik V., The nature of statistical learning theory. New York: Springer-Verlag, 1995
    [52] 徐宗本,柳重堪.信息工程概论.北京:科学出版社,2002
    [53] Yule G.U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers. Philosophical Transactions of the Royal Society of London. Series A, 1927, 226:267-298
    [54] Walker, G. T. On periodicity in series of related terms. Philosophical Transac tions of the Royal Society of London. Series A, 1931, 31:518-532
    [55] Box G.E.P., Jenkins G.M. Time Series Analysis: Forecasting and Control, Oakland: Holden-Day, 1970,
    [56] Engle R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom. Inflation Econometrica, 1982, 50(4): 987-1008
    [57] Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986, 31: 307-327
    [58] Wang X.Z. Data Mining and Knowledge discovery for process monitoring and control. London: springer, 1999
    [59] 罗印升,李人厚,梅时春.复杂工业过程中数据挖掘模型研究.信息与控制,2003,32(1):32-35
    [60] Venkatasubramanian V., Rengaswamy R., Yin K. et al. A review of process fault detection and diagnosis: Part Ⅰ: Quantitative model-based methods. Computers & Chemical Engineering, 2003, 27(3): 293-311
    [61] Venkatasubramanian V., Rengaswamy R., Kavuri S.N. et al. A review of process fault detection and diagnosis: Part Ⅱ: Qualitative models and search strategies. Computers & Chemical Engineering, 2003, 27(3): 313-326
    [62] Venkatasubramanian V., Rengaswamy R., Kavuri S.N. et al. A review of process fault detection and diagnosis: Part Ⅲ: Process history based methods. Computers & Chemical Engineering, 2003, 27(3): 327-346
    [63] Bergh S.G., Olsson G. Knowledge based diagnosis of solids-liquid separation problems. Water Science and Technology, 1996, 33(2): 219-226
    [64] Lapointe J., Marcos B., Veillette M., et al. Bioexpert--an expert system for wastewater treatment process diagnosis. Computers & Chemical Engineering, 1989, 13(6): 619-630
    [65] Punal A., Roca E., Lema J. M. An expert system for monitoring and diagnosis of anaerobic wastewater treatment plants. Water Research, 2002, 36(10): 2656-2666
    [66] Serra P., Lafuente J., Moreno R., et al. Development of a real-time expert system for wastewater treatment plants control. Control Engineering Practice, 1993, 1(2): 329-335
    [67] Serra P., Sanchez M., Lafuente J., et al. DEPUR: A knowledge-based tool for wastewater treatment plants. Engineering Applications of Artificial Intelligence, 1994, 7(1): 23-30
    [68] Serra P., Sanchez M., Lafuente J., et al. ISCWAP: A knowledge-based system for supervising activated sludge processes.Computers & Chemical Engineering,1997,21(2) :211-221
    [69] Genovesi A.,Harmand J.,Steyer J.P.A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant.Biochemical Engineering Journal,1999,3(3) :171-183
    [70] Carrasco E.F.,Rodriguez J.,Punal A.,et al.Rule-based diagnosis and supervision of a pilot-scale wastewater treatment plant using fuzzy logic techniques.Expert Systems with Applications,2002,22(1) :11-20
    [71] Carrasco E.F.,Rodriguez J.,Punal A.,et al.Diagnosis of acidification states in an anaerobic wastewater treatment plant using a fuzzy-based expert system.Control Engineering Practice,2004,12(1) :59-64
    [72] Hong Y.S.T.,Rosen M.R.,Bhamidimarri R.Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis.Water Research,2003,37(7) :1608-1618
    [73] Steyer J.P.,Rolland D.,Bouvier J.C.,et al.Hybrid fuzzy neural network for diagnosis--application to the anaerobic treatment of wine distillery wastewater in a fluidized bed reactor.Water Science and Technology,1997,36(6-7) :209-217
    [74] Misra M.,Yue H.H.,Qin S.J.,et al.Multivariate process monitoring and fault diagnosis by multi-scale PCA.Computers & Chemical Engineering,2002,26(9) :1281-1293
    [75] Sun X.,Marquez H.J.,Chen T.,et al.An improved PCA method with application to boiler leak detection.ISA Transactions,2005,44(3) :379-397
    [76] Tokatli F.,Cinar A.,Schlesser J.E.HACCP with multivariate process monitoring and fault diagnosis techniques:application to a food pasteurization process.Food Control,2005,16(5) :411-422
    [77] Yoo C.K.,Lee J.M.,Vanrolleghem P.A.,et al.On-line monitoring of batch processes using multiway independent component analysis.Chemometrics and Intelligent Laboratory Systems,2004,71(2) :151-163
    [78] Choi S.W.,Lee I.B.Multiblock PLS-based localized process diagnosis.Journal of Process Control,2005,15(3) :295-306
    [79] Lee D.S.,Park J.M.,Vanrolleghem P.A.Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor.Journal of Biotechnology,2005,116(2) :195-210
    [80] Albazzaz H.,Wang X.Z.,Marhoon F.Multidimensional visualisation for process historical data analysis-a comparative study with multivariate statistical process control. Journal of Process Control, 2005, 15(3): 285-294
    [81] Albazzaz H., Wang X. Z. Historical data analysis based on plots of independent and parallel coordinates and statistical control limits. Journal of Process Control, 2006, 16(2): 103-114
    [82] Chiang L.H., Kotanchek M.E. Kordon A.K. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers & Chemical Engineering, 2004, 28(8): 1389-1401
    [83] Yuan S.F. and Chu F.L. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing, 2006, 20(4): 939-952
    [84] Lv G.Y., Cheng H.Z., Zhai H.B. et al. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electric Power Systems Research, 2005, 75(1): 9-15
    [85] Zeng G.M., Li X.D., Jiang R. et al. Fault Diagnosis of WWTP Based on Improved Support Vector Machine. Environmental Engineering Science, 2006, 23(6): 1044-1054
    [86] Tsuneda S., Auresenia J., Hibiya K. et al. Simplified modeling of simultaneous reaction kinetics of carbon oxidation and nitrification in biofilm processes. Engineering in Life Sciences, 2004, 4(3): 239-246
    [87] 国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型.张亚雷,李咏梅译.上海:同济大学出版社,2002
    [88] Kabouris J.C., Georgakakos A.P. Parameter and state estimation of the acti vated sludge process--I Model development. Water Research, 1996, 30(12): 2853-2865
    [89] Libelli S.M., Vaggi A. Estimation of respirometric activities in bioprocesses. Journal of Biotechnology, 1997, 52(3): 181-192
    [90] Spanjers H., Patry G.G., Keesman K.J. Respirometry-based on-line model parameter estimation at a full-scale WWTP. Water Science and Technology, 2002, 45(4-5): 335-343
    [91] Zhao H., Kummel M. State and parameter estimation for phosphorus removal in an alternating activated sludge process. Journal of Process Control, 1995, 5(5): 341-351
    [92] Solsona J., Biagiola S., State estimation in batch processes using a nonlinear observer. Mathematical and Computer Modelling, 2006, 44(11-12): 1009-1024
    [93] Farza M.,Hammouri H.,Othman S.et al.Nonlinear observers for parameter estimation in bioprocesses.Chemical Engineering Science,1997,52(23) :4251-4267
    [94] Ungarala S.,Co T.B.Time-varying system identification using modulating functions and spline models with application to bio-processes.Computers and Chemical Engineering,2000,24(12) :2739-2753
    [95] Sadok M.Z.H.,Gouzé J.L.Estimation of uncertain models of activated sludge processes with interval observers.Journal of Process Control,2001,11(3) :299-310
    [96] Zhang T.,Guay M.Adaptive parameter estimation for microbial growth kinetics.AIChE Journal,2002,48(3) :607-616
    [97] Aeijaelae G.,Lumley D.,Integrated soft sensor model for flow control.Water Science and Technology,2006,53(4-5) :473-482
    [98] Shalom M.,Mordechai S.,Asher Brenner.Utilization of collinearity in regression modeling of activated sludge processes.Chemical Engineering and Processing,2007,46(3) :222-229
    [99] Aguado D.,Ferrer A.,Seco A.et al.Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment.Chemometrics and Intelligent Laboratory Systems,2006,84(1-2) :75-81
    [100] El-Din,A.G.,Smith,D.W.A combined transfer-function noise model to predict the dynamic behaviour of a full-scale primary sedimentation tank model.Water Research,2002,36:3747-3764
    [101] Belanche,L.A.,Valdés,J.J.,Comas,J.,et al.Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques.Environ.Model.Software,1999,14,409-419
    [102] Rauch W.,Harremo(?)s P.,Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems.Water Research,1999,33(5) :1265-1277
    [103] Chen W.C.,Chang N.B.,Chen J.C.Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment.Water Research,2003,37(1) :95-107
    [104] Marrè M.S.,Cortés U.,Roda I.R.et al.Sustainable case learning for continuous domains.Environ.Model.Software,1999,14:349-357
    [105] Luccarini L.,Porra E.,Spagni A.et al.Soft sensors for control of nitrogen and phosphorus removal from wastewaters by neural networks,Water Science and Technology, 2002, 45(4-5): 101-107
    [106] Gontarski C.A., Rodrigues P.R., Mori M. et al. Liquid Effluent Properties Prediction from an Industrial Wastewater Treatment Plant Using Artificial Neural Networks. Computer Aided Chemical Engineering. 2000
    [107] Albazzaz H., Wang X.Z. Historical data analysis based on plots of independent and parallel coordinates and statistical control limits. Journal of Process Control, 2006, 16(2), 103-114
    [108] Barnett V., Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons, 1994
    [109] Moon T.K. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 1996, 13(6): 47-60
    [110] Knorr E., Ng R. Algorithms for mining distance-based outliers in large data sets. In: Proceedings of the 24th International Conference on Very Large Database, New York, 1998, 392-403
    [111] Knorr E., Ng R. Finding intensional knowledge of distance-based outliers. In: Proceedings of the 25th International Conference on Very Large Database, Edinburgh, 1999.211-222
    [112] Arning A., Agrawal R., Raghavan P. A linear method for deviation detection in large databases. In: Proceedings of the Knowledge Discovery and Data Mining Conference, Portland, 1996. 164-169
    [113] 张德跃,黄礼共,罗昊进等.温州城市人均综合供水、排污的预测指标.中 国给水排水,2003,19:20-22
    [114] 龙腾锐,冯裕钊,郭劲松,考虑不确定因素的污水厂日进水量预测法.中国给水排水,2001,17:1-5
    [115] Kolmogorov A.N. On the conservation of conditionally periodic motion under small perturbations of the Hamiltonian functions. Dokl Akad Nauk SSSR, 1954, 98(4): 527-530
    [116] Lorenz E N. Deterministic non-periodic flows. Atoms Sci, 1963, 20:130-141
    [117] Stewart I., Mathematics: The Lorenz attractor exists. Nature, 2000, 406(6799): 948-949
    [118] Li T.Y., Yorke J.A. Period three implies chaos. Amer. Math. Monthly, 1975, 82
    [119] Hénon M. A two-dimentional mapping with a strange attractor. Communications in Mathematical Physics, 1976, 50:69-76
    [120] May R. Simple mathematical models with very complicated dynamics. Natrue, 1976, 261:459 - 467
    [121] Feigenbaum M.J.Quantitative universality for a class of nonlinear transformations.Journal of Statistical Physics,1978,19(1) :25-52
    [122] Mandelbrot B.B.,Wheeler J.A.The Fractal Geometry of Nature.American Journal of Physics,1983,51(3) :286-287
    [123] Grassberger P.Generalized dimension of strange attractors.Physics Letters A,983,97(6):227-230
    [124] Phillips J.D.Deterministic chaos and historical geomorphology:A review and look forward.Geomorphology,2006,76(1-2) :109-121
    [125] Miller D.J.,Stergiou N.,Kurz M.J.An improved surrogate method for detecting the presence of chaos in gait.Journal of Biomechanics,2006,39(15) :2873-2876
    [126] Lazzouni S.A.,Bowong S.,Kakmeni F.M.M.et al.Chaos control using small-amplitude damping signals of the extended Duffing equation.Communications in Nonlinear Science and Numerical Simulation,2007,12(5) :804-813
    [127] Sun M.,Tian L.,Jiang S.,et al.Feedback control and adaptive control of the energy resource chaotic system.Chaos,Solitons & Fractals,2007,32(5) :1725-1734
    [128] Miliou A.N.,Antoniades I.P.,Stavrinides S.G.et al.Secure communication by chaotic synchronization:Robustness under noisy conditions.Nonlinear Analysis:Real World Applications,2007,8(3) :1003-1012
    [129] Li X.,Pan W.,Luo B.,et al.Nonlinear dynamics and localized synchronization in mutually coupled VCSELs.Optics & Laser Technology,2007,39(4) :875-880
    [130] Xie L.,Teo K.-l.,Zhao Y.Chaos synchronization for continuous chaotic systems by inertial manifold approach.Chaos,Solitons & Fractals,2007,32(1) :234-245
    [131] 陈士华,陆君安,混沌动力学初步.武汉:武汉水利电力大学出版社,1998
    [132] Takens F.Determing strange attractors in turbulence,Lecture notes in Math,1981,898(2) :361-381
    [133] Grassberger P.,Procaccia I.Measuring the strangeness of strange attractors.Physica D,1983,9(1-2) :189-208
    [134] Kennel M.B.,Brown R.,Abarbanel H.D.I.Determining embedding dimension for phase-space reconstruction using a geometrical construction.Physical Review A,1992,45(6) :3403-3411
    [135] Albano A.M.,Muench J.,Schwartz C.SVD and Grassberger Procaccia algotithm.Physical Review A,1988,38(20) :3017-3026
    [136] Fraser A.M.Information and entropy in strange attractors.IEEE Transactions on Information Theory,1989,35(2) :245-262
    [137] Kim H.S.,Eykholt R.,Salas J.D.,Nonlinear dynamics,delay times,and embedding windows,Physica D,1999,127(1) :48-60
    [138] Cao L.Y.Practical method for determining the minimum embedding dimension of a scalar time series.Physica D,1997,110(1-2) :43-50
    [139] Kugiumtzis D.State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length.Physica D,1996,95(1) :13-28
    [140] Kurths J.,Herzel H.An attractor in a solar time series.Physica D,1987,25(1-3) :165-172
    [141] Tsonis A.,Eisner J.B.The weather attractor over very short time scales.Nature,1988,333(6173) :1033-1043
    [142] Angelbeck D.I.,Minkara R.Y.,Strange attracts and chaos in wastewater flow.Journal of Environmental Engineering,1994,120(1) :122-137
    [143] Bormann N.E.,Fernandez G.,Angelbeck D.I.et al.Discussion of "Strange Attractors and Chaos in Wastewater Flow".Journal of Environmental Engineering,1996,122(3) :240-243
    [144] Kim H.M.,Yoon Y.N.,Kim J.H.et al.Searching for strange attractor in wastewater flow.Stochastic Environmental Research and Risk Assessment,2001,15(5) :399-413
    [145] Rosenstein M.T.,Collins J.J.,Deluca C.J.A practical method for calculating largest Lyapunov exponents from small data sets.Physica D,1993,65(1-2) :117-134
    [146] Gilmore C.G.A new test for chaos.Journal of Economic Behavior & Organization,1993,22(2) :209-237
    [147] Kikuchi A.,Shimizu T.,Hayashi A.,et al.Nonlinear analyses of heart rate variability in normal and growth-restricted fetuses.Early Human Development,2006,82(4) :217-226
    [148] Harikrishnan K.P.,Misra R.,Ambika G.,et al.A non-subjective approach to the GP algorithm for analysing noisy time series.Physica D,2006,215(2) :137-145
    [149] Theiler J.,Eubank S.,Longtin A.et al.Testing for nonlinearity in time series:The method of surrogate data.Physica D,1992,58(1-4) :77-94
    [150] Theiler J.On the evidence for low-dimensional chaos in an epileptic electroencephalogram.Physics Letters A,1994,196(1-2) :335-341
    [151] Small M.,Yu D.,Harrison R.G.Surrogate Test for Pseudoperiodic Time Series Data.Physical Review Letters,2001,87:188101
    [152] Luo X.D.,Nakamura T.,Small M.Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series.Physical Review E,2005,71:026230
    [153] 邓乃扬,田英杰.数据挖掘中的新方法--支持向量机.北京:科学出版社2004,357-358
    [154] Weston J.,Mukherjee S.,Chapelle O.et al.Feature selection for SVMs. Advances in Neural Information Processing Systems,Cambridge:MIT press,2000,668-674
    [155] Holland.J.H.Outline for a Logical Theory of Adaptive Systems,Journal of the ACM,1962,9(3) :297-314
    [156] Holland.J.H.Adaptation in Nature and Artificial Systems,Michigan:University of Michigan Press,1975
    [157] De Jong K.A.An analysis of the behavior of a class of genetic adaptive systems:[dissertation].Michigan:University of Michigan,1975
    [158] De Jong K.A.On using genetic algorithms to search program spaces.In:Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic algorithms and their application.Hillsdale,1987,210-216
    [159] De Jong K.A.Are genetic algorithms function optimizers?.In:Proceedings of the 2nd Parallel Problem Solving from Nature Conference.The Netherlands,1992,3-13
    [160] De Jong K.A.Genetic algorithms are NOT function optimizers.In:Proceedings of the 2nd Foundations of Genetic Algorithms Conference.San Mateo,1993,5-17
    [161] Goldberg D.E.Genetic algorithms and rule learning in dynamic system control.In:Proceedings of the 1st International Conference on Genetic Algorithms on Genetic algorithms and their application.Hillsdale,1985,8-15
    [162] Goldberg D.E.,Genetic Algorithms in Search,Optimization and Machine Learning Reading.MA:Addison-Wesley,1989
    [163] Yang K.,Shahabi C.A PCA-based Similarity Measure for Multivariate Time Series.In:Proceedings of the 2nd ACM international workshop on Multimedia databases,Washington,2004,65-74
    [164] COST 624. COST WWTP Benchmark.http://www.ensic.u-nancy.fr/COSTW WTP/,2007-01-20
    [165] Downs J.J.,Vogel E.F.A plant-wide industrial-process control problem.Computers & Chemical Engineering,1993,17(3) :245-255
    [166] Singhal A.,Seborg D.E.Evaluation of a pattern matching method for the Tennessee Eastman challenge process.Journal of Process Control,2006,16(6) :601-613
    [167] Kulkarni A.,Jayaraman V.K.,Kulkarni B.D.Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process.Computers & Chemical Engineering,2005,29(10) :2128-2133
    [168] Golshan M.,boozarjomehry R.B.,Pishvaie M.R.A new approach to real time optimization of the Tennessee Eastman challenge problem.Chemical Engineering Journal,2005,112(1-3) :33-44
    [169] Yong M.,Yongzhen P.,Jeppsson U.Dynamic evaluation of integrated control strategies for enhanced nitrogen removal in activated sludge processes.Control Engineering Practice,2006,14(11) :1269-1278
    [170] Traore A.,Grieu S.,Thiery F.et al.Control of sludge height in a secondary settler using fuzzy algorithms.Computers & Chemical Engineering,2006,30(8) :1235-1242
    [171] Ma Y,Peng Y.Z.,Wang X.L.et al.Intelligent control aeration and external carbon addition for improving nitrogen removal.Environmental Modelling & Software,2006,21(6) :821-828
    [172] Takács I.,Patry G.G.,Nolasco D.A dynamic model of the clarification thickening process,Water Research,1991,25(10) :1263-1271
    [173] Chudoba J.,Blaha J.,Madera V.Control of Activated Sludge Filamentous Bulking-Ⅲ.Effect of Sludge Loading.Water Research,1974,8(4) :231-237
    [174] Chudoba J.,Grau P.,Ottova V.Control of Activated Sludge Filamentous Bulking Ⅱ.Selection of Microorganism by Means of a Selector.Water Research,1973,7(10) :1389-1398
    [175] Chudoba J.,Ottova V.,Madera V.Control of Activated Sludge Filamentous Bulking I.Effect of the Hydraulic Regime or Degree of Mixing in Aeration Tank.Water Research,1973,7(8) :1163-1182
    [176] Chudoba J.,Cech J.S.,Farkac J.et al.Control of Activated Sludge Filamentous Bulking:Experimental Verification of a Kinetic Selection Theory.Water Research,1985,19(2) :191-196
    [177] Van Niekerk A.M.,Jenkins D.,Richard M.G.The Competitive Growth of Zo ogloea ramigera and Type 021N in Activated Sludge and Pure Culture-A Model for Low F:M B,ulking.Journal Water Pollution Control Federation,1987,59(5) :262-273
    [178] Van Niekerk A.M.,Jenkins D.,Richard M.G.A Mathematical Model of the Carbon-Limited Growth of Filamentous and Floc-Forming Organisms in Low F/M Sludge.Journal Water Pollution Control Federation,1988,60(1) :100-106
    [179] Kappeler J.,Gujer W.Development of a mathematical model for"aerobic bulking".Water Research,1994,28(2) :303-310
    [180] Sheintuch M.,Tartakovsky B.Activated Sludge System Design for Species Selection:Analysis of a Detailed Multispecies Model.Chemical Engineering Science,1997,52(17) :3033-3046
    [181] Hardin G.The Competitive Exclusion Principle.Science,1960,131:1292-1297
    [182] Lau,A.O.,Strom P.F.,Jenkins D.The Competitive Growth of Floc-Forming and Filamentous Bacteria:A Model for Activated Sludge Bulking.Journal Water Pollution Control Federation,1984,56(1) :52-61
    [183] Takács I.,Fleit E.Modelling of the micromorphology of the activated sludge floc:low DO,low F/M bulking.Water Science and Technology,1995,31(2) :235-243
    [184] Kappeler J.,Gujer W.Bulking in activated sludge systems:a qualitative simulation model for Sphaerotilus natans,Type 021N and Type 0961. Water Science and Technology,1992,26(3-4) :473-482
    [185] Kappeler J.,Gujer W.Verification and applications of a mathematical model for "aerobic bulking".Water Research,1994,28(2) :311-322
    [186] Kappeler J.,Brodmann R.Low F/M bulking and scumming:towards a better understanding by modelling.Water Science and Technology,1995,31(2) :225-234
    [187] Gujer W.,Kappeler J.Modelling population dynamics in activated sludge systems.Water Science and Technology,1992,25(6) :93-103
    [188] Parker D.S.,Kaufman W.J.,Jenkins D.Physical conditioning of activated sludge flocs.Journal Water Pollution Control Federation,1971,43:1817-1833
    [189] Sezgin M.,Jenkins D.,Parker D.A Unified Theory of Filamentous Activated Sludge Bulking.Journal Water Pollution Control Federation,1978,50:362-381
    [190] Cenens C.,Smets I.Y.,Ryckaert V.G.Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems-Ⅱ.A prototype mathematical model based on kinetic selection and filamentous backbone theory.Water Research,2000,34(9) :2535-2541
    [191] Jurgens K.,Pernthaler J.,Schalla S.,et al.Morphological and Compositional Changes in a Planktonic Bacterial Community in Response to Enhanced Protozoan Grazing.Applied and Environmental Microbiology,1999,65(3) :1241-1250
    [192] Gude H.Grazing by Protozoa as Selection Factor for Activated Sludge Bacteria.Microbial Ecology,1979,5(3) :225-237
    [193] Curds C.R.,Cockburn A.,Vandyke J.M.An Experimental Study on the Role of Ciliated Protozoa in The Activated Sludge Process.Water Pollution Control,1968,67(3) :312-329
    [194] Lou I.C.,de los R.,Francis L.Integrating Decay,Storage,Kinetic Selection,and Filamentous Backbone Factors in a Bacterial Competition Model.Water Environment Research,2005,77(3) :287-296
    [195] Chudoba J.,Dohanyos M.,Grau P.Control of activated sludge filamentous bulking-Ⅳ.Effect of sludge regeneration.Water Science and Technology,1982,14(1-2) :73-93
    [196] Daigger G.T.,Grady C.P.L.The dynamics of microbial growth on soluble substrates.A unifying theory.Water Research,1982,16(4) :365-382
    [197] Cech J.S,Chudoba J.Influence of accumulation capacity of activated sludge microorganisms on kinetics of glucose removal.Water Research,1983,19(4) :471-479
    [198] Chiesa S.C.,Irvine R.L.Feast/famine growth environments and activated sludge population selection.Water Research,1985,17(6) :659-66.
    [199] Chiesa S.C.,Irvine R.L.,Growth and control of filamentous microbes in activated sludge:an integrated hypothesis.Water Research,1985,19(4) :562-568
    [200] Van den Eynde E.,Geerts J.,Maes B.,et al.Influence of feeding pattern on the glucose metabolism of Arthobacter sp.and Sphaerotilus natans,growing in chemostat culture,simulating activated sludge bulking.Applied Microbiology and Biotechnology,1983,17(1) :35-43
    [201] Van den Eynde E.,Vriens L.,Wynants M.,et al.Transient behaviour and time aspects of intermittently and continuously fed bacterial cultures with regard to filamentous bulking of activated sludge.Applied Microbiology and Biotechnology,1984,19(1) :44-52
    [202] Majone M.,Massanisso P.,Carucci A.,et al.Influence of storage on kinetic selection to control aerobic filamentous bulking.Water Science and Technol ogy,1996,34(5-6) :223-232
    [203] Krishna C.,Van Loosdrecht M.C.M.Effect of temperature on storage polymers and settleability of activated sludge.Water Research,1999,33(10) :2374-2382
    [204] Gujer W.,Henze M.,Mino T.,et al.Activated sludge model No.3. Water Science and Technology,1999,39(1) :183-193
    [205] Martins A.M.P.,Heijnen J.J.,van Loosdrecht M.C.M.Effect of feeding pattern and storage on the sludge settleability under aerobic conditions.Water Research,2003,37(11) :2555-2570
    [206] Beccari M.,Majone M.,Massanisso P.,et al.A bulking sludge with high storage response selected under intermittent feeding.Water Research,1998,32(11) :3403-3413
    [207] Krishna C.,van Loosdrecht M.C.M.Substrate Flux into Storage and Growth in Relation to Activated Sludge Modeling.Water Research,1999,33(14) :3149-3161
    [208] Beccari M.,Dionisi D.,Giuliani A.et al.Effect of different carbon sources on aerobic storage by activated sludge.Water Science and Technology,2002,45(6) :157-168
    [209] 唐受印,汪大翚.废水处理工程.北京:化学工业出版社,1998
    [210] Vesilind P.A.Design of prototype thickeners from batch settling tests.Water Sew Works,1968,115(7) :302-307
    [211] Mines J.R.O.,Vilagos J.L.,Echelberger Jr.W.F.et al.Conventional and AWT mixed-liquor settlingcharacteristics.Journal of Environmental Engineering-ASCE,2001,127(3) :249-258
    [212] Hartel L.,Popel H.J.A dynamic secondary clarifier model including processes of sludge thickening.Water Science and Technology,1992,25(6) :267-284
    [213] Daigger G.T.,Roper R.E.Relationship between SVI and activated sludge settling characteristics.Journal Water Pollution Control Federation,1985,57(8) :859-866
    [214] Pitman A.R.Settling of nutrient removal activated sludges.Water Science and Technology,1984,17(4-5) :493-503
    [215] Akca L.,Kinaci C.,Karpuzcu M.A model for optimum design of activated sludge plants.Water Research,1993,27(9) :1461-1468
    [216] Wahlberg E.J.,Keinath T.M.Development of settling flux curves using SVI.Journal Water Pollution Control Federation,1988,60(12) :2095-2100
    [217] Daigger G.T.Development of refined clarifier operating diagrams using an updated settling characteristics database.Water Environment Research,1995,67(1) :95-100
    [218] Ozinsky AE,Ekama GA.Secondary settling tank modeling and design Part 1:review of theoretical and practical developments.Water SA,1995,21(4) :325-332
    [219] Wahlberg E.J.,Keinath T.M.Development of settling flux curves using SVI:an addendum.Water Environment Research,1988,67(5) :872-874
    [220] Koehne M.,Hoen K.,Schuhen M.Modeling and simulation of final clarifier in wastewater treatment plant.Mathematics and Computers in Simulation.1995,39(5-6) :609-616
    [221] Abusam A.,Keesman K.J.Sensitivity analysis of the secondary settling tank double-exponential function model.European Water Management Online,www.ewaon line.de/journal/2002_07. pdf,2006-12-20
    [222] Parker D.S.,Kaufman W.J.,Jenkins D.Flock breakup in turbulent flocculation processes.Journal of the Sanitary Engineering Division,1972,98(1) :79-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700