融合多元环境因子的水稻重金属污染水平遥感评估模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用遥感技术进行农作物重金属污染识别与监测对于农业生产、粮食安全、人类生存环境具有重要的意义。然而“自然农田生态系统”中农作物重金属污染胁迫光谱特征信息微弱且不稳定,直接利用原始光谱信号评价农作物重金属污染状况其可信度不高。因而,如何增强农作物重金属污染胁迫光谱弱信息,如何建立农作物重金属污染胁迫水平遥感计算模型,是实现农作物重金属污染遥感快速、准确监测需解决的关键问题,是遥感技术应用向定量化、精细化方向发展需解决的科学问题。
     本文选取长春、苏州的受重金属污染(Cu和Cd)的水稻农田样地作为实验区,采集水稻关键生长期的ASD光谱数据、生化数据、环境数据,并获取准同步的Hyperion数据。分析土壤重金属对水稻胁迫的影响机理,提取水稻污染胁迫敏感光谱参数,提出水稻污染胁迫光谱弱信息增强与分离方法,建立水稻污染胁迫遥感估算模型。本文的研究工作与主要结论如下:
     (1)利用多尺度小波变换实现了水稻重金属污染胁迫弱信息分离与增强,并提取了水稻重金属污染胁迫3类敏感特征光谱参数:①反映光谱“整体”变化的小波-分形维数;②反映光谱“突变”信息的小波系数;③反映光谱“奇异性”的光谱指数。
     (2)运用多元逐步回归筛选出对水稻重金属污染胁迫响应敏感的光谱参数,利用灰色关联度分析方法筛选出对水稻重金属污染吸收累积关系密切的环境参数(土壤属性、气象因子);以光谱参数和环境参数为输入参数,以水稻重金属污染胁迫水平为输出参数,运用动态模糊人工神经网络算法,建立了“自然农田生态系统”中水稻重金属污染胁迫水平光谱分析模型,模型精度高(R2为0.69~0.98)、结构紧凑(模糊规则为5~13个),相比其它算法(如BP、ANFIS)构建的水稻重金属污染胁迫光谱分析模型,具有评价结果更加精确、稳定,更加符合实际,原理更易解释的优点。
     (3)利用Hyperion数据,结合空间插值技术,将所建立的水稻重金属污染胁迫光谱分析模型进行区域外推,建立了大尺度水稻重金属污染胁迫水平卫星遥感评价模型,模型取得了满意的结果(R2为0.69~0.72)。实现了水稻重金属污染胁迫光谱分析模型的尺度转换。
     本文的创新点:①提出了多尺度小波变换的光谱弱信息分离与增强的方法,可以推广应用到各种环境胁迫下所引起的农作物异常探测和弱信息增强;②基于动态模糊人工神经网络算法,建立了融合光谱参数和环境参数的水稻重金属污染胁迫水平光谱分析模型,为遥感地学应用中如何融合遥感因子与非遥感因子建模提供了一种新方法。
It is important for agricultural production, food security and human survival environment using remote sensing technology to identify and monitor crops heavy metal contamination. However, the pollution level in the‘real world’agro-ecosystems is relatively low, which means there are subtle and unstable characteristic in leaf reflectance spectra. And therefore it is incredible in assessing stress levels of crop under heavy metal pollution using leaf reflectance spectra directly. So, how to enhance subtle spectral characteristic information associated with heavy metal pollution, how to establish effective model for assessing stress levels of crop with heavy metal pollution, they are key issues for applying remote sensing technology to achieve fast and accurate identification of crop heavy metal contamination. At the same time, they are also scientific problems to be solved for remote sensing technology in quantitative and fine application.
     Several experiment paddies located in Changchun, Jilin Province, and Suzhou, Jiangsu Province, China with different pollution levels were selected. We collected various data from experimental farms in rice during the typical growth stages, including ASD data, Hyperion hyperspectral data, biochemical data, heavy metal content data (i.e.soil, rice), soil properties and meteorological factors, and other basic data. Based on ground measured data, soil heavy metal effect on stress mechanisms in rice were analyzed, spectral parameters sensitive to rice under heavy metal pollution stress were calculated, and the theory and technical methods about enhancing and deriving subtle spectral characteristic information of rice under heavy metal pollution were proposed, and the models for assessing stress levels of rice under heavy metal pollution were constructed. The most important findings and conclusions drawn from this study include:
     (1) Wavelet transform was adopted to enhance and derive subtle spectral characteristic information of rice under heavy metal pollution. Three categories of sensitive spectral parameters were extracted,①the fractal dimension of reflectance with wavelet transform(FDWT) as a quantitative and comprehensive indicator by capturing‘global variation’of spectrum curve,②wavelet coefficients (WC)by capturing spectral reflectance singularity information,③vegetation indices based on singularity points.
     (2)According to different characteristic in various types’parameters, Firstly, the stepwise regression and gray correlation analysis were used to choose the sensitive spectral parameters and environmental factors which are closely correlated to heavy metal diffusion in rice, respectively. Secondly, based on dynamic fuzzy neural-network model, spectral analysis model for assessing heavy metal stress levels of rice in‘real world’agro-ecosystems were constructed by integrating spectral parameters with environmental factors. In addition, the constructed models were verified using training and validation sets, they got satisfactory results with a high level of accuracy (R2: 0.69-0.98), a compact structure (fuzzy rules: 5-13). As compared with other model algorithm (such as BP, ANFIS) for constructing local spectral model to assess rice with heavy metal stress, it had more accurate, stable results and higher reliability. In addition, it can obtain rules with a physical meaning. The models were characterized by strong stability and better effects in evaluation of stress levels of rice under heavy metal pollution.
     (3) Hyperion data was used, and spatial interpolation technology was adopted. The established spectral analysis models were applied to the polluted area in a large scale, and satellite remote sensing model for assessing rice with heavy metal stress level were constructed successfully. The established spectral analysis model for assessing rice with heavy metal stress level succeeded in completing scale transformation.
     In this paper, it is believed that the wavelet technique will play an important role in detecting other environmental aspects of crop stress in the future. The method, the spectral analysis models were established by integrating spectral parameters with environmental factors on the basis of dynamic fuzzy neural-network algorithm, can provide important reference and theory basis for modeling in the various geosciences application.
引文
Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006, 144: 736~745
    Bang J S, Hesterberg D. Dissolution of trace element contaminants from two coastal plain soils as affected by pH. Journal of Environmental Quality, 2004, 33: 891~901
    Barry P. EO-1/ Hyperion Science Data User’s Guide. Redondo Beach, CA: TRW Space, Defense & Inform. Syst., 2001.
    Chang S H, Collins W. Confirmation of the airborne biogeophysical mineral exploration technique using laboratory methods. Economic Geology, 1983, 78: 723~736
    Chen S N, Liu X H, Hou J, et al. Study on the spectrum response of Brassica campestris L leaf to the zinc pollution. Spectroscopy and Spectral Analysis, 2007, 27: 1797~1801
    Chi G Y, Chen X, Shi Y, et al. Spectral response of rice (Oryza sativa L.) leaves to Fe2+ stress. Science in China Series C-Life Sciences, 2009, 52: 747~753
    Chi G Y, Liu X H, Liu S H, et al. Studies of relationships between Cu pollution and spectral characteristics of TritiZnm aestivum L. Spectroscopy and Spectral Analysis, 2006, 26: 1272~1276
    Choe E, van der Meer F, van Ruitenbeek F, et al. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote
    sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 2008, 112: 3222~3233
    Choe E, van der Meer F, van Ruitenbeek F,et al. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote
    sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 2008, 112: 3222~3233
    Clevers J, Kooistra L, Salas E A L. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. International Journal of Remote Sensing, 2004, 25: 3883~3895
    Collins W, Chang S H, Raines G, et al. Airborne biogeophysical mapping of hiddenmineral-deposits. Economic Geology, 1983, 78: 737~749
    Crommentuijn T, Doornekamp A, VanGestel C A M. Bioavailability and ecological effects of cadmium on Folsomia candida (Willem) in an artificial soil substrate as influenced by pH and organic matter. Applied Soil Ecology, 1997, 5: 261~271
    Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants: A review. Environmental Pollution, 1997, 98: 29~36
    Daubechies I. The wavelet transform, time-frequency localization and signal analysis. Ieee Transactions on Information Theory, 1990, 36: 961~1005
    Du Laing G, Vanthuyne D R J, Vandecasteele B, et al. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution 2007, 147: 615~25
    Er M J, Tan T P, Loh S Y. Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocessors and Microsystems, 2004, 28: 491~498
    Ertunc H M, Hosoz M. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system. International Journal of Refrigeration-Revue Internationale Du Froid, 2008, 31: 1426~1436
    Farifteh J, Van der Meer F D, Atzberger C, et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 2007, 110: 59~78
    Femandez F J, Seco A, Ferrer J, et al. Use of neurofuzzy networks to improve wastewater flow-rate forecasting. Environmental Modelling & Software, 2009, 24: 686~693
    Fernandes J C, Henriques F S. Biochemical, physiological, and structural effects of excess copper in plants. Botanical Review, 1991, 57: 246~273
    Fletcher L, Katkovnik V, Steffens F E, et al. Optimizing the number of hidden nodes of a feedforward artificial neural network. IEEE World Congress on Computational Intelligence, 1998: 1608~1612
    Foody G M. Using prior knowledge in Artificial Neural-Network classification with a minimal training set. International Journal of Remote Sensing, 1995, 16: 301~312
    Fu J J, Zhou Q F, Liu J M, et al. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health.Chemosphere, 2008, 71: 1269~1275
    Garty J, Weissman L, Cohen Y, et al. Transplanted lichens in and around the Mount Carmel National Park and the Haifa Bay industrial region in Israel: Physiological and chemical responses. Environmental Research, 2001, 85: 159~176
    Ghorbani M A, Khatibi R, Aytek A, et al. Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computers & Geosciences, 2009, 36: 620~627
    Goodenough D G, Dyk A, Niemann O, et al. Processing Hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 1321~1331
    Guo Y L, Marschner H. Genotypic differences in uptake and translocation of cadmium in bean and maize inbred lines. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 1996, 159: 55~60
    Hang X S, Wang H Y, Zhou J M, et al. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 2009, 157: 2542~2549
    Huang Y Z, Hu Y, Liu Y X. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.). Journal of Environmental Sciences-China, 2009, 21: 647~653
    Ismail A, Engelbrecht A P. Pruning product unit neural networks. Proceeding of the 2002 International Joint Conference on Neural Networks, 2002, 1~3: 257~262
    Jang J S R. Anfis:Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems Man and Cybernetics, 1993, 23: 665~685
    Jung M C, Thornton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Science of the Total Environment, 1997, 198: 105~121
    Kemper T, Sommer S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology, 2002, 36: 2742~2747
    Kemper T, Sommer S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology, 2002,36: 2742~2747
    Kooistra L, Salas E A L, Clevers J, et al. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environmental Pollution, 2004, 127: 281~290
    Kruse F A, Boardman J W, Huntington J F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 1388~1400
    Kruse F A. Improving multispectral mapping by spectral modeling with hyperspectral signatures.
    In: Shen S S, Lewis P E, eds. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 2007: U365~U376
    Leng G, McGinnity T M, Prasad G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems, 2005, 150: 211~243
    Liao F Q, Zhou S L, Zhang H F, et al. Spatial distribution and changes of heavy metals of agricultural lands in typical pregrading coast in Dongtai City, Jiangsu Province, China. Chinese Geographical Science, 2008, 18: 276~283
    Liao G C, Tsao T P. Application of fuzzy neural networks and artificial intelligence for load forecasting. Electric Power Systems Research, 2004, 70: 237~244
    Liu M L, Liu X N, Li M, et al. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosystems Engineering, 2009, 106: 223~233
    Liu Y L, Chen H, Wu G F, et al. Feasibility of estimating heavy metal concentrations in Phragmites australis using laboratory-based hyperspectral data-A case study along Le'an River, China. International Journal of Applied Earth Observation and Geoinformation, 12: S166~S170
    Macfarlane G R, Burchett M D. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 2001, 42: 233~240
    Miehle P, Livesley S J, Li C S, et al. Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Global Change Biology, 2006, 12: 1421~1434
    Milton N M, Ager C M, Eiswerth B A, et al. Arsenic-induced and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sensing of Environment,1989, 30: 263~269
    Muchuweti A, Birkett J W, Chinyanga E, et al. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agriculture Ecosystems & Environment, 2006, 112: 41~48
    Ngayila N, Basly J P, Lejeune A H, et al. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Science of the Total Environment, 2007, 373: 564~571
    Noh H, Zhang Q, Shin B, et al. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosystems Engineering, 2006, 94: 477~485
    Pahlsson AMB. Toxicity of Heavy-Metals (Zn, Cu, Cd, Pb) to Vascular Plants-a Literature-Review. Water Air and Soil Pollution, 1989,47: 287~319
    Pai T Y, Wan T J, Hsu S T, et al. Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 2009, 33: 1272~1278
    Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method. Mechanical Systems and Signal Processing, 2007, 21: 780~794
    Reber H H. Threshold levels of cadmium for soil respiration and growth of spring wheat (Triticum-Aestivum L), and difficulties with their determination. Biology and Fertility of Soils, 1989, 7: 152~157
    Ren H Y, Zhuang D F, Pan J J, et al. Hyper-spectral remote sensing to monitor vegetation stress. Journal of Soils and Sediments, 2008, 8: 323~326
    Rosso P H, Pushnik J C, Lay M, et al. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environmental Pollution, 2005, 137: 241~252
    Rout G R, Das P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 2003, 23: 3~11
    Schuerger A C, Capelle G A, Di Benedetto J A, et al. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing ofEnvironment, 2003,84: 572~588
    Sukreeyapongse O, Holm P E, Strobel B W, et al. pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 2002, 31: 1901~1909
    Tumbo S D, Wagner D G, Heinemann P H. Hyperspectral-based neural network for predicting chlorophyll status in corn. Transactions of the Asae, 2002, 45: 825~832
    van der Meer F. Indicator kriging applied to absorption band analysis in hyperspectral imagery: A case study from the Rodalquilar epithermal gold mining area, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 2006, 8: 61~72
    Vermote E F, ElSaleous N, Justice C O, et al. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. Journal of Geophysical Research-Atmospheres, 1997, 102(17): 131~141
    Weatherill N P, Hassan O. Efficient 3-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering, 1994, 37: 2005~2039
    Wen S H, Zhu Q G. Generalized dynamic fuzzy neural network-based tracking control of robot manipulators. Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, 2004, 1~7: 812~816
    Wieland R, Mirschel W. Adaptive fuzzy modeling versus artificial neural networks. Environmental Modelling & Software, 2008, 23: 215~224
    Wu S Q, Er M J, Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2001, 9: 578~594
    Wu S Q, Er M J. Dynamic fuzzy neural networks - A novel approach to function approximation. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2000, 30: 358~364
    Yang J X, Guo H T, Ma Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables. Journal of Environmental Sciences-China, 2009, 22: 1246~1252
    Zhu Q G, Wang H R, Xiao J Z. Generalized dynamic fuzzy neural network-based tracking control of robot manipulators. In: Liu D, Fei S, Hou ZG, Zhang HG, Sun CY, eds. Advances in Neural Networks– ISNN 2007, Pt 1, Proceedings, 2007: 749~756
    安琼,董元华,王辉.苏南某市农田土壤有毒有害元素分布状况及影响因素.土壤,2005,37 (2):147~151
    白世强,卢升高,单红丹.环境物质磁性对重金属污染的指示作用研究进展.土壤通报,2005,36(5):773~777
    鲍士旦.土壤农化分析.北京:中国农业出版社,2005:66~82
    别乌斯AA,格拉波夫斯卡娅ΠИ,季霍诺瓦HB.环境地球化学,朱颜明译.北京:科学出版社,1982,193~211
    陈怀满.环境土壤学.北京:科学出版社,2006
    陈怀满.土壤—植物系统中的重金属污染.北京:科学出版社,1996,210
    陈思宁,刘新会,侯娟,等.重金属锌胁迫的白菜叶片光谱响应研究.光谱学与光谱分析,2007,27(9):1797~1801
    程金沐.土壤环境生态对重金属元素迁移影响分析.广东微量元素科学,2005,12(6):12~15
    程旺达.水稻籽粒有毒重金属含量的基因型和环境效应研究:[博士学位论文].浙江:浙江大学,2004
    邓聚龙.灰色预测与决策.武汉:华中工学院出版社,1986
    甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究.地球科学—中国地质大学学报,2004,29(1):119~126
    关共凑,徐颂,黄金国.重金属在土壤-水稻体系中的分布、变化及迁移规律分析.生态环境, 2006,15(2):315~318
    关丽,刘湘南,程承旗.土壤镉污染环境下水稻叶片叶绿素含量监测的高光谱遥感信息参数.光谱学与光谱分析,2009,29(10):2713~2716
    关丽,刘湘南.水稻镉污染胁迫遥感诊断方法与试验.农业工程学报,2009,25(6):168~173
    胡文.土壤-植物系统中重金属的生物有效性及其影响因素的研究:[博士学位论文].北京:北京大学,2008
    江南.农作物重金属污染胁迫信息遥感提取方法研究:[硕士学位论文].北京:中国地质大学(北京),2009
    匡少平,徐仲,张书圣.水稻对土壤中环境重金属激素铅的吸收效应及污染防治.环境科学与技术,2002,25(2):32~34
    李法云,付宝荣,王效举.土壤-植物系统重金属镉、锌生物有效性的数学模型评价.辽宁大学学报自然科学版,2004,31(3):193~198
    李家熙,葛晓立.城市土壤环境地球化学研究-以苏州市为例.地质通报,2005,24(8):710~713
    李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异.农业环境科学学报,2003, 22:529~532
    李蜜,刘湘南,刘美玲.基于模糊神经网络的水稻农田重金属污染水平高光谱预测模型.环境科学学报,2010,30(10):2108~2115
    李庆亭,杨锋杰,张兵,等.重金属污染胁迫下盐肤木的生化效应及波谱特征.遥感学报,2008,12(2):284~290
    李小娟,宫兆宁,刘晓萌,等.ENVI遥感影像处理教程.北京:中国环境科学出版社,2007
    林英华,张夫道,杨学云,等.陕西农田土壤动物群落与长期施肥环境的灰色关联度分析.植物营养与肥料学报,2005,11(5):609~614
    刘美玲,刘湘南,曹仕,等.基于高光谱高频组份分形特征的水稻铅胁迫评估.遥感学报,2011,15(4):811~830
    刘美玲,刘湘南,李婷,等.水稻锌污染胁迫的光谱奇异性分析.农业工程学报,2010,26(3):191~197
    刘圣伟,甘甫平.用卫星高光谱数据提取德兴铜矿区植被污染信息.国土资源遥感,2004(1):6~10
    刘帅,高永光.铜胁迫下玉米叶绿素质量比与光谱反射率关系.辽宁工程技术大学学报(自然科学版),2008,27(1):125~128
    刘思峰,党耀国,方志耕,等.灰色系统理论及其应用.北京:科学出版社,2005
    刘素红,刘新会,侯娟,迟光宇,崔保山.植物光谱应用于白菜铜胁迫响应研究.中国科学E辑: 技术科学,2007,37(5):693~699
    卢霞,刘少峰,郑礼全.矿区植被重金属胁迫高光谱分辨率数据分析.测绘科学,2007,32(2):111~113
    马莉,张德丰.基于广义动态模糊神经网络的算法研究.模糊神经网络的算法研究,2009,30(20):4727~4730
    莫争,王春霞,陈琴,等.重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分.环境化学,2002,21(2):110~116
    潘文杰,姜超英,唐远驹,等.烤烟铅镉含量及其与环境的关系.土壤,2007,39(3):369~374
    浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
    任红艳,庄大方,潘剑君.铅污染水稻的冠层高光谱特征研究.地球信息科学,2008,10(3):314~319
    任红艳.宝山矿区农田土壤-水稻系统重金属污染的遥感监测:[博士学位论文].南京:南京农业大学,2008
    茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施.河北农业科学,2006,10(3):89~91
    孙海蓉.模糊神经网络的研究及其应用:[博士学位论文].上海:华北电力大学,2006
    谭炳香,李增元,陈尔学,等. EO-1 Hyperion高光谱数据预处理.遥感信息,2005,6:36~41
    唐世荣.污染环境植物修复的原理与方法.北京:科学出版社, 2006,45
    唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查.安全与环境学报,2003,3(6):74~75
    童庆禧,张兵,郑兰芬.高光谱遥感—原理、技术与应用.北京:高等教育出版社,2006, 83~106
    王凯荣,龚惠群.不同生育期镉胁迫对两种水稻的生长、镉吸收及糙米镉含量的影响.生态环境,2006,l5(6):197~120
    王立新.模糊系统与模糊控制教程.北京:清华大学出版社,2003,31~42
    王平,刘湘南.受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型.光谱学与光谱分析,2010,30(1):197~201
    王平.农作物重金属污染胁迫遥感弱信息增强与计算:[博士学位论文].吉林:东北师范大学,2010
    王琴儿,曾英,李丽美.镉毒害对水稻生理生态效应的研究进展.北方水稻,2007,4:12~16
    王树安,董钻.作物栽培学各论(北方本).北京:中国农业出版社,1997,10
    王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护,1998,17(5):193~196
    王秀丽,徐建民,谢正苗,等.重金属铜和锌污染对土壤环境质量生物学指标的影响.浙江大学学报(农业与生命科学版),2002,28(2):190~194
    吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究.生态学报,1999,19(1):104~107
    夏增禄.土壤环境容量及其应用.北京:气象出版社, 1988
    修丽娜,刘湘南,刘美玲.镉污染水稻高光谱诊断分析与建模.光谱学与光谱分析,2011,31(1):192~196
    徐长发,李国宽.实用小波方法.武汉:华中科技大学出版社,2004
    杨居荣.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6(1):87~91
    袁海燕,张晓煜,亢艳莉.宁夏灌区玉米径粗与相对湿度、日照、降水的关系.农业科学研究,2006,27(4):9~12
    张德丰.MATLAB小波分析.北京:机械工业出版社,2009
    张建东,范舟,赖健清,等.综合指数质量评价模型在太原市土壤重金属污染评价中的应用.水土保持研究,2007,14(4):240~243
    张军,束文圣.植物对重金属镉的耐受机制.植物生理与分子生物学学报,2006,32(1):1~8
    张乃明,张守萍,武王武,等.污水灌溉的生态效益与损益分析.农业环境保护,1999,18(4):185~188
    张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998:17~18
    赵其国,周炳中,杨浩.江苏省环境质量与农业安全问题的研究.土壤,2002b,34(1):1~8
    赵其国,周炳中,杨浩.中国耕地资源安全问题及相关对策思考.土壤,2002a,34(6):293~302
    赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:50~51
    钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素.生态环境学报,2009, 18(4):1266~1273
    朱大奇.人工神经网络研究现状及其展望.江南大学学报(自然科学版),2004,3(1):103~110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700