AZO透明导电氧化物靶材及其薄膜制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着液晶显示、触控面板、有机发光显示、太阳能电池等的发展,使得透明导电薄膜成为关键性材料之一。目前,常用的锡掺杂氧化铟(ITO)透明导电薄膜材料中的金属铟属于稀缺资源,开发具有透光、导电特性的“非铟”材料已成为研究的热点之一。由于氧化锌基(znO)透明导电薄膜价格较为低廉,且不具毒性,在发展上具有相当的优异性。因此,对于氧化锌薄膜材料及其制备技术的研发,引起了大家的广泛重视。为此,本论文从事了如下方面的研究:采用胶态成型加常压烧结的低成本路线开发研制超高密度的ZnO基陶瓷靶材;并采用所研制的超高密度的ZnO基陶瓷靶材进行了磁控溅射镀膜的研究;研究了不同工艺参数对薄膜性能的影响;并尝试研究制备了双层透明导电薄膜。主要结论如下:
     通过Zeta电位、粘度、沉降等测试,研究了添加剂含量、pH值、固含量和球磨时间对ZnO-Al_2O_3混合粉体水基悬浮液的稳定性、流动性等的影响。实验结果表明:添加聚丙烯酸(PAA)后,ZnO和Al_2O_3在pH8~10.3的碱性范围有较高Zeta电位,Zeta电位均低于-45mV。与单独添加PAA相比,同时添加聚乙二醇(PEG),ZnO和Al_2O_3的Zeta电位没有明显改变。0.2wt%的PAA为饱和吸附量。PAA为饱和吸附量时,悬浮液在pH8~10.3范围内粘度较低、稳定性较好。当pH值为9左右,PAA质量分数为0.20%时,悬浮液粘度最低、稳定性最好。可制得固相体积分数55%的悬浮液。聚乙二醇添加量的增加,使悬浮液粘度增加、稳定性下降。悬浮体的粘度随固含量的增加呈指数关系增大。球磨时间以40h为佳。XRD分析显示α-Al_2O_3颗粒均匀而稳定的分布在ZnO颗粒之间。
     通过优化ZnO-Al_2O_3水基悬浮液的工艺参数,注浆成型制备致密的生坯,最终烧结制得超高密度的ZnO-Al_2O_3复合陶瓷。研究了添加剂含量对生坯和烧结体的密度和强度的影响。用0.2 wt%的聚合物电解质PAA和0.2 wt%的粘结剂PEG分散,在pH9、固含量30vol%的条件下制备ZnO-Al_2O_3混合粉体水基悬浮液,注浆成型制得相对密度大于66.6%的均匀而致密的生坯,ZnO-Al_2O_3混合物生坯中颗粒均匀而致密。由于0.2wt%的PAA为ZnO-Al_2O_3混合粉体的饱和吸附量从而形成了分散性好的料浆。另一方面,添加0.2wt%PEG的生坯径向压溃强度增加到12.5MPa,有利于后续过程。在pH9、PAA和PEG的添加量均为0.2%的工艺条件下制得的生坯经1 400℃保温2h无压烧结获得几乎全致密的烧结体(相对密度大于99.7%)。添加0.3%的PAA(PAA轻微过剩),促进了烧结体的强度和密度的提高。烧结过程中α-Al_2O_3与ZnO的反应生成物为ZnAl_2O_4的尖晶石相。显微分析显示其显微结构均匀,没有异常晶粒长大和其它缺陷,铝元素均匀分布。
     在薄膜的制备中,基底温度的提高对于AZO薄膜导电性和透过率的提高有明显的促进作用。适当提高基底温度,增加了吸附原子的迁移能,对于薄膜结晶质量、择优取向和掺杂有利。但玻璃基底温度不宜超过450℃。基底温度达到400℃时,薄膜的电阻率达到10~(-4)量级,透过率到达90%以上。AZO薄膜的光学带宽均大于未掺杂ZnO薄膜的带宽(3.2eV)是由Burstein-Moss效应引起的。随着薄膜厚度的增加,晶粒尺寸增大、晶粒取向性变好、结晶质量变好,有利于电阻率的降低。可见光透过率随厚度增加逐渐下降,符合Lambert定律。当薄膜厚度较薄时,随着薄膜厚度的增加光学带宽减小是由量子尺寸效应引起的。薄膜的电阻率随靶基距的增加而增大。靶基距对薄膜透过率的影响不是十分明显,透过率的改变主要是由薄膜的厚度效应引起的。
     AZO薄膜电阻率随溅射功率的增加在400W范围内呈单调下降趋势。溅射功率的提高有利于结晶质量的提高和Al的掺杂。随溅射功率的增大,溅射效率得到提高,薄膜厚度增加。透过率随溅射功率的增大而下降是由于薄膜厚度效应引起的。试验中未出现180W处电阻率最小的拐点,与作者采用了超高密度的溅射靶材有关。工作气压为0.1~1.0 Pa的范围内,在不同的溅射功率下薄膜的电阻率最低值出现在一个适当的工作气压下,是由溅射原子的平均自由程和等离子气的平均原子间距之间相互协调决定的。工作气压对薄膜的透过率和光学带宽的影响不是十分显著。在200℃和400℃玻璃基底上镀膜,最低电阻率分别可达5.3×10~(-4)Ω.cm和1.09×10~(-4)Ω.cm。较高的氧分压条件下薄膜的电阻率呈数量级增大,与氧空位数量减少有关。氧分压有助于薄膜的可见光透过率的提高,与有氧分压的条件下薄膜结晶质量提高、缺陷含量减少有关。但较低的氧分压(0.1%O_2)不利于AZO薄膜的(002)择优取向。不同氧分压下光学带宽的变化可能与薄膜中的应力变化有关。
     加镀ZnO缓冲层有利于AZO薄膜结晶质量的提高、(002)峰的择优取向和残余应力的松弛。ZnO缓冲层对AZO薄膜的透过率影响不大,可见光平均透过率在90%左右。基底温度为250℃,分别在40mm或60mm靶基距溅射AZO薄膜,可以制备出具有较低电阻率(10~(-4))和较高可见光反射率(51%)或较高电阻率(10~(-3))和透过率(87%)的ITO/AZO双层膜。采用在400℃基底温度、60mm靶基距制备AZO薄膜,双层膜具有较高的可见光透过率(85~90%)和较低的电阻率(10~(-4)量级)。当ITO/AZO的厚度比为1:9时,得到最低的电阻率为4.89×10~(-4)Ω.cm。
In the recent years, transparent conductive films had became one of materials inthe development of flat-panel display, plasma display panel, touch panel, OLEDdisplay, thin film solar cells and the like. Since the most important commercialmaterial for transparent conducting films nowadays is Sn-doped In_2O_3 (ITO) but themetal indium is rare resources, so the research and development of non-In materialshave attracted considerable attention in scientific research and in technologicalapplications. Recently, ZnO films have attracted interest as a transparent conductivecoating material, because the materials are consist of cheap and abundant element,non-toxic and lots of excellent characteristics. Thereby, there were aspects studied byus as follow: the ultra-density ZnO-base ceramic target were researched and developedin a low cost course of colloidal processing and pressureless sintering; the effect ofprocessing parameters on films were studied which were prepared by radio frequence(rf) with our ultra-density targets; bi-layer transparent conductive films were preparedand studied tentatively. The main concerned results and conclusions are as follow:
     The influences of mass fraction of additive, solid volume fraction, pH value andmilling time on the stability and fluidity of ZnO-Al_2O_3 powders aqueous suspensionwere investigated by experiments of zeta potential, viscosities and sedimentation etc. Itis found that ZnO and Al_2O_3 powders had lower zeta potential than -45 mV commonlyat pH 8-10.3 with polyacrylic acid (PAA) added. The zeta potential of ZnO and Al_2O_3had not research obviously changes adding polyethylene glycol (PEG) simultaneously,compared with only PAA added. At 0.2wt% PAA, the viscosity is lower and the slurriesare stabiler due to the saturated adsorbed amount of PAA is 0.2wt%. The lowestviscosity, the best stability and the 55% (vol. %) solids of the suspension has beenobtained when the pH value is about 9 and the mass fraction of polyacrylic acid is0.2%. The quantity of adding polyethylene glycol is increased, the viscosity ofsuspension is increased and the stability of suspension is deceased. Milling time of 40his selected as optimum in this test. XRD analysis shows that theα-Al_2O_3 particles aredistributed homogeneously among ZnO particles and are stable during process time
     To optimize the conditions of ZnO-Al_2O_3 aqueous suspensions and slip casting inorder to obtain dense green bodies and further obtain high density ZnO-Al_2O_3compound ceramics. The influences of mass fraction of additives on the fluidity ofslurries and the density and strength of green and sintered bodies were investigated.The maximum density of green bodies was 66.6% of theoretical density with compactand homogeneous green particles used 30 vol% ZnO-Al_2O_3 slurries at pH9 added0.2wt% ployelectrolytes PAA and 0.2wt% binder PEG. Since 0.2 wt% PAA could equal to the saturated adsorption amount for the ZnO-Al_2O_3 mixture powders which resultsin well dispersing slurry. On the other hand, it is advantageous to subsequent processcompare to without binders that the radial crushing strength of cast samples increasedto 12.5 MPa with 0.2% PEG added. After pressureless sintering at 1 400℃for 2 h, analmost full density body (>99.6% TD) can be obtained at the conductions of pH9, 0.2wt% PAA and 0.2 wt% PEG. 0.3%PAA (slightly execess of PAA) added improved thestrength and density of sintered bodyies.The Al_2O_3 reacted with ZnO to form theZnAl_2O_4 spinel phase during pressureless sintering. The microstructure observationsreveal that very homogeneous materials are obtained without abnormal grain growthand free of defects and with homogeneous distribution of Al species.
     In the processing of film prepared, the increasing substrate temperature couldimprove conductivity and transmittance evidently due to increase the diffusivity ofadsorbed atoms to improve crystalline quality, preferred orientation and doped-level,However the temperature of glass substrate is not suitable above 450℃. When thesubstrate temperature reached 400℃, the film resistivity reached 10~(-4) levels andtransmittance was above 90%. The band gaps of the AZO films are larger than theun-doped ZnO film (3.2eV) owing to Burstein-Moss effect. With the film thicknessincreasing, the gains sizes and the preferred orientation increased, the crystalline qualityand conductivity improved, but the transmittance decreased according to Lambert law.When film thickness is thinner, the band gap decreased with film thickness increasingmight be due to quanta-size effect. With the distance between target and substrate (TS)increased the resistivity of AZO film increased, which gives no evident influence oftransmittance. The change of transmittance mainly owe to the thickness effect of film.
     With the sputter power increased up to 400W, the resistivity of AZO filmmonotonously decreasing and film thickness increasing due to improve sputteringefficiency and the decrease of transmittance mainly owe to the thickness effect of film.Increase of sputter power improved crystalline quality and doped-level. In our study, at180W the inflexion of the minimum resistivity point is not found which might becontributed to the use of our ultra-density target. In the range of work pressure from 0.1 to1.0 Pa, the minimum resistivity of film was appeared at various work pressure withsputtering power changed which might be duo to inter-correspond between the mean freedistance of sputtered ions and the mean atom distance of plasma gas. The influence ofwork pressure on the transmittance and band gap of film is not evident in our workpressure range. The lowest resistivity of 5.3×10~(-4)Ω.cm and 1.48×10~(-4)Ω.cm could beobtained at 200℃and 400℃of substrate temperature respectively. At higher oxidepartial pressure the film resistivity increased in level of quantity due to oxide vacancydecreasing. The oxide partial pressure was improving the film transmittance to visiblelight which is relative to crystalline quality improved and the concentration of defectdecreased under oxide pressure. However the lower oxide partial pressure (0.1%O_2) is notbenefit to (002) preferred orientation. The changes of band gap of AZO film at various oxide partial pressures might be duo to the change of film stress.
     Adding ZnO suffer layer could improve crystalline quality and (002) preferredorientation of AZO film and depress their residual stress. The mean transmittance ofbi-layer film is about 90%, since the transmittance is not remarkably effected by ZnOsuffer. The ITO/AZO bi-layer film had higher reflectivity (up to 51%) with lowerresistivity (10~(-4)) or higher transmittance (87%, at below 500nm of AZO film thickness)with higher resistivity (10~(-3)) at 40 mm or 60 mm of TS when sputtering AZO film on250℃glass substrate respectively. The ITO/AZO bi-layer film had higher transmittance(85~90%) and lower resistivity (10~(-4)) when sputtering AZO film at 60 mm of TS and 400℃of glass substrate. The lowest resistivity of 4.89×10~(-4)Ω.cm could be obtained at 1:9 ofthe ITO/AZO thickness ratio.
引文
[1] J. Q. Xu, Y. Shun, Q. Y. Pan, et al.Sensing characteristics of double layer film of ZnO. Sensors and Actuators B: Chemical, 2000, 66(1/3):161-163.
    [2] R. Puyane. Applications and product development in varistor technology. Journal of Materials Processing Technology, 1995, 55(3/4): 268-277.
    [3] N. Horio, M. Hiramatsu, M. Nawata, et al. Preparation of zinc oxide/metal oxide multilayered thin films for low-voltage varistors. Vacuum, 1998, 51(4):719-722.
    [4] M. D. Whitfield, B. Audic, C. M. Flannery, et al. Acoustic wave propagation in free standing CVD diamond: Influence of film quality and temperature. Diamond and Related Materials, 1999, 8(8/9): 732-737.
    [5] N. Kadota, H. Kando. Small and low-loss IF SAW filters using zinc oxide film on quartz substrate ultrasonics. Ferroelectrics and Frequency Control, IEEE, 2004,51(4): 464-469.
    [6] M. B. Assouar, F. Benedic, O. Elmazria, et al. MPACVD diamond films for surface acoustic wave filters. Diamond and Related Materials, 2001,10(3/7): 681-685.
    [7] Y. Igasaki, T. Naito, K. murakami, et al. The effects of deposition condition on the structural properties of ZnO sputtered films on sapphire substrates. Applied Surface Science, 2001,169-170(15): 512-516.
    [8] Y. Yoshino, T. Makino, Y. Katayama,et al. Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering. Vacuum, 2000, 59(2):538-545.
    [9] M. Tomar,V.Gupta, K. Sreenivas. Improvements in the temperature stability of an IDT/ZnO/ fused-quartz thin film SAW device with ZnO over-layer. Ultrasonics,IEEE. 2003,1(5/8):901-904.
    [10] V. I. Anisimkin, M. Penza, A. Balentini, et al. Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line. Sensors and Actuators B, 1995, 23(2/3): 197-201.
    [11] Y. Yamada, T. Mishina, Y. Masumoto, et al. Dynamics of dense excitonic systems in ZnSe-based single quantum wells. Journal of Crystal Growth, 1996, 159(1/4):814-817.
    [12] S. Fung, X. L. Xu, Y. W. Zhao, et al. Gallium/aluminum interdiffusion between n-GaN and sapphire. Journal of Applied Physics, 1998, 84(4): 2355-2357.
    [13] T. Detchprohm,K. Hitamatsu. Hydride vapor phases epitaxial growth of a high quality GN film using a ZnO buffer layer. Applied Physics Letters, 1992, (61):2688-2690.
    [14] W. I. Park, G C. Yi, H. M. Jang. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO (0≤x≤0.49) thin films. Applied Physics Letters, 2001, (79): 2022-2024.
    [15] T. Minamoto, T. Negami,S.Nishiwaki, et al.Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering. Thin Solid Films, 2000, 372(1/2): 173-176.
    [16] G Santana, A. M. Acevedo,O.Vigil, et al. Structural and optical properties of (ZnO)_x(CdO)_(1-x) thin films obtained by spray pyrolysis. Thin Solid Films, 2000,373(1/2): 235-238.
    [17] A. K. Sharma, J. Narayan, J. F. Muth, et al. Optical and optical properties of epitaxial Mg_xZn_(1-x)O alloys. Applied Physics Letters, 1999,75(21): 3327-3329.
    [18] P.Yu, Z. K. Tang, G K. L. Wang, et al. 23nd int. conf. On the Physics of Semiconductors. World Scientific, Singapore, 1996, 3(13): P1453-P1456.
    [19] H. Cao, Y. G Zhao, H. C. Ong, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Letters, 1998,73(25): 3656-3658.
    [20] S. Liang, H. Sheng, Y. Liu,et al. ZnO schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001,225(2/4): 110-113.
    [21] C. Soci, A. Zhang, B. Xiong, et al. ZnO nanowire UV photodetectors with high internal gain. Nano Letters. 2007, 7 (4): 1003-1009.
    [22] H. Maki, N. Ichinose, N. Ohashi, et al. Lattice relaxation of a ZnO(0001) surface accompanied by a decrease in antibonding feature. Journal of Crystal Growth. 2001,229(1): 114-118.
    [23] D. C. Look, D. C. Reynolds, J. R. Sizelove, et al. Electrical properties of bulk ZnO.Solid State Communications. 1998, 105(6): 399-401.
    [24] R. Schmidt, B. Rheinlander, M. Schubert, et al. Dielectric functions(l to 5eV) of wurtzite. Zn_(1-x)Mg_xO (x≤0.29) thin films. Applied Physics Letters, 2003, 82(14):2260-2262.
    [25] T. Gruber, C. Kirchner, R. Kling, et al. Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2003,83(16): 3290-3292.
    [26] H. J. Lee, S. Y. Jeong, C. R. Cho, et al. Study of diluted magnetic semiconductor:Co-doped ZnO. Applied Physics Letters, 2002, 81(21): 4020-4022.
    [27] T. Fukushima. Reprint Author: T. Fukushima, T. Fukushima, K. Sato, et al. Ab initio design of fabrication process and shape control of self-organized Tera-bit-density nano-magnets in dilute magnetic semiconductors by two-dimensional spinodal decomposition. Physics Status Solid IC 3, 2006, 12(20/22): 4139-4142.
    [28] T. Fumura, Z. Jin, A. Ohtomo,et al. An oxide-diluted magnetic semiconductor:Mn-doped ZnO films. Applied Physics Letters, 1999, 75(21): 3366-3368.
    [29] K. S. Kim, H. W. Kim. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physics B: Condensed Matter, 2003, 328(3/4):368-371.
    [30] B. P. Zhang, N. T. Binh, Y. Segawa, et al. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates. Applied Physics Letters,2004, 84(4): 586-588.
    [31] Y. Tak, D. Park, K. J. Yong. Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method. Journal of Vacuum Society Technology B, 2006, 24(4): 2047-2052.
    [32] The 1st International Symposium on Transparent Conducting Oxide, IESL- FORTH,Crete, Greece (2006) http://www.certh.gr/65278BEC.en.aspx.
    [33] A. N. Banerjee, R. Maity, K. K. Chattopadhyay. Preparation of p-type transparent conducting CuAlO_2 thin films by reaction DC sputtering. Materials Letters, 2004,58(1/2):10-13.
    [34] (U|?.(O|?zg(u|?r, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 2005,98(4): 041301-103.
    [35] K. L. Chopra, S. Major, and D. K. Pandya. Transparent conductors-a status review.Thin Solid Film, 1983,102(1):1-46.
    [36] J. k. Hyeong, Y. N. Sang, E. Dail,et al. Property improvement of aluminum-oxide thin film deposited under photon radiation by using atomic layer deposition. Journal of the Korean Physical Society, 2006, 49(3): 1271-1275.
    [37] A. N. Banerjee, K. K. Chattopadhyay. Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Progress in Crystal Growth and Characterization of Materials, 2005, 50(1/3): 52-105.
    [38] J. C. C. Fan and J. B. Goodenough. X-ray photoemission spectroscopy studies of Sn-doped indium-oxides films. Journal of Applied Physics, 1977,48:3524-3531.
    [39] K. Tonooka and N. Kikuchi. Preparation of transparent CuCrO_2:Mg/ZnO p-n junctions by pulsed laser deposition. Thin Solid Films, 2006, 515(4): 2415-2418.
    [40] H. Kawazoe, M. Yasukawa, H. Hyodo, et al. P-type electrical conduction in transparent thin film of CuAlO_2.Nature, 1997, 389(6654): 939-942.
    [41] J. M(u|?ller, G Schope,O.Kluth, et al. Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells. Thin Solid Films. 2001, 392(2): 327-333.
    [42] B. G Lewis and D. C. Paine. Applications and processing of transparent conducting oxides. Transparent Conducting Oxides, MRS Bulletin, 2000,25(8): 22-27.
    [43] H. Hosono, H. Ohta, M. Orita, et al. Frontier of transparent conductive oxide thin film. Vacuum, 2002, 66(3/4): 419-425.
    [44] M. J. Alam and D. C. Cameron. Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol-gel process. Surface and Coatings Technology, 2001, 142(6): 776-780.
    [45] M. J. Alam and D. C. Cameron. Investigation of annealing effects on sol-gel deposited indium tin oxide thin film in different atmospheres. Thin Solid Films,2002,420/421:76-82.
    [46] T. Minami, T. Yamamoto, Y. Toda, et al., Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films, 2000, 373(1/2):189-194.
    [47] K. Tominaga, N. Umezu,I. Mori, et al.Transparent conductive ZnO film preparation by alternating sputtering of ZnO: Al and Zn or Al targets. Thin Solid Films, 1998, 334(1/2): 35-39.
    [48] K. M. Lin and P. Tsai. Parametric study on preparation and characterization of ZnO:Al films by sol-gel method for solar cells. Materials Science and Engineering: B,2007, 139(1): 81-87.
    [49] W. W. Wang, X. G Diao, Z. Wang, et al. Preparation and characterization of high-performance direct current magnetron sputtered ZnO:l films.Thin Solid Films, 2005,491(1/2):54-60.
    [50] G.Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of multiplayer transparent conductive coatings. Solid State Ionics, 2000,136-137: 655-661.
    [51] M. Tadatsugu. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 2005, 20(4): S35-S44.
    [52] J. E. Jaffe, A. C. Hess. Hartree-Fock study of phase changes in ZnO at high pressure.Physical Review B, 1993, 48(11): 7903-7909.
    [53] C. H. Bates, W. B. White, R. Roy. New High-Pressure Polymorph of Zinc Oxide.Science, 1962, 137: 993-997.
    [54] S. L. King, J. G E. Gardeniers, I. W. Boyd. Pulsed-laser deposited ZnO for device applications. Applied Surface Science, 1996, 96-98: 811-818.
    [55] O.Dulub, M. Batzill, U. Diebold. Growth of copper on single crystalline ZnO:surface study of a model catalyst. Topics in Catalysis, 2005, 36(1/4): 65-76.
    [56] H. Maki,N. Ichinose, H.N. Ohashi, et al. Lattice relaxation of a ZnO(0001) surface accompanied by a decrease in antibonding feature. Journal of Crystal Growth, 2001,229(1): 114-118.
    [57] M.H. Koch, A.J. Hartmann, R. N. Lamb. Self-texture in the initial stages of ZnO film growth. Journal of Physical Chemistry B. 1997, 101(41): 8231-8236.
    [58] D. P. Norton, Y. W. Heo, M. P.Ivill,et al. ZnO: growth, doping & processing.Materials Today, 2004, 7(7): 34-40.
    [59] 杨作新,张霖霖.无机化学.广东高等教育出版社,200.
    [60] S. J. Pearton, D. P. Norton, K.Ip,et al. Recent progress in processing and properties of ZnO. Superlattices & Microstructures, 2003, 34(1/2): 3-32.
    [61] S. M, Lukas, L. M. D. Judith. Review ZnO-nanostructures, defects, and devices.Materials Today, 2007,10(5): 40-48.
    [62] S. F. J. Cox, S. P. Davis, S. P. Cottrell, et al. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Physics Review Letters, 2001,86(12): 2601-2604.
    [63] D. M. Hofmann, A. Hofstaetter, F. Leiter, et al. Hydrogen: A relevant shallow donor in zinc oxide. Physics Review Letters, 2002, 88(4): 045504(1-4).
    [64] S. A. Studenikin, N. Golego, M. Cocivera. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. Journal of Applied Physics, 2000, 87(5): 2413-2421.
    [65] S. Tuzemen, E. Gur, Principal issues in producing new ultraviolet light emitters based on transparent semiconductor zinc oxide. Optical Materials, 2007, 30(2):292-310.
    [66] B. J. Jin, H. S. Woo, S. Im, et al.Relationship between photoluminescence and electrical properties of ZnO thin films grown by pulsed laser deposition. Applied Surface Science, 2001,169/170 (15): 521-524.
    [67] W. I. Lee, R. L. Young. Defects and degradation in ZnO varistor. Applied Physics Letters, 1996, 69(4): 526-528.
    [68] K.Vanheusden, W. L. Warren, C. H. Seager. Mechanisms behind green photoluminescence in ZnO phosphor powder. Journal of Applied Physics, 1996,79(10): 7983-7990.
    [69] B. J. Jin, S. H. Bae, S. Y. Lee. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Materials Science and Engineering B. 2000, 71(Sp. Iss.Si): 301-305.
    [70] K. I. Hagemark, L. C. Chacka. Electrical transport properties of Zn doped ZnO.Journal of Solid State Chemistry, 1975, 15(3):261-270.
    [71] R. G Gordon. Criteria for choosing transparent conductors. MRS. Bulletin. 2000,25(8): 52-57.
    [72] T. Minami.New n-type transparent conducting oxides. MRS. Bulletin, 2000, 25(8):38-44.
    [73] F. J. Haug, Z. S. Geller, H. Zogg, et al. Influence of deposition conditions on the thermal stability of ZnO: Al films grown by rf. magnetron sputtering. Journal of Vacuum Science & Technology A, 2001,19(1): 171-174.
    [74] D. G Baik and S. M. Cho. Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Film, 1999, 354(1/2): 227-231.
    [75] M. A. Martinez, J. Herrero, M. T. Gutierrez, Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells. Solar Energy Materials and Solar Cells, 1997, (45): 75-86.
    [76] J. C. Lee, K.H. Kang, S. K. Kim, et al. RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2 based solar cell applications. Solar Energy Materials and Solar Cells, 2000, 64(2):185-195.
    [77] K. Tominaga, T. Murayama,I. Mori, et al. Conductive transparent films deposited by simultaneous sputter of zinc-oxide and indium-oxide targets. Vacuum, 2000,59(2/3): 546-552.
    [78] W. J. Lee, J. G Kang, K. J. Chang. Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Physics Review B, 2006, 73(2): 024117(1-6).
    [79] S. Limpijumnong, S. B. Zhang, S. H. Wei, et al. Doping by large-size-mismatched impurities: The microscopic origin of arsenicor antimony-doped p-type zinc oxide.Physics Review Letters, 2003, 92(15): 155504(1-4).
    [80] Y. Yan, S. B. Zhang, S. T. Pantelides. Control of doping by impurity chemical potentials: Predictions for p-Type ZnO. Physics Review Letters, 2001, 86(25):5723-5726.
    [81] K. K. Kim, H. S. Kim, D. K. Hwang, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Applied Physics Letters,2003, 83(1): 63-65.
    [82] A. B. M. A. Ashrafi, I. Suemune, et al. Nitrogen-doped p-type ZnO layers prepared with H_2O vapor-assisted metalorganic molecular-beam epitaxy. Japanese Journal of Applied Physics, Part 2, 2002, 41(11B): L1281-L1284.
    [83] T. Yamamoto. Codoping for the fabrication of p-type ZnO. Thin Solid Films, 2002,420-421: 100-106.
    [84] S. Y. Lee, E. S. Shim, H. S. Kang, et al. Fabrication of ZnO thin film diode using laser annealing. Thin Solid Films, 2005, 473(1):31-34.
    [85] K. K. Kim, H. S. Kim, D. K. Hwang, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Applied Physics Letters,2003, 83(1): 63-65.
    [86] D. K. Hwang, M. S. Oh, J. H. Lim, et al. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO. Applied Physics Letters, 2007, (90):021106(1-3).
    [87] F. X. Xiu, Z. Yang, L. J. Mandalapu, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Applied Physics Letters, 2005, 87(15): 152101(1-3).
    [88] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. Dopant source choice for formation of p-type ZnO: Li acceptor. Applied Physics Letters, 2006, 88(6): 062107(1-3).
    [89] L. L. Yang, Z. Z. Ye, L. P. Zhu, et al. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source. Journal of Electronic Materials, 2007, 36(4): 498-501.
    [90] J. G Lu, Y. Z. Zhang, Z. Z. Ye, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Applied Physics Letters, 2006,88(22): 222114(1-3).
    [91] X. H. Wang, B. Yao, Z. P. Wei, et al. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen. Journal of Physics D: Applied Physics, 2006, 39(21): 4568-4571.
    [92] Z. Q. Ma, W. G Zhao, Y Wang. Electrical properties of Na/Mg co-doped ZnO thin films. Thin Solid Films, 2007, 515(24): 8611-8614.
    [93] Y. F. Yan, A. J. Mowafak, S. H. Wei. Doping of ZnO by group-IB elements. Applied Physics Letters, 2006, 89(189): 181912(1-3).
    [94] S. K. Hong, D. A. Byung, H. K. Jong, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Applied Physics Letters, 2006, 88(20): 202108(1-3).
    [95] K.S. Ahn, T. Deutsch, Y. F. Yan, et al. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics, 2007, 102(2): 023517(1-5).
    [96] J.J. Chen, J. Soohwan, T. J. Anderson, et al. Low specific contact resistance Ti/Au contacts on ZnO. Applied Physics Letters, 2006, 88(12): 122107(1-3).
    [97] S.H. Kim, S. W. Jeong, D. K. Hwang, et al. Zn/Au ohmic contacts on n-type ZnO epitaxial layers for light-emitting devices, Electrochemical and Solid-State Letters, 2005, 8(8): G198-G200.
    [98] B.S. Kang, J. J. Chen, F. Ren. ITO/Ti/Au Ohmic contacts on n-type ZnO. Applied Physics Letters, 2006, 88(18): 182101(1-3).
    [99] J. M. Lee, K. K. Kim, S. J. Park, et al. Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO. Applied Physics Letters, 2001, 78(38): 3842-3844.
    [100] T. Akane, K. Sugioka, K. Midorikawa. Nonalloy Ohmic contact fabrication in a hydrothermally grown n-ZnO (0001) substrate by KrF excimer laser irradiation. Journal of Vacuum Society Technology B, 2000, 18(14): 1406-1408.
    [101] J.S. Wright, R. Khanna, K. Ramani, et al. ZrB_2/Pt/Au Ohmic contacts on bulk, single-crystal ZnO. Applied Surface Science, 2006, 253(5): 2465-2469.
    [102] S. H. Kang, D. K. Hwang, S. J. Park. Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO. Applied Physics Letters, 2005, 86(21): 211902(1-3).
    [103] L. J. Mandalapu, Z. Yang, J. L. Liua. Low-resistivity Au/Ni Ohmic contacts to Sb-doped p-type ZnO. Applied Physics Letters, 2007, 90(25): 252103(1-3).
    [104] S. H. Kim, H. K. Kim, T. Y.Seong. Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO. Applied Physics Letters, 2005, 86(11): 112101(1-3).
    [105] Q. L. Gu, C. C. Ling, X. D. Chen, et al. Hydrogen peroxide treatment induced rectifying behavior of Au/n-ZnO contact. Applied Physics Letters, 2007, 90(12): 122101(1-3).
    [106] M. S. Oh, D. K. Hwang, J. H. Lim, et al. Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation. Applied Physics Letters, 2007, 91(4): 042109(1-3).
    [107] C. Cevdet, G. Nebi, B. Ercan. The effect of high-energy electron irradiation on ZnO-based ohmic and Schottky contacts. Semiconductor Science Technology, 2006, 21(12): 1656-1660.
    [108] L. J. Mandalapu, F.X. Xiu, Z.Yang, et al. Al/Ti contacts to Sb-doped p-type ZnO. Journal of Applied Physics, 2007, 102(2): 023716(1-5).
    [109] K. Tominaga, T. Murayama, N. Umezu, et al. Properties of films multilayered ZnO: Al and ZnO deposited by an alternating sputtering method. Thin Solid Films, 1999, 343(Sp. Iss.Si): 160-163.
    [110] H. L. Hartnagel, A. L. Dawar, A. K. Jain, et al. Semiconducting Transparent Thin Films. IOP Publishing. Ltd., Bristol and Philadelphia, 1995.
    [111] H. Sato, T. Minami, S. Takata, et al. Low temperature preparation of transparent conducting ZnO: A1 thin films by chemical beam deposition. Thin Solid Films, 1993, 236: 14-19.
    [112] 赵大庆,范锦鹏,吴敏生等.AZO陶瓷烧结模型的研究.粉末冶金技术,2002,20(50):267-270.
    [113] 龙涛,朱德贵,王良辉.高导电性AZO陶瓷靶材及薄膜的制备.电子元件与材料,2004,2(2):31-34.
    [114] 陈宗淇,王光信,徐桂英.胶体与界面化学.北京:高等教育出版社,2001,77-89.
    [115] 刘付胜聪,李玉平,胡智荣等.TiO_2在水和丙二醇介质中表面电性质的研究.无机化学学报,2004,20(1):79-83.
    [116] 魏俊峰,吴大清.矿物.水界面的表面离子化和络合反应模式.地球科学进展,2000.1 5(1):90-96.
    [117] J. N. Isranlaehvili. Intermolecular and surface forces. Academic Press, London:1983, 25.
    [118] 王瑞刚,吴厚政,陈玉如等.陶瓷浆料稳定分散进展.材料科学与工程,1999,17(2):66-70.
    [119] J. Davies, J. G. P. Binner. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. Journal of the European Ceramic Society, 2000, 20(10): 1539-1553.
    [120] M. Ohring. Materials science of thin films'deposition and structure.北京:世界图书出版公司,2006.
    [121] 冯绪胜.胶体化学.北京:化学工业出版社,2005.
    [122] 周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析,哈尔滨工业大学出版社,2005,P25,28.
    [123] A. Moustaghfr, E. Tomasella, S. B. Amor. Structural and optical studies of ZnO thin films deposited by r.f. magnetron sputtering: influence of annealing. Surface Coating Technology, 2003, 21 (4): 174-175.
    [124] H. Angus Macleod. Structure-related optical properties of thin film. Journal of Vacuum Society Technology, 1986, A3 (4): 418.
    [125] K. F. Cai, X. R. He, L. C. Zhang. Fabrication, properties and sintering of ZnO nanopowder. Materials Letters, 2008, 62(8/9): 1223-1225.
    [126] W. S. Lee, W. T.Chen, Y. C.Lee, et al. Influence of sintering on microstructure and electrical properties of ZnO-based multilayer varistor (MLV). Ceramics International, 2007, 33(6): 1001-1005.
    [127] S. Bernik, N.Daneu, Characteristics of ZnO-based varistor ceramics doped with Al_2O_3, Journal of the European Ceramic Society, 2007, 27(10): 3161-3170.
    [128] F. Tang, Y. Sakka, T. Uchikoshi. Electrophoretic deposition of aqueous nano-sized zinc oxide suspension on a zinc electrode. Materials Research Bulletin, 2003, 38(2): 207-212.
    [129] F. Tang, T. Uchikoshi, Y.Sakka. Electrophoretic deposition behavior of aqueous nanosized Zinc Oxide suspensions. Journal of the American Ceramic Society, 2002,85(9): 2161-65.
    [130] S. C. LiuFu, H. N. Xiao, Y. P. Li. Adsorption of polyelectrolyte on the surface of ZnO nanoparticles and the stability of colloidal dispersions. Chinese Science Bulletin, 2005, 50(15): 1570-1575.
    [131] A. Nasu and Y. Otsubo. Rheology and UV-protecting properties of complex suspensions of titanium dioxides and zinc oxides. Journal of Colloid and Interface Science, 2007, 310(2): 617-623.
    [132] J. G. Li, L. Gao, J.K.Guo. Effect of PAA-NH4 on properties of aqueous nano TiN suspension. Journal of Materials Science Letters, 2002,21(6): 509-510.
    [133] S. C. Liufu, H. Xiao, Y. Li. Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technology, 2004,145(1):20-24.
    [134] J. A. Lewis. Colloidal processing of ceramics. Journal of the American Ceramic Society, 2000, 83(10): 2341-2359.
    [135] B. V. Velamakani. Effect of interparticle potentials and sedimentation on particle density of bimodal particle distribution during pressure filtration. Journal of the American Ceramic Society,1991, 74(1):166-172.
    [136] C. Dange, T. N. T. Phan, V. Andre, et al.Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide. Journal of Colloid and Interface Science 2007,315(1):107-115.
    [137] R. A. Reichle, K. G. McCurdy, L. G. Hepler. Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5-75 ℃. Canadain Journal of Chemistry, 1975, 53: 3841-3845.
    [138] H. G. Kirby, D. J.Harris, L. Qi, et al. Poly(acrylic acid)-poly(ethylene oxide) comb polymer effect on BaTiO_3 nanoparticle suspension stability. Journal of the American Ceramic Society, 2004, 87(2): 181-186.
    [139] D. Santhiya, S. Subramanian, K. A. Natarajan. Surface chemical studies on the competitive adsorption of poly(acrylic acid) and poly(vinyl alcohol) onto alumina.Journal of Colloid and Interface Science, 1999,216(1):143-153.
    [140] X. L. Liu, Y. Huang, J. L. Yang. Effect of rheological properties of the suspension on the mechanical strength of Al_2O_3-ZrO_2 composites prepared by gelcasting.Ceramics International, 2002, 28(2): 159-164.
    [141] 刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO_2表面吸附行为的研究.高等学校化学学报,2005, 4(26): 742-746.
    [142] Y. Song, X. L. Liu, J. F. Chen. The maximum solid loading and viscosity estimation of ultra-fine BaTiO_3 aqueous suspensions. Colloids and Surfaces A:Physicochemistry Engineer Aspects., 2004, 247 (1/3): 27-34.
    [143] Q. Q. Tan, Z. T. Zhang, Z. L. Tang, et al. Rheological properties of nanometer tetragonal polycrystal zirconia slurries for aqueous gel tape casting process.Materials Letters, 2003, 57(16/17): 2375-2381.
    [144] K. Lu and C. Kessler. Colloidal dispersion and rheology study of nanoparticles.Journal of Materials Science, 2006, 41(17): 5613-5618.
    [145] D. M. Liu. Particle packing and rheological property of highly-concentrated ceramic suspensions: phi(m) determination and viscosity prediction. Journal of Materials Science, 2000, 35(21): 5503-5507.
    [146] Y. Sato, F. Oba, M. Yodogawa, et al.Al-doped ZnO ceramics fabricated by mechanical alloying and high-pressure sintering technique. Journal of Materials Science Letters, 2003, 22(17): 1201-1204.
    [147] M. Suchea, S. Christoulakis,N. Katsarakis et al. Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, 2007, 515(16): 6562-6566.
    [148] L. P. Dai, H. Deng, F. Y. Mao, et al. The recent advances of research on p-type ZnO thin film.Journal of Material Science: Material Electron, 2008, 19(8/9):727-734.
    [149] F. Ruske, A. Pflug,V.Sittinger, et al. Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering. Thin Solid Films,2008, 516(14): 4472-4477.
    [150] L. N. Wei, R.X. Ma, J. S. Xue, et al. RF magnetron sputtered ZnO: Al thin films on glass substrates: A study of damp heat stability on their optical and electrical properties. Solar Energy Materials & Solar Cells, 2007, 91(20): 1902-1905.
    [151] B. Y. Oh, M. C. Jeong, T. H. Moon, et al. Transparent conductive Al-doped ZnO films for liquid crystal displays. Journal Applied Physics. 2006, 99(12):124505(1-4).
    [152] X. T. Hao, F. R. Zhu, K. S. Ong, et al. Hydrogenated aluminium-doped zinc oxide semiconductor thin films for polymeric light-emitting diodes. Semiconductor Science Technology, 2006, 21(1): 48-54.
    [153] K. Yasui, A. Asano, M. Otsuji et al. Improvement of the uniformity in electronic properties of AZO films using an rf magnetron sputtering with a mesh grid electrode. Materials Science and Engineering B, 2008,148(1/3): 26-29.
    [154] D. Herrmann, M. Oertel, R. Menner, et al. Analysis of relevant plasma parameters for ZnO: Al film deposition based on data from reactive and non-reactive DC magnetron sputtering. Surface and Coatings Technology, 2003,174: 229-234.
    [155] F. Ruske, A. Pflug, V. Sittinger, et al. Process stabilisation for large area reactive MF-sputtering of Al-doped ZnO. Thin Solid Films, 2006, 502(1/2): 44-49.
    [156] P. J. Kelly and Y. J. Zhou. Zinc oxide-based transparent conductive oxide films prepared by pulsed magnetron sputtering from powder targets: Process features and film properties. Journal of Vacuum Science and Technology A, 2006, 24(5):1782-1785.
    [157] O. Kluth, G. Schope, B. Rech, et al. Comparative material study on RF and DC magnetron sputtered ZnO: Al films. Thin Solid Films 2006, 502(1-2): 311-316.
    [158] E. Medvedovski, N. Alvarez, O. Yankov, et al. Advanced indium-tin oxide ceramics for sputtering targets. Ceramics International, 2008, 34(5): 1173-1182.
    [159] F. F. Lange. Powder processing science and technology for increased reliability. Journal of the American Ceramic Society, 1989, 72 (1): 3-15.
    [160] I. M. Garcia dos Santos, E. Longo, J. A. Varela, et al. Sintering of tin oxide processed by slip casting. Journal of the European Ceramic Society, 2000, 20 (5): 2407-2413.
    [161] S. M. Olhero, and J. M. F. Ferreira. Particle segregation phenomena occurring during the slip casting process. Ceramics International, 2002, 28(4): 377-386.
    [162] S. M. Olhero, and J. M. F. Ferreira. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 2004, 139(1): 69-75.
    [163] W. C. J. Wei, S. J. Lu, B. Yu. Characterization of submicron alumina dispersion with poly(methacrylic acid) polyelectrolyte. Journal of the European Ceramic Society, 1995, 15(2): 155-164.
    [164] A. Tsetsekou, C. Agrafiotis, A. Milias. Optimization of the rheological properties of alumina slurries for ceramic processing applications Part Ⅰ: Slip-casting. Journal of the European Ceramic Society, 2001, 21(3): 363-373.
    [165] I. M. Garcia dos Santos, R. C. M. Moreira, E. R. Leite, et al. Sintering of zirconia composites by slip casting. Ceramics International, 2001, 27(3): 283-289.
    [166] K. H. Kim, S. H. Shim, K. B. Shim, et al. Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. Journal of the American Ceramic Society, 2005, 88(3): 628-32.
    [167] A. P. Hynes, R. H. Doremus, R. W. Siegel. Sintering and characterization of nanophase zinc oxide. Journal of the American Ceramic Society, 2002, 85(8): 1979-1987.
    [168] A. Kuroyanagi. Crystallographic characteristics and electrical properties of Al-doped ZnO thin films prepared by ionized deposition. Journal of Applied Physics, 1989, 66(11): 5492-5497.
    [169] S. Maniv, C. J. Miner, W. D. Westwood. Transparent conducting zinc oxide and indium-tin oxide films prepared by modified reactive planar magnetron sputtering. Journal of Vacuum Science and Technology A, 1983, (1): 1370.
    [170] V. Gupta, A. Mansingh. Influence of post deposition annealing on the structural and optical properties of sputtered zinc oxide film. Journal of Applied Physics, 1996, 80(2): 1063-1073.
    [171] 刘恩科,朱秉升,罗晋生.半导体物理学,国防工业出版社,1994.
    [172] 陈光华,邓金祥.纳米薄膜技术与应用.北京:化学工业出版社,2003,262-266.
    [173] Pankove. Optical Processes in Semiconductors. Prentice-Hall, Inc.1971.
    [174] H. Kim, C. M. Gilmore, A. Pique. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. Journal of Applied Physics, 1999, 86(11):6451-6461.
    [175] J.Tauc, R. Grigorovichi, and A. Vancu. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi, 1966, 15:627.
    [176] S. H. Jeong, B. N. Park, D. G. Yoo et al.Al-ZnO thin films as transparent conductive oxides: synthesis, characterization, and application Tests. Journal of the Korean Physical Society, 2007, 50(3): 622-625.
    [177] E.Burstein. Anomalous optical absorption limit in InSb, Physics Review, 1954, 93:632.
    [178] S. H. Jeong, J. W. Lee, S.B. Lee, et al. Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural, electrical and optical properties. Thin Solid Films, 2003, 435(1/2): 78-82.
    [179] D. J. Kwak, K.Ⅱ Park, B. S. Kim, et al. Argon gas pressure and substrate temperature dependences of ZnO:Al film by magnetron sputtering. Journal of the Korean Physical Society, 2004,45(1): 206-210.
    [180] J. Y. Hwang, C. R. Cho, S. A. Lee, et al. Epitaxial growth and structural characterization of transparent conducting ZnO: Al thin film deposited on GaN substrate by RF magnetron sputtering. Journal of the Korean Physical Society, 2005,47:S288-S291.
    [181] Z. L. Pei, C. Sun, M. H. Tan. Optical and electrical properties of direct-current magnetron sputtered ZnO: Al films. Journal of Applied Physics, 2001, 90(7):3432-3436.
    [182] D. J. Kwak, M. W. Park, Y. M. Sung. Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering (for PDP). Vacuum, 2008, 83(1):113-118.
    [183] L. Li, L. Fang, X.M. Chen, et al. Influence of oxygen argon ratio on the structural,electrical, optical and thermoelectrical properties of Al-doped ZnO thin films.Physica E, 2008, 41(1): 169-174.
    [184] 马晓翠,柳文军,朱德亮等.氧含量对RF磁控溅射ZnO薄膜结构特征的影响.半导体学报,2007, 28(21): 160-162.
    [185] S. H. Jeong, B. S. Kim, B. T. Lee. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient.Applied Physics Letters, 2003, 82(16): 2625-2627.
    [186] H. T. Cao, Z. L. Pei, J. Gong, et al. Transparent conductive Al and Mn doped ZnO thin films prepared by dc reactive magnetron sputtering. Surface Coatings Technology, 2004, 184(1): 84-86.
    [187] L. J. Meng, and M. P. Dos Santos. Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature. Thin Solid Films, 1998, 322(1/2): 56-62.
    [188] E. Akkad, F. Marafi, M. Punnoose, et al. Effect of substrate temperature on the structural, electrical and optical properties of ITO films prepared by rf magnetron sputtering. Physica Status Solidi, 2000,177(2): 445-452.
    [189] N. Y. Garces, N. C. Giles, L. E. Halliburton. Production of nitrogen acceptors in ZnO by thermal annealing. Applied Physics Letters, 2002, 80(8): 1334-1336.
    [190] S. Mandal, R. K. Singha, A. Dhar, et al. Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering. Material Research Bulletin, 2008,43(2): 244-250.
    [191] E. Terzini, G. Nobile, S. Loreti, et al. Influence of sputtering power and substrate temperature on the properties of RF magnetron sputtered indium tin oxide thin films.Japanese Journal of Applied Physics, 1999, 38(6A): 3448-3452.
    [192] W. J. Jeong, S. K. Kim, G. C. Park. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films, 2006,506/507(26): 180-183.
    [193] L. J. Meng and M. P. Dos Santos. Influence of the target-substrate distance on the properties of indium tin oxide films prepared by radio frequency reactive magnetron sputtering. Journal of Vacuum Science and Technology A, 2000,18(4): 1668-1671.
    [194] E. Kubota, Y. Shigesato, M. Igarashi, et al. Effects of magnetic field gradient on crystallographic properties in tin-doped indium oxide films deposited by electron cyclotron resonance plasma sputtering. Journal of Applied Physics, 1994, 33(9A):4997-5004.
    [195] D. Mergel, W. Stass, G. Ehl,et al. Oxygen incorporation in thin films of In_2O_3:Sn prepared by radio frequency sputtering. Journal of Applied Physics, 2000, 88(5):2437-2442.
    [196] W. F. Wu, and B. S. Chiou. Properties of radio-frequency magnetron sputtered ITO films without tin-situ substrate heating and post-deposition annealing. Thin Solid Films, 1994, 247(2): 201-207.
    [197] M. Fujita, N. Kawamoto, M. Sasajima,et al. Molecular beam epitaxy growth of ZnO using initial Zn layer and MgO buffer layer on Si(111) substrates. Journal of Vacuum Science and Technology B, 2004, 22(3): 1484-1486.
    [198] Y. Zhang, H. Zheng, J. Sua, et al. Effects of SiC buffer layer on the optical properties of ZnO films grown on Si (111) substrates. Journal of Luminescence,2007,124(2): 252-256.
    [199] K. Koike, T. Komuro, K. Ogata, et al. CaF_2 growth as a buffer layer of ZnO/Si heteroepitaxy. Physica E, 2004, 21(2/4): 679-683.
    [200] T. Onuma, S. F. Chichibu, A. Uedono, et al. Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer. Applied Physic Letters, 2004, 85(23): 5586-5588.
    [201] S. Suzuki, T. Miyata, M. Ishii,et al. Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering. Thin Solid Films, 2003, 434 (1/2): 14-19.
    [202] B. G. Choi, I. H. Kim, D. H. Kim, et al. Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. Journal of European Ceramics Society, 2005, 25 (12): 2161-2165.
    [203] E. J. J. Martin, M. Yan, M. Lane, et al. Chang properties of multilayer transparent conducting oxide films. Thin Solid Films, 2004, 461 (22): 309-315.
    [204] J. Herrero, C. Guillen. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering. Thin Solid Films, 2004, 451(22): 630-633.
    [205] 卢进军,刘卫国.光学薄膜技术.西安:西北工业大学出版社,2005,10.
    [206] P. Drude. Theory of Optics, Annal Physics (Leipzig), 1900, 1(2): 566-568.
    [207] B. A. Movchan and A. V. Demshishin. Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxdes. Frz. Me't Metalloved, 1969, 28(4): 653.
    [208] J. A. Thornton. Coating deposition by sputtering, In: R. F. Bunshah, Editor, Deposition technologies for films and coatings. New Jersey, Noyes Publications, 1982, P170-243.
    [209] 李世涛.透明导电ITO及其复合薄膜的研究:[华中科技大学博士学位论文].湖北:华中科技大学,2006.
    [210] R. Messier, A. P. Girl and R. A. Roy. Revised structure zone model for thin film physical structure. Journal of Vacuum Science and Technology A, 1984, 2(2): 500-503.
    [211] O. Kluth, S. Gunnar, H. Jurgen, et al. Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films, 2003, 442 (1/2): 80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700