Nimonic 80A热变形和热处理过程中的晶粒结构控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对Nimonic 80A叶片材料供货质量不稳定的情况,及晶粒结构对材料蠕变持久性能的影响,对该材料的成型、热处理等制造过程中的微观组织演变情况进行分析,得出了复杂晶粒度形成机理及其影响因素。
     本文主要对材料热处理过程及锻造过程进行模拟,考察其对晶粒结构的影响。
     采用热模拟机Gleeble 3500对锻造工艺进行模拟,变形温度为1000℃到1150℃,变形量为0.22到1.61,变形速率恒为1s-1。采用OM以及背散射电子衍射方法(EBSD),对热变形过程中的动态再结晶(DRX)微观机制,进行了进一步的探讨;采用EBSD, Image-Pro Plus, Origin等手段,系统研究了热变形条件对晶粒度分布的影响规律;热变形过程中的孪晶演变规律也通过EBSD进行了研究。最后得出了晶粒结构与热变形条件的关系图,总结出了均匀晶粒度分布与复杂晶粒度分布对应的热变形条件。
     研究了原始均匀样品经过不同热处理制度,温度从1060℃到1150℃,热处理时间从2分钟到60分钟,然后水冷,之后显微组织的变化。通过金相分析(OM),发现在1080℃/60分钟、1100℃/8分钟、1120℃/4分钟出现了异常晶粒长大(AGG);而在1060℃下,2到60分钟没有发现明显的晶粒长大;在1150℃/2分钟晶粒就发生了明显的长大,没有异常长大晶粒。同时通过扫描电镜背散射电子成像分析,得出了1120℃下,随加热时间变化,碳化物的分布演变,探讨了其对AGG的影响规律。
Because of the unstable quality of the supplied products for Nimonic 80A used for blades materials, and the great influence of grain structure on the creep resistance of materials, analysis of microstructure evolution during processings such as forging and heat treatment was conducted. Through this study, the mechanisms of complex grain size distribution and its related factors were concluded.
     In this paper, simulation of the processing such as forging and heat treatment were done to examine its influence on the grain structure.
     Use Gleeble 3500 to simulate the process of forging. Temperature of hot deformation is from 1000℃to 1150℃, and the true strain is from 0.22 to 1.61, with constant strain rate of 1s-1. Investigate the mechanism of dynamic recrystallization (DRX) during hot deformation with optical microscopy (OM) and electron backScatter diffraction (EBSD) in detail; Study the influence of hot-deformed condition on the grain size distribution systematically with EBSD, Image-Pro Plus and Origin. Besides, the behavior of twinning boundary during hot deformation was also studied with EBSD. In the end, the relationship between grain structure and condition of hot deformation was obtained.
     Study the microstructure evolution after different heat treatments, with temperatures from 1060℃to 1150℃, time from 2 minutes to 60 minutes and then water cooled. Through OM, abnormal grain growth (AGG) was found in the condition 1080℃, 60minutes, 1100℃, 8 minutes and 1120℃, 4 minutes; while at 1060℃, there is no AGG after 60 minutes; grains have shown apparent growth after 2 minutes at 1150℃. Meanwhile, investigation of carbides distribution with the variation of time at 1120℃with backscatter electron image (BSE) was conducted to study its influence on AGG.
引文
[1]郭建亭,高温合金材料学(上册)应用基础理论[M],北京:科学出版社, 2008.
    [2] Koul_Immarigeion&Wallace, Microstructural control in Ni-base Superalloys, 1994.
    [3] Tao Yu, Huiji Shi, Effects of grain size distribution on the creep damage evolution of polycrystalline materials, Journal of Physics D: Applied Physics[J], 2010, 43, 165401.
    [4] P. Bhowal, N. Bhathena, Development of a necklace microstructure during isothermal deformation and its properties relative to uniform microstructures, Metallurgical and Materials Transactions A[J], 1991, 22, 1999-2008.
    [5] H W H?ppel, M Korn, R Lapovok, et al. Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties, Journal of Physics: Conference Series[J], 2010, 240, 012147.
    [6]王衣,新型Ni-Co基变形高温合金的成分设计与组织性能关系[D],上海,上海交通大学, 2010, 15-16.
    [7]《中国航空材料手册编辑委员会》编辑委员会,中国航空材料手册[M], 2版,北京:中国标准出版社, 2001, 5-6.
    [8] Roger C. Reed, The superalloys Fundamentals and Applications[M]ed, New York: Cambrigde University Press, 2006, 19.
    [9]何马飞, GH80A和GH105合金长时组织稳定性[D],北京,中国农业大学, 2002.
    [10] W.E. Voice, Carbide stability in nimonic 80a Alloy, 1983.
    [11] John Humphreys&Max Hatherly, Recrystallization and related annealing phenomena [M], Second ed, UK: Elsevier, 2003, 333-378.
    [12] Manohar_ Ferry_ & Chandra, Five Decades of the Zener Equation, 1998.
    [13] Gladman, On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals, 1966.
    [14] Gladman, Second phase particle distribution and secondary recrystallisation, 1992.
    [15] Gladman, The theory and inhibition of abnormal grain growth in steels, 1992.
    [16] V.Yu.Novikov, Secondary recrystallization evolution and pinning force behaviour, 1997.
    [17] Kunok Chang, Weiming Feng, Long-Qing Chen, Effect of second-phase particle morphology on grain growth kinetics, Acta Materialia[J], 2009, 57, 5229-5236.
    [18] P.R.Rios, Abnormal grain growth development from uniform grain size distributions, 1997.
    [19] P.R.Rios, Abnormal Grain Growth Development from Uniform Grain Size Distributions due to a Mobility Advantage, 1998.
    [20] P.R.Rios, Abnormal Grain Growth Development from Uniform Grain Size Distributions in the presence of stable particles, 1998.
    [21] Paris etal Tian, SANS investigation of phase separation in hot-deformed Nimonic 80a,2002.
    [22] Bombac David, Brojan Mihael, Tercelj Milan, et al. Response to Hot Deformation Conditions and Microstructure Development of Nimonic 80A Superalloy, Materials and Manufacturing Processes[J], 2009, 24, 644-648.
    [23]陈杏芳,沈红卫,陈科等, Nimonic 80A热变形过程中的晶粒结构控制,钢铁研究学报[J], 2011, 2.
    [24] B. Tian, Gerald A. Zickler, Christoph Lind, Local microstructure and its influence on precipitation behavior in hot deformed Nimonic 80a, Acta Materialia[J], 2003, 51, 4149-4160.
    [25] B. Tian, C. Lind, O. Paris, Influence of Cr23C6 carbides on dynamic recrystallization in hot deformed Nimonic 80a alloys, Materials Science and Engineering A[J], 2003, 358, 44-51.
    [26] B. Tian, C. Lind, E. Schafler, et al. Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a, Materials Science and Engineering A[J], 2004, 367, 198-204.
    [27]吴洁琼,陈科,陈杏芳等, EBSD在Nimonic 80A动态再结晶机制研究中的应用,电子显微学报[J], 2011, 30.
    [28] N.Belyakov, Dudova, A.Sakai, et al. Dynamic recrystallization mechanisms operating in a Ni–20%Cr alloy under hot-to-warm working, Acta Materialia[J], 2010, 58, 3624-3632.
    [29] Y. Wang, W. Z. Shao, L. Zhen, et al. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing[J], 2008, 486, 321-332.
    [30] I. Shimizu, Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms, Journal of Structural Geology[J], 2008, 30, 899-917.
    [31] Eric J.Payton, Factors affecting grain growth during processing of advanced Ni-base disk superalloys[D], Ohio State, The Ohio State University, 2006, 16.
    [32] Max Hatherly, John Humphreys, Recrystallization and related annealing phenomena[M], Second ed, UK: Elsevier, 2003, 415-450.
    [33]杨平,毛卫民,陈冷,材料织构分析原理与检测技术[M],北京:冶金工业出版社, 2008, 73-74.
    [34] Mukul Kumar, Adam J. Schwartz, Brent L. Adams, et al. Electron Backscatter Diffraction in Materials Science[M], 2ed, New York: Springer, 2009, 257.
    [35] A. Belaykov, N. Dudova, T. Sakai, et al. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working, Acta Materialia[J], 2010.
    [36] X. Wang, The role of twinning during dynamic recrystallization in alloy 800H, 2002.
    [37] S.Mitsche, C.Sommitsch, EBSD analysis of the recrystallization behavior of the Nickel based alloy 80a during hot forming.
    [38] Renee Heilvronner, How to derive size distributions of particles from size distributions of sectional areas, Neuchatel[J], 2002, 3EME cycle.
    [39] Simon J.Blott and Kenneth Pye, Gradistat: a grain size distribution and statistics packagefor the analysis of unconsolidated sediments, Earth Surface Processes and Landforms[J], 2001, 26, 1237-1248.
    [40] S. Berbenni, V. Favier, M. Berveiller, Micro–macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials, Computational Materials Science[J], 2007, 39, 96-105.
    [41] Egil Fjeldberg, Knut Marthinsen, A 3D Monte Carlo study of the effect of grain boundary anisotropy and particles on the size distribution of grains after recrystallisation and grain growth, Computational Materials Science[J], 2010, 48, 267-281.
    [42] J. H. Schneibel, R. L. Coble, R. M. Cannon, The role of grain size distributions in diffusional creep, Acta Metallurgica[J], 1981, 29, 1285-1290.
    [43] M. P. Phaniraj, M. J. N. V. Prasad, A. H. Chokshi, Grain-size distribution effects in plastic flow and failure, Materials Science and Engineering: A[J], 2007, 463, 231-237.
    [44] H. Y. Chao, Y. Yang, X. Wang, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy, Materials Science and Engineering: A[J], 2011, 528, 3428-3434.
    [45] C.L.Davis, S.J.Wu, Effect of duplex ferrite grain size distribution on local fracture stresses of Nb-microoalloyed steels, Materials Science and Engineering A[J], 2004, 387-389, 456-460.
    [46] Mihael Brojan, David Bomac, Milan Tercelj, et al. Response to hot deformation conditions and microstructure development of Nimonic 80A superalloy, Mater. Manuf. Process.[J], 2008, 24, 644-648.
    [47] N.Saunders, Phase Diagram Calculation for Ni-based Superalloys, TMS, Superlloys 1996, Warrendale, 1996, 101.
    [48] S. Mahajan, C. S. Pande, M. A. Imam, et al. Formation of annealing twins in f.c.c. crystals, Acta Materialia[J], 1997, 45, 2633-2638.
    [49] C. S. Pande, M. A. Imam, B. B. Rath, Study of annealing twins in FCC metals and alloys, Metallurgical transactions. A, Physical metallurgy and materials science[J], 1990, 21 A, 2891-2896.
    [50] Max Hatherly John Humphreys, Recrystallization and related annealing phenomena, 2003, 91-119.
    [51] D. Jorge-Badiola, A. Iza-Mendia, I. Gutiérrez, Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steel, Journal of Microscopy[J], 2007, 228, 373-383.
    [52] J. Laigo, F. Christien, R. Le Gall, et al. SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys, Materials Characterization[J], 2008, 59, 1580-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700