人体血液胆固醇、甘油三酯近红外光谱无试剂分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近红外光谱技术以其无试剂、快速、低成本、绿色环保等显著优点,正在成为分析领域的重要技术手段。利用近红外光谱的方法实现血液中胆固醇、甘油三酯含量的无试剂定量分析,对临床生物医学检测具有重要意义。本研究采用近红外光谱(NIR)结合化学计量学方法,建立无需化学试剂、精度适中、直接、快速、同时测定血液胆固醇、甘油三酯的定量分析方法。首先分析混合人群血清样品胆固醇、甘油三酯在全谱区内直接偏最小二乘法(PLS)建模的预测效果;然后采用间隔偏最小二乘法(iPLS)进行特征波长优选,在特征谱区内建立结构简单、鲁棒性强的预测模型,用于临床血脂检查的初筛。再次通过人群分类对血清预测模型优化,建立一个结构简单、预测精度更高的人群分类模型,尤其是病人专用模型。最后对全血样品进行分析,探讨无试剂近红外检测全血样品胆固醇、甘油三酯可行性,为无试剂近红外微创检测血脂积累相关的数据。论文取得的主要成果有:
     (1)混合人群血清胆固醇、甘油三酯直接PLS建模的研究表明:在全谱区内直接PLS建模的精度和稳定度都不高。胆固醇最优预测模型的Rp、RMSEP分别为:0.899、0.565 mmol/L;甘油三酯最优预测模型的Rp、RMSEP分别为:0.847、0.454 mmol/L。
     (2)iPLS对混合人群血清样品的胆固醇、甘油三酯建模优化的研究表明:采用iPLS不仅可以找到特征吸收波段,而且可以提高模型的预测能力和精度。胆固醇最优建模波段是1700-1798nm,最优预测模型的Rp、RMSEP分别为0.984、0198 mmol/L。甘油三酯最优建模波段是1654-1746nm,最优预测模型的Rp、RMSEP分别为0.967、0.157 mmol/L。
     (3)人群分类对模型优化的研究表明:健康人或病人单独建模对健康人或病人的预测要比混合模型对健康人或病人预测的精度高,尤其是病人单独建模对病人的预测精度有较大提高。胆固醇病人模型的Rp从0.78增大为0.97, RMSEP由0.22 mmol/L降低为0.14 mmol/L;甘油三酯病人模型的Rp从0.95提高为0.96预测均方差RMSEP由0.18 mmol/L降低为0.15 mmol/L。
     (4)全血样品胆固醇、甘油三酯近红外光谱分析表明:无试剂近红外分析全血样品胆固醇、甘油三酯含量是可行性的。胆固醇最优建模波1650-1730nm,最优预测模型的Rp、RMSEP分别为0.792、0.502 mmol/L。甘油三酯最优建模波段是2260-2340nm,最优预测模型Rp、RMSEP分别为0.865、0.284 mmol/L。
Near Infrared Spectroscopy analytical technique is reagentless, rapid, green, and can be run at low cost. It has become an important method in clinical analyses field. The success of using near infrared spectroscopy to detect content of cholesterol and triglyceride with quantitative analysis will have a profound affection on the clinical biomedical analyses. In this paper, determination of cholesterol and triglyceride in serum and whole blood have been studied with near infrared transmission spectroscopy and chemometric methods. First, we analyze the prediction effect of the cholesterol and triglyceride model in full-spectrum region by partial least squares(PLS) method directly. Second, we use interval partial least squares (iPLS) to select characteristic wavelength, in order to establish simple, robust and strong prediction models of cholesterol and triglyceride for all groups of people. Again, we study the prediction effect of the cholesterol and triglyceride model in different population by population classification for establishing a simple, single population prediction model, especially the patient-specific model. Finally, we explore feadibility of determination of cholesterol and triglyceride in whole blood by near infrared transmission spectroscopy reagentlessly. It will accumulate useful data for minimally invasive blood lipid detection by near infrared.
     The main results of this study include:
     (1) There are lower precision and stability of prediction for cholesterol and triglyceride in serum by direct PLS. The prediction correlation coefficient (RP), the root mean square error of prediction(RMSEP) for cholesterol are 0.899,0.565 mmol/L respectively. RP, RMSEP for triglyceride are 0.847,0.454 mmol/L respectively.
     (2) Results of optimized model for cholesterol and triglyceride of all serum samples show that interval partial least squares.can improve prediction accuracy. For cholesterol, the prediction effect of the model on 1700-1798nm is the best, and RP, RMSEP are 0.984,0.198 mmol/L respectively. For triglyceride,the prediction effect of the model on 1654-1746nm is the best, and RP, RMSEP are 0.967,0.157 mmol/L respectively.
     (3) Results of optimized model by population classification show that model of independent groups has higher prediction accuracy than model of all groups, especially in patients independent model prediction accuracy for patients has improved greatly. RP was improved from 0.78 to 0.97, RMSEP was reduced from 0.22 mmol/L to 0.14 mmol/L for the prediction of patients with high cholesterol, RP was improved from 0.95 to 0.96, RMSEP was reduced from 0.18 mmol/L to 0.15 mmol/L for the prediction of patients with high triglyceride.
     (4) It is possible to determine of cholesterol, triglyceride in whole blood by near infrared spectroscopy reagentlessly. The prediction effect of the model for cholesterol on 1650-1730nm is the best, and RP, RMSEP are 0.792,0.502 mmol/L respectively. The prediction effect of the model for triglyceride on 2260-2340nm is the best, and RP, RMSEP are 0.865,0.284 mmol/L respectively.
引文
[1]许冠生,许悦.《许冠生教授点评健康热点》—富贵病防治系列文章[J].视线,2009,4-5.
    [2]曹浈.高脂血症的治疗护理进展[J].护理研究,2008,22(2):380-382.
    [3]钱新红.中西医结合治疗高脂血症研究进展[J].中医药学刊,2006,24(2):330-331.
    [4]林泽鹏,张治伟,金光临,等.冠心病病人血脂和脂蛋白水平及与心功能的关系[J].中国康复理论与实践,2005,11:427-428.
    [5]高脂血症与心脑血管疾病[J].疾病与防治,2010,50-51.
    [6]梁旭燕,张凤秋.高血脂症的危害和治疗[J].中国疗养医学,2007,16(1):19-20.
    [7]苏蓉,于德水.高脂血症的危害及防治[J].中国当代医药,2009,16(8):128-129.
    [8]诸骏仁.血脂异常防治研究的现状与展望[J].中华心血管病杂志,2002,(11):4-5.
    [9]胡大一.危险血脂异常![N].北京日报,2001-02-28(15)
    [10]老人血脂高一点“很要紧”调脂需遵循三原则[N/OL].广州日报,http://www.chinanews.com.cn/jk/jk-lryys/news/2010/03-04/2151409.shtml.
    [11]警惕:冠心病的“元凶”高血脂[N/OL].东北新闻网http://iiankang.nen.com.cn/jiankang/387/3579887-l.shtml.
    [12]林正.高血脂是动脉硬化的元凶[N/OL].杨子晚报网2007-07-19.http://www.yangtse.com/epaper/yzwb/2007-07/19/content-9592444. htm.
    [13]丁海泉,卢启鹏,朴仁官,等.土壤有机质近红外光谱分析组合波长的优选[J].光学精密工程,2007,15(12):1946-1951.
    [14]吴秀琴.应用51A型近红外测定小麦种子中赖氨酸的含量[J].农业测试分析,1985,2(2).
    [15]刘涛,孙旭东,刘燕德.农作物品质的近红外光谱无损检测研究进展[J].食 品与机械,2010,26(3):161-166.
    [16]Janik L J, Forrester S T, Rawson A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis[J]. Chemometrics and Intelligent Laboratory Systems,2009,97(2):179-188.
    [17]肖听,谢新华,陈奕,等.应用近红外透射光谱法测定水稻种子直链淀粉含量的初步研究[J].中国水稻科学,2004,37(11):1709-1712.
    [18]李晓丽,唐月明,何勇,等.基于可见/近红外光谱的水稻品种快速鉴别研究[J].光谱学与光谱分析,2008,28(3):578-581.
    [19]魏良明,姜海鹰,李军会,等.玉米杂交种品质性状的近红外光谱分析技术研究[J].光谱学与光谱分析,2005,25(9):1404-1407.
    [20]陈华才,吕进,陈星旦,等.基于径向基函数网络的茶多酚总儿茶素近红外光谱检测模型的研究[J].光学精密工程,2006,14(1):58-62.
    [21]赵强,张工力,陈星旦.多元散射校正对近红外光谱分析定标模型的影响[J].光学精密工程,2005,13(1):53-58.
    [22]刘宏欣,张军,黄富荣,等.近红外光谱法快速测定啤酒的主要品质参数[J].光谱学与光谱分析,2008,28(2):313-316.
    [23]张军,陈星旦,朴仁官,等.用于食品成分分析的双探测器近红外光谱仪[J].光学精密工程,2008,16(6):986-992.
    [24]胡愉华,潘涛,陈星旦,等.甘蔗初压汁锤度近红外光谱分析的波段优选[J].光谱实验室,2009,26(1):90-95.
    [25]梁家杰,潘涛,陈星旦,等.白砂糖色值近红外光谱分析的波段选择[J].红外技术,2009,31(2):90-94.
    [26]陈斌,李军会,臧鹏,等.六味地黄丸指纹图谱的近红外光谱分析方法的建立[J].光谱与光谱分析,2010,30(8):2124-2128.
    [27]余驰,姜红,刘爱萍.近红外漫反射光谱法建立厚朴药材的定性模型[J].药物分析杂志,2009,29(4):656-658.
    [28]刘荔荔,邢旺兴,贾暖,等.近红外漫反射光谱法测定西洋参中人参的掺入量[J].中国中药杂志,2003,28(2):178-179.
    [29]武卫红,王宁,石俊英,等.基于AOTF-近红外光谱技术的复方丹参片快速无损质量控制研究[J].中成药,2010,32(7):1140-1144.
    [30]古海锋,方颖,王志斌.近红外光谱法在快速检验含有盐酸二甲双胍成分假药方面的初步研究[J].药物分析杂志,2010,30(7):1225-1227.
    [31]张勇,丛茜,谢云飞,等.烟草组分的近红外光谱和支持向量机分析[J].2009,30(4):697-700.
    [32]刘慧颖,鲁长波,田高友,等.一种野外近红外油料质量分析仪的研制[J].现代仪器,2005,6:48-56.
    [33]钱平,孙国琴,张存洲.基于近红外光谱技术的石油组分定量分析新方法[J].光谱学与光谱分析,2008,28(12):2851-2854.
    [34]方利民,林敏.柴油近红外光谱的独立分量分析方法[J].石油学报,2008,24(6):726-733.
    [35]徐广通,袁洪福,陆婉珍.傅立叶变换近红外光谱测定柴油芳烃含量[J].石油化工,1999,28(4):263-267.
    [36]Chen J, Arnold M A, Small G W. Comparison of Combination and First Overtone Spectral Regions for Near-Infrared Calibration Models for Glucose and Other Biomolecules in Aqueous Solutions[J]. Analytical Chemistry,2004, 76(18):5405-5413.
    [37]Saptari V, Youcef-Toumi K. Design of a mechanical-tunable filter spectrometer for noninvasive glucose measurement[J]. Applied Optics,2004,43(13): 2680-2688.
    [38]Saptari V, Youcef-Toumi K. Sensitivity analysis of near infrared glucose absorption signals:toward noninvasive blood glucose sensing[J]. Proc. of SPIE, 2000,4163:45-54.
    [39]K.H. Hazen, M.A.Arnold, and G.W. Small, "Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy", Analytica Chimica Acta, vol.371, pp.255-267,1998.
    [40]N. Kang, S. Kasemasumran, Y.A. Woo, H.J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy", Chemom. Intell. Lab. Syst., vol.82, pp.90-96, 2006.
    [41]JIANG Jian-Hui, R. James Berry, Heinz W. Siesler, Yukihiro Ozaki. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and hear-infrared spectroscopic data[J]. Analytical Chemistry,2002,74:3555-3565.
    [42]S Kasemsumran, DU Yi-Ping, K. Murayama, M. Huehne, Y. Ozaki. Near-infrared spectroscopic determination of human serum albumin, γ-globulin, and glucose in a control serum solution with searching combination moving window partial least squares[J]. Analytica Chimica Acta,2004,512:223-230.
    [43]Heise H M, Damm U, Kondepati V R. Reliable long-term continuous blood glucose monitoring for patients in critical care using micro-dialysis and infrared spectro- metry[J]. Proc. of SPIE,2006,6093:31-39.
    [44]Heise H M, Damm U, Bodenlenz M, et al. Bedside monitoring of subcutaneous interstitial glucose in healthy individuals using microdialysis and infrared spectrometry[J]. Journal of Biomedical Optics,2007,12(2):024004.
    [45]A.Bittner, R.Marbach, H.M.Heise. Multivariate Calibration for Protein, Cholesterol and Triglyceride in Human Plasma Using Short-Wave Near Infrared Spectrometry[J]. Journal of Molecular Structure,1995,341-344.
    [46]陈华才,杨仲国,陈星旦,等.傅里叶变换近红外光谱法快速检测人血清生化成分[J].分析实验室,2005,24(7):17-20.
    [47]Yoen-Joo Kim, Gilwon Yoon.. Prediction of glucose in whole blood by near-infrared spectroscopy:influence of wavelength region,preprocessing,and hemoglobin concentration[J]. Joural of Biomedical Optics.2006,11 (4): 041128-1-041128-3.
    [48]Aira K.Amerov, Jun Chen, Marl A.Arnold.. Scattering and Absorption Effects in the Determination of Glucose in Whole Blood by Near-Infrared Spectroscopy[J]. Anal Chem.2005,77:4587-4594.
    [49]Burmeister J J, Arnold M A. Evaluation of Measurement Sites for Noninvasive Blood Glucose Sending with Near-Infrared Transmission Spectroscopy[J]. Clinical Chemistry,1999,45(9):1621-1627.
    [50]H.M. Heise, R. Marbach, A. Bittner, Th. Koschinsky, "Clinical chemistry and near infrared spectroscopy:multicomponent assay for human plasma and its evaluation for the determination of blood substrates", J. Near Infrared Spectrosc, vol.6, pp.361-374,1998.
    [51]K. Norris. "Possible medical applications of NIR". Making light work: Advances in near infrared spectroscopy, Edited by I.Murray & I.A.Cowe. U K: Ian Michael Publication, pp.596-602,1992.
    [52]Sangjoon Han, et al.Reagentless Determination of Human Serum Components Using Infrared Absorption Spectroscopy[J].Journalof the Optical Society of Korea,2003,7(4):240-244.
    [53]DAVID M. HAALAND, et al.Reagentless Near-Infrared Determination of Glucose in Whole Blood Using Multivariate Calibration[J].APPLIED SPECTROSCOPY,1992,46(10):1575-1578.
    [54]Paulo A. da Costa Filho, et al.Determination of Triglyceride in human plasma using near-infrared spectroscopy and multivariate calibration methods[J].Analytica Chimica Acta,2001,446:39-47.
    [55]陆婉珍.现代近红外光谱分析技术(第二版)(M).北京:中国石化出版社,2007.
    [56]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [57]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [58]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.
    [59]梁逸曾.白灰黑复杂多组份分析体系及其化学计量学算法[M].长沙:湖南科学技术出版社,1996:1-10.
    [60]许禄.化学计量学方法(第二版)[M].北京:科学出版社,2004.
    [61]史永刚,粟斌,田高友.化学计量学方法及MATLAB实现,[M].北京:中国石化出版社,2010.
    [62]于海燕.黄酒品质和酒龄的近红外光谱分析方法研究[D].浙江大学博士学位论文,2007.
    [63]夏俊芳.基于近红外光谱的贮藏脐橙品质无损检测方法研究[D].华中农业大学博士学位论文,2007.
    [64]李东华.南果梨内在品质近红外光谱无损检测技术研究[D].沈阳农业大学博士学位论文,2009.
    [65]刘燕德.水果糖度和酸度的近红外光谱无损检测研究[D].浙江大学博士学位论文,2006.
    [66]陈斌,邹贤勇,朱文静.PCA结合马氏距离法剔除近红外异常样品[J].江苏大学学报(自然科学版),2008,29(4)277-292.
    [67]徐云,王一鸣,吴静珠,等.基于近红外光谱的花椒品质检测技术[J].农机化研究,2008,12:152-155.
    [68]祝诗平,王一鸣,张小超,等.近红外光谱建模异常样品剔除准则与方法[J].农业机械学报,2005,35(4):115-119.
    [69]李建婷,邓兆智,郭新峰,等.主成分分析法结合马氏距离判别法在类风湿性关节炎中医证候诊断中的应用[J].广州中医药大学学报,2008,25(2):153-156.
    [70]王斌会,陈一非.基于MCD的稳健主成分算法及其实证分析[J].数理统计与管理,2006,25(4):462-468.
    [71]Geladi P, Kowalski B R. An Example of 2-block Predictive Partial Least-squares Regression with Simulated Data[J]. Analytica Chimica Acta,1986,185:19-32.
    [72]Geladi P, Kowalski B R. Partial Least-squares Regression:a Tutorial[J]. Analytica Chimica Acta,1986,185:1-17.
    [73]B David, G Royston, et al. Genetic Algorithms as a Method for Variable Selection in Multiple Linear Regression and Partial Least Squares Regression, with Applications to Pyrolysis Mass Spectroscopy[J]. Analytica Chimica Acta, 1997,348:71-86.
    [74]Mcshane M J, et al. Assessment of Partial Least-squares Calibration and Wavelength Selection for Complex Near-Infrared Spectra[J]. Applied Spectroscopy,1998,52(6):878-884.
    [75]Haaland David M and Thomas Edward V. Partial Least-squares Methods for Spectral Analyses.1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information[J]. Anal Chem,1988,60:1193-1202.
    [76]沈林峰,沈掌泉.应用近红外光谱和偏最小二乘回归法预测玉米中淀粉含量[J].化学分析计量,2008,17(6):26-28.
    [77]杨九华,刘万利,吕礼应.分离胶真空采血管样本保存时问对血糖测定结果的影响[J].安徽医药,2010,14(5):550-551.
    [78]Isaksson T, et al. The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR spectroscopy[J]. Applied Spectroscopy,1988, 42(7):1273-1284.
    [79]Barnes R J. Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra[J]. Applied Spectroscopy,1989, 43(5):772-777.
    [80]Ding Q. Evaluation of Data Pretreatment and Model Building Methods for the Determination of Glucose from Near-Infrared Single Beam spectra[J]. Applied Spectroscopy,1999,53(4):402-414.
    [81]Blanco M. Effect of Data Preprocessing Methods in Near-Infrared Diffuse Reflectance Spectroscopy for the Determination of the Active Compound in a Pharmaceutical Preparation[J]. Applied Spectroscopy,1999,51(2):240-246.
    [82]Kramer. K. Application of NIR Reflectance Spectroscopy for the Identification of Pharmaceutical Excipients[J]. Analytica Chimica Acta,2000,420:155-161.
    [83]Delwiche S R, Reeves J B. The Effect of Spectral Pre-treatment on the Partial Least Squares Modeling of Argricultural Produces[J]. Near Infrared Spectroscopy,2004,12(3):177-182.
    [84]Pizarro C, et al. Influence of Data Pre-processing on the Quantitative Determination of the Ash Content and Lipids in Roasted Coffer by Near Infrared Spectroscopy[J]. Analytica Chimica Acta,2004,509:217-227.
    [85]K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, T. Kameoka, Mid-Infrared Spectroscopic Measurement of Ionic Dissociative Materials in Metabolic Pathway, Applied Spectroscopy,2003,57(12):1510-1516.
    [86]T. Pan, A. Hashimoto, M. Kanou, K. Nakanishi, T. Kameoka, Development of a Quantification System of Ionic Dissociative Metabolites Using an FT-IR/ATR Method, Bioprocess and Biosystems Engineering,2003,26 (2):133-139.
    [87]T. Pan, A. Hashimoto, M. Kanou, K. Nakanishi, T. Kameoka, Mid-Infrared Spectroscopic Quantification of Ionic Dissociative Metabolites Based on Three Spectral Extraction Methods, Japan Journal of Food Engineering,2004,5(1): 22-31.
    [88]陈洁梅,潘涛,陈星旦.二阶导数光谱预处理在用FT-IR/ATR方法定量测定葡萄糖-6-磷酸和果糖-6-磷酸中的应用[J].光学精密工程,2006,14(1):1-7.
    [89]尹浩,潘涛等.FTIR/ATR光谱应用于人体血液血红蛋白的快速定量分析[J].光谱实验室,2009,26(2):431-436.
    [90]Gorry P A.General, Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method[J]. Anal Chem,1990,62:570-573.
    [91]Lu J, McClure WF, Barton F E, Himmelsbach D S. Effect of Random Noise on the Performance of NIR Calibrations[J]. Near Infrared Spectroscopy,1998,6: 77-87.
    [92]朱向荣,李娜,张卓勇,等.近红外光谱与组合的间隔偏最小二乘法测定清开灵四混液中总氮和栀子苷的含量[J].高等学校化学学报,2008,29(5):906-911.
    [93]L. Norgaard, A. Saudland, J. Wanger, J.P. Nielsen, and L. Munck, "Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy", Applied Spectroscopy, vol.54, pp. 413-419,2000.
    [94]尹浩,潘涛等.FTIR/ATR光谱应用于人体血液血红蛋白的快速定量分析[J].光谱实验室,2009,26(2):431-436.
    [95]Gorry P A.General, Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method[J]. Anal Chem,1990,62:570-573.
    [96]N. Kang, S. Kasemasumran, Y.A. Woo, H.J. Kim, and Y. Ozaki, "Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy", Chemom. Intell. Lab. Syst., vol.82, pp.90-96,2006.
    [97]刘冰,毕开顺,孙立新,等.近红外光谱结合不同偏最小二乘法测定乳块消片醇沉液中丹参素和橙皮苷含量[J].世界科学技术--中医药现代化,2009,11(3):388-396.
    [98]王加华,李鹏飞,曹楠宁,等.基于iPLS原理最优化信息区间的桃糖度组合权重PLS模型研究[J].红外与毫米波学报,2009,28(5):386-391.
    [99]王加华,李鹏飞,曹楠宁,等BiPLS结合GA优选可见/近红外光谱MLR变量[J].光谱学与光谱分析,2009,29(10):2637-2641.
    [100]Luiz C.M.Pataca, WMdomiro Borges Neto, Ronei J.Poppi, et al. Determination of apparent reducing sugars, Moisture and acidity inhoney by attenuated total reflectance-Fourier trarmform infraredspectromtry[J]. Talanta, 2007,71:1926-1931.
    [101]Susana Navea, Roma Tauler, Anna de Juan. Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure[J]. Analytical Biochemistry,2005,336:231-242.
    [102]邹小波,朱曾,赵杰文.基于间隔偏最小二乘法的农产品近红外光谱谱区选择方法[J].现代科学仪器,2007,1:86-88.
    [103]邹小波,赵杰文,夏蓉,等.苹果糖度近红外光谱小波去噪和iPLS建模[J].农业机械学报,2006,37(6):79-82.
    [104]宋宁,徐晓轩,王斌,等.基于正交信号校正和iPLS的烃源岩红外漫反射光谱定量分析[J].光谱学与光谱分析,2009,29(2):378-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700