奇乳海参、异常赛瓜参和乌皱辐肛参的生物活性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奇乳海参(Holothuria axiloga),异常赛瓜参(Thyone anomala)和乌皱辐肛参(Actinopyga miliaris)为海参纲动物,在我国南海海域有着广泛的分布。本课题以稻瘟酶模型为活性追踪分离的筛选手段,应用大孔树脂、正相硅胶、反相硅胶、葡聚糖凝胶以及高效液相色谱法等多种色谱分离技术,对三种海参所含的抗肿瘤和抗真菌活性成分进行了系统的化学成分和生物活性研究。共分离得到了42个单体化合物(奇乳海参20个,异常赛瓜参6个,乌皱辐肛参16个),综合应用多种现代波谱技术和化学方法测定了42个单体化合物的化学结构。其中新化合物8个。
     从奇乳海参中分离鉴定了20个三萜皂苷化合物,其化学结构鉴定如下,HA-1: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃木糖基基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}-23-乙酰氧基-7(8),25(26)-海参烷烯-3β-醇(stichloroside A2);HA-2: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃木糖基基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}-23-乙酰氧基-7(8)-海参烷烯-3β-醇(stichloroside A1);HA-3: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃木糖基基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}- 23-乙酰氧基-7(8),25(26)-海参烷烯-3β-醇(stichloroside C2) ; HA-4: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃木糖基基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}-23-乙酰氧基-7(8)-海参烷烯-3β-醇(stichloroside C1);HA-5: 3-O-[β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸-β-D-吡喃木糖基]-22,25-环氧-9 (11)-海参烷烯-3β,12α,17α-三醇(axilogoside A);HA-6: 3-O-[β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22,25-环氧-9(11)-海参烷烯-3β,12α,17α-三醇(holothurin B);HA-7: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1?3)-β-D-吡喃葡萄糖-(1?4)-β-D-吡喃奎诺糖-(1?2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1?3)-β-D-吡喃葡萄糖-(1?4)]-β-D-吡喃木糖}-22,25-环氧-海参烷-9 (11)-烯-3β,12α,17α-三醇(marmoroside G);HA-8: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22,25-环氧-9(11)-海参烷烯-3β,12α,17α-三醇(holothurin A);HA-9:3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-9(11)-海参烷烯-3β,12α-二醇(pervicoside C);HA-10: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22-羰基-9(11)-海参烷烯-3β,12α-二醇(fuscocineroside B);HA-11: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22-羰基-25-乙酰氧基-9 (11)-海参烷烯-3β,12α-二醇(fuscocineroside A);HA-12: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22,25-环氧-9 (11)-海参烷烯-3β,12α-二醇(fuscocineroside C) ; HA-13: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-[β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}-23-乙酰氧基-9(11),24(25)-海参烷烯-3β,12α-二醇(axilogoside C);HA-14: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-9(11)-海参烷烯-22-羟基-3β,12α,17α-三醇(holothurin A1);HA-15: 3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-9(11)-海参烷烯-3β,12α,17α-三醇(echinoside A);HA-16: 3-O- [(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-25-乙酰氧基-9(11)-海参烷烯-3β,12α-二醇(pervicoside A);HA-17:3-O-{(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃葡萄糖基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)]-β-D-吡喃木糖基}-23-乙酰氧基-7(8)-海参烷烯-3β-醇(axilogoside G);HA-18:3-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃木糖-(1→4)-β-D-吡喃木糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-海参烷-23-乙酰氧基-7 (8)-烯-3β-醇(axilogoside B);HA-19:3-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃木糖-(1→4)-β-D-吡喃葡萄糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-海参烷-23-乙酰氧基-7 (8)-烯-3β-醇(axilogoside C);HA-20:3-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-海参烷-23-乙酰氧基-9 (11)-烯-3β, 12α-二醇(axilogoside H)。
    
     从异常赛瓜参中分离鉴定的6个海参皂苷为:TA-1:3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22,25-环氧-9(11)-海参烷烯-3β,12α,17α-三醇(holothurin A);TA-2:3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-9(11)-海参烷烯-22-羟基-3β,12α,17α-三醇(holothurin A1);TA-3:3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-22,25-环氧-9(11)-海参烷-烯-3β,12α-二醇(anomaloside A);TA-4:3-O-[(3-O-甲基-β-D-吡喃葡萄糖基)-(1→3)-β-D-吡喃葡萄糖基-(1→4)-β-D-吡喃奎诺糖基-(1→2)-4-O-硫酸钠-β-D-吡喃木糖基]-9(11)-海参烷烯-3β,12α,17α-三醇(echinoside A);TA-5:3-O-[β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-22,25-环氧-9(11)-海参烷烯-3β,12α,17α-三醇( holothurin B);TA-6:3-O-[β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-9(11)-海参烷-3β,12α,17α-三醇(echinoside B)。还得到2个甾体类化合物。
     从乌皱辐肛参中分离鉴定的12个海参皂苷为:AM-1: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-9 (11), 24 (25)-海参烷烯-3β, 12α,22-三醇(miliariside A);AM-2: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-23-乙酰氧-9 (11), 24 (25)-海参烷烯-3β, 12α, 17α-三醇(miliariside B);AM-3: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)- [(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-24-羰基-9 (11)-海参烷烯-3β, 12α-二醇(miliariside C);AM-4: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-16-乙酰氧基-9 (11), 24 (25)-海参烷烯-3β, 12α, 17α-三醇(miliariside D);AM-5: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-9(11)-海参烷烯-3β, 12α-二醇(bivittoside D);AM-6: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-22,25-环氧-9(11)-海参烷烯-3β,12α,17α-三醇(holothurin A) ; AM-7: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-海参烷-9(11)-烯-3β,12α,17α-三醇(echinoside A);AM-8: 3-O-[β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-22,25-环氧-海参烷-9(11)-烯-3β,12α,17α-三醇(holothurin B);AM-9: 3-O-[β-D-吡喃奎诺糖-(1→2)-4-O-硫酸钠-β-D-吡喃木糖]-9(11)-海参烷烯-3β,12α,17α-三醇(echinoside B);AM-10: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-9 (11), 24 (25)-海参烷烯-3β, 12α-三醇(impatenside A);AM-11: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖-(1→2)-[β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-23-乙酰氧基-9 (11), 24 (25)-海参烷烯-3β, 12α-二醇(miliariside E);AM-12: 3-O-{(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃奎诺糖基-(1→2)-[(3-O-甲基-β-D-吡喃葡萄糖)-(1→3)-β-D-吡喃葡萄糖-(1→4)]-β-D-吡喃木糖}-25-乙酰氧基-9 (11)-海参烷烯-3β, 12α-二醇(miliariside F)。另外还得到4个甾体类化合物:AM-13: 3β-硫酸钠-5α-7(8),24-胆甾二烯, AM-14:3β-硫酸钠-24-乙基-5α-7(8)-胆甾烯,AM-15:3β-硫酸钠-5α-7(8)-胆甾烯, ,AM-16:3β-硫酸钠-5α-胆甾。
     初步的药理活性筛选表明:海参皂苷对稻瘟霉显示显著的生物活性;从异常赛瓜参中分离得到的6个海参皂苷对BEL-7402人肝癌细胞、HL-60人白血病细胞、A-549人肺癌细胞和P388小鼠白血病细胞都具有细胞毒活性;所有分离得到的38个皂苷类化合物对白色念珠菌,新生隐球菌和红色毛癣菌等均具有不同强度的抑制生长作用。
     本课题对三种海参的化学成分和生物活性进行的深入系统研究,为研发海洋来源的抗肿瘤和抗真菌药物提供了新的先导化合物,为开发海参的药用价值提供了科学依据,为海洋天然产物化学积累了新的研究资料,对开发我国丰富的海洋生物资源具有重要的意义。
Holothuria axiloga, Thyone anomala and Actinopyga miliaris distributed abundantly in South China Sea. Guided by Pyricularia oryzae bioassay model, the anti-cancer and anti-fungal constituents of Holothuria axiloga, Thyone anomala and Actinopyga miliaris have been investigated by various chromatography methods including LPLC, MPLC, HPLC on silica gel, ODS RP C18 and Zorbax SB C18 respectively. Forty-two compounds were isolated and structures of all the compounds were elucidated by chemical and spectral analysis (IR, EI-MS, ESI-MS, HRESI-MS, 1HNMR, 13CNMR, 1H-1H COSY, DQCOSY, TOCSY, HMQC, HMBC, NOESY, etc.).
     From the ethanolic extracts of H. axiloga, twenty triterpene glycosides were isolated and the structures were identified as the below, HA-1:3-O-{(3-O-methyl-β-D-glucopyra nosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8),25(26)-holostene-3β-ol(stichlorosideA2);HA-2:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→2)-[(3-O-methyl-β-D-glucop-yranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8)-hol-ostene-3β-ol(stichlorosideA1);HA-3:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-xylopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8),25(26)-holo-stene-3β-ol(stichlorosideC2);HA-4:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-xylopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8)-holostene-3β-ol(stichlorosideC1);HA-5:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sulfo-β-D-xylopyranosyl]-22,25-epoxy-9(11)-holostene-3β,12α,17α-triol(axilogosideA);HA-6:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-22,25-epoxy-9(11)-holostene-3β,12α,17α-triol(holothurinB);HA-7:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyran-osyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-22,25-epoxy-9(11)-holostene-3β,12α,17α-triol(marmorosideG);HA-8:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-22,25-epoxy-9(11)-holostene-3β,12α,17α-triol(holothurinA);HA-9:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-9(11)-holostene-3β,12α-diol(pervicosideC);HA-10:3-O-[(3-O-methyl- β-D-glucopyranosyl)-(1→3)-β-D-glu-copyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-22-one-9(11)-holostene-3β,12α-diol(fuscocinerosideB);HA-11:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-22-one-25-acetoxy-9(11)-holostene-3β,12α-diol(fuscocinerosideA);HA-12:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-22,25-epoxy-9(11)-holostene-3β,12α-diol(fuscocinerosideC);HA-13:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-9(11),24(25)-holostene-3β,12α-diol(axilogosideC);HA-14:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylop-yranosyl]-9(11)-holostene-3β,12α,17α,22-tetrol(holothurinA1);HA-15:3-O-[(3-O-me-thyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-9(11)-holostene-3β,12α,7α-triol(echinosideA);HA-16:3-O-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfato-β-D-xylopyranosyl]-25-acetoxy-9(11)-holostene-3β,12α-diol(pervicosideA);HA-17:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8)-holostene-3β-ol(axilogosideG);HA-18:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-7(8)-holostene-3β-ol(axilogosideB);HA-19:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-9(11),24(25)-holostene-3β,12α-diol(axilogosideC);HA-20:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-9(11)-holostene-3β,12α-diol(axilogosideH).
     From the ethanolic extracts of Thyone anomala, six compounds were isolated and identified, and the structures were identified as the below, TA-1: 3-O-[3-O-methyl -β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22,25-epoxy-holostene-9(11)-ene-3β,12α,17α-triol(holothurinA);TA-2:3-O-[3-O-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22-hydroxyholos t-9(11)-ene-holostene-3β,12α,17α-triol(holothurinA1);TA-3:3-O-[3-O-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22,25-epoxy-9(11)-ene-holostene-3β,12α-diol(anomalosideA);TA-4:3-O-[3-O-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-9(11)-ene-holostene-3β,12α,17α-triol(echinosideA);TA-5:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22,25-epoxy-9(11)-ene-holostene-3β,12α,17α-triol(holothurinB);TA-6:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-9(11)-ene-holostene-3β,12α,17α-triol(echinoside B).
     From the ethanolic extracts of Actinopyga miliaris, sixteen compounds were isolated and identified, and the structures were identified as the below, AM-1:3-O-{(3-O-methyl-β- D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-9 (11),24(25)-holostene-3β,12α,22-triol(miliarisideA);AM-2:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-9(11),24(25)-holostene-3β,12α,17α-triol(miliarisideB);AM-3:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyra-nosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-24-oxo-9(11)-holostene-3β,12α-diol(miliarisideC);AM-4:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-16-acetoxy-9(11),24(25)-holostene-3β,12α,17α-triol(miliarisideD);AM-5:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyra-nosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-9(11)-holostene-3β,12α-diol(bivittosideD);AM-6:3-O-[3-O-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22,25-epoxy-9(11)-ene-holostene-3β,12α,17α-triol(holothurinA);AM-7:3-O-[3-O-methyl-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-9(11)-ene-holostene-3β,12α,17α-triol(echinosideA);AM-8:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-22,25-epoxy-9(11)-ene-holostene-3β,12α,17α-triol(holothurinB);AM-9:3-O-[β-D-quinovopyranosyl-(1→2)-4-O-sodiumsulfate-β-D-xylopyranosyl]-9(11)-ene-3β,12α,17α-triol(echinosideB);AM-10:3-O-{(3-O-methyl-β-D-glucopyra nosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-9(11),24(25)-holostene-3β,12α-diol(miliarisideE);AM-11:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-23-acetoxy-9(11),24(25)-holostene-3β,12α-triol(miliarisideE);AM-12:3-O-{(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-quinovopyranosyl-(1→2)-[(3-O-methyl-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl-(1→4)]-β-D-xylopyranosyl}-25-acetoxy-9(11)-holostene-3β,12α-diol(miliariside F). And four sterols:AM-13:3β-sodiumsulfate-5α-cholesta-7(8),24-diene;AM-14:3β-sodiumsulfate-24-methyl-7(8)-ene-5α-cholesta;AM-15:3β-sodiumsulfate-7(8)-ene-5α-cholesta; AM-16: 3β- sodiumsulfate-5α-cholesta.
     The preliminary cytotoxic assay of these saponins indicated that BEL-740, HL-60, A-549 and P388. In the anti-fungus screen, six triterpene glycosides were confirmed active against several fungus lines.
     Our studies focused on bioactive constituents of Holothuria axiloga, Thyone anomala and Actinopyga miliaris have established a foundation for further research and development of the kind sea cucumber with abundant resources in South China Sea, and provided important leading compounds for the development of new anti-cancer and anti-fungus drugs.
引文
[1]廖玉麟编著:《中国动物志棘皮动物门海参纲》,北京:科学出版社,1997.
    [2] Z. R. Zou, Y. H. Yi, Q. Z. Xu, et al. A New Disulfated Triterpene Glycoside from the Sea Cucumber Mensamaria intercedens Lam pert. Chinese Chemical Letters 2003, 14 (6), 585.
    [3] Z. R. Zou, Y. H. Yi, H. M. Wu, et al. Intercedensides A-C, Three New Cytotoxic Triterpene Glycosides from the Sea Cucumber Mensamaria intercedens Lampert. J. Nat. Prod. 2003, 66, 1055.
    [4] Z. R. Zou, Y. H. Yi, H. M. Wu, et al. Intercedenol A and B,Two New Triterpenoids from the Sea Cucumber Mensamaria tercedens. Chinese Chemical Letters. 2004, 15 (3), 309.
    [5] S. L. Zhang, L. Li, Y. H. Yi, et al. Philinopgenin A, B, and C, Three New Triterpenoid Aglycones from the Sea Cucumber Pentacta quadrangulasis. Mar. Drugs .2004, 2, 185.
    [6] Z. R. Zou, Y. H. Yi, H. M. Wu, et al. Intercedensides D-I, Cytotoxic Triterpene Glycosides from the Sea Cucumber Mensamaria intercedens Lampert. J. Nat. Prod. 2005, 68, 540.
    [7] Y. H. Yi, Q. Z. Xu, L. Li, et al. Philinopsides A and B, Two New Sulfated Triterpene Glycosides from the Sea Cucumber Pentacta quadrangularis. Helvetica Chimica Acta . 2006, 89, 54.
    [8] S. L. Zhang, L. Li, Y. H. Yi, et al. Philinopsides E and F, two new sulfated triterpene glycosides from the sea cucumber Pentacta quadrangularis. Natural Product Research. 2006, 20 (4), 399.
    [9] J. Wu, Y. H. Yi, H. F. Tang, et al. Structure and Cytotoxicity of a New Lanostane-Type Triterpene Glycoside from the Sea Cucumber Holothuria hilla. Chemistry & Biodiversity. 2006, 3, 1249.
    [10] S. L. Zhang, Y. H. Yi, L. Li, et al. Two new bioactive triterpene glycosides from the sea cucumber Pseudocolochirus violaceus. Journal of Asian Natural Products Research. 2006, 8 (1–2), 1.
    [11] S. Y. Zhang, Y.H. Yi, H.F. Tang. Bioactive Triterpene Glycosides from the Sea Cucumber Holothuria fuscocinerea. J. Nat. Prod. 2006, 69, 1492.
    [12] S. Y. Zhang, H. F. Tang, Y. H. Yi. Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus. Fitoterapia .2007, 78, 283.
    [13] Y. Y. Wen, Y. H. Yi , L. Li, et al.沙海参中的三个海参皂苷. Chin. J. Nat. Med. 2007, 5, 96.
    [14] H. Han, Y. H. Yi, L. Li, et al. A new triterpene glycoside from sea cucumber Holothuria leucospilota. Chinese Chemical Letters. 2007, 18, 161.
    [15] P. Sun, B. S. Liu, Y. H. Yi, et al. A New Cytotoxic Lanostane-Type Triterpene Glycoside from the Sea Cucumber Holothuria impatiens. Chemistry & Biodiversity . 2007, 4, 450.
    [16] W. H. Yuan, Y. H. Yi, L. Li, et al. Two triterpene glycosides from the sea cucumber Bohadschia marmorata Jaeger. Chinese Chemical Letters 2008, 19, 457.
    [17] W. H. Yuan, Y. H. Yi, M. Xue, et al. Two Antifungal Active Triterpene Glycosides from the Sea Cucumber Holothuria (Microthele) axiloga. Chin. J. Nat. Med. 2008, 6, 105.
    [18] I. Kitagawa, M. Kobayashi, T. Inamoto, et al. Marine nature products XIV. Structures of echinoside A and B, antifungal lanostane-oligosides from the sea cucumber Actinopyga echinites (Jaeger). Chem. Pharm. Bull. 1985, 33, 5214.
    [19] I. Kitagawa, M. Kobayashi, M. Hori, et al. Marine Natural Products.ⅩⅧ. Four Lanostane-Type Triterpene Oligoglycosides, Bivittosides A, B, C, and D, from the Okinawan Sea Cucumber Bohadschia bivittata MITSUKURI. Chem. Pharm. Bull. 1989, 37, 61.
    [20] E. Breitmaier, W. Voelter Carbon-13 NMR Spectroscopy, VCH, Weinheim, 1987.
    [21] I. Kitagawa, M. Kobayashi, B. M. Son, et al. Marine natural products. XIX. Pervicosides A, B, and C, lanostane-type triterpene-oligoglycoside sulfates from the sea cucumber Holothuria pervicax Chem. Pharm. Bull. 1989, 37, 1230.
    [22] J. Rodriguez, R. Castro and R. Riguera. Holothurinosides: New Antitumor Non Sulphated Triterpenoid Glycosides From The Sea Cucumber Holothuria Forskalii. Tetrahedron 1991, 47 (26), 4753.
    [23] Stonik VA, Maltsev II, Kalinovaky AI, et al. Glycosides of marine invertebrates. XI. Two new triterpene glycosides from sea cucumbers belonging to the family Stichopodidae. Khim. Prir. Soedin., 1982, 194.
    [24] I. Kitagawa, M. Kobayashi, T. Inamoto, et al. The structure of six ahtifungal oligoglycosides, stichlorosides A1, A2, B1, B2, C1, and C2, from the sea cucumber Stichopus chloronotus (Brant). Chem.Pharm. Bull. 1981, 29 (8): 2387.
    [25] I. I. Maltsev, V. A. Stonik and A. I. kalinovsky. Glycosides of marine invertebrates. Structure of new triterpene glycoside from sea cucumbers belonging to the family Stichopodidae - stichoposide E. Khim. Prir. Soedin., 1983, 308.
    [26] G. K. Oleinikova, T. A. Kuznetsova, N.S. Ivanova, et al. Glycosides of marine invertebrates. XV. A new triterpene glycoside - Holothurin A1 - From Caribbean holothurians of the family Holothuriidae. Chem Nat Comd. 1983, 18 (4):430.
    [i]Simmons TL, Andrianasolo E.Marine natural products as anticancer drugs[J]. Mol Cancer Ther, 2005, 4(2): 333-342.
    [2]Emilio Qui?oà, Phillip Crews. Phenolic constituents of psammaplysilla[J]. Tetrahedron Letters, 1987, 28(28): 3229-3232
    [3]Pi?a IC, Gautschi JT, Wang GY, et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase[J]. J Org Chem, 2003, 68(10): 3866-3873.
    [4]Kim D, Lee S, Jung J, et al. Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells[J]. Anticancer Res, 1999, 19(5B): 4085-4090.
    [5]Shim J, Lee H, Shin J, et al. Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro[J].Cancer Lett, 2004, 203(2): 163–169.
    [6]Kato Y, Salumbides BC.Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma[J].Mol Cancer Ther, 2007, 6(1): 70-81.
    [7] Uemura D, Takahashi K, Yamamoto T, et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge[J]. J Am Chem Soc, 1985, 107(12): 4796–4798.
    [8] Bai RL, Paull KD, Herald CL, et al. Halichondrin B and homohalichondrin B, marine natural products binding in the Vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data[J]. J Biol Chem, 1991, 266(24): 15882–15889.
    [9] Arthur J. Cooper, Wenxi Pan ,Robert G, et al. Total synthesis of halichondrin b from common sugars: An F-ring intermediate from D-glucose and efficient construction of the C1 to C21 segment[J].Tetrahedron Letters, 1993, 34(51): 8193-8196
    [10] Towle MJ, Salvato KA, Kishi Y, et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B[J]. Cancer Res, 2001, 61(3): 1013-1021.
    [11] Kuznetsov G, Towle MJ, Cheng H,et al.Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389[J].Cancer Res, 2004 ,64(16): 5760-5766
    [12] Jordan MA, Kamath K, Manna T,et al.The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth[J]. Mol Cancer Ther, 2005, 4(7):1086-1095.
    [13] Rinehart KL, Gloer JB, Hughes RG,et al. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate[J].Science,1981,212(4497): 933-935.
    [14] Meng L, Sin N, Crews CM. The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase[J]. Biochemistry, 1998, 37(29): 10488-10492
    [15] Johnson K, Lawen A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 25[J]. Immunol Cell Biol, 1999, 77(3): 242-248
    [16] Sings HL, Rinehart KL. Compounds produced from potential tunicate-blue-green algal symbiosis[J].J Ind Microbiol Biotechnol, 1996,17(9): 385–396.
    [17] Chun HG, Davies B, Hoth D,et al. Didemnin B. The first marine compound entering clinical trials as an antineoplastic agentInvest[J]. New Drugs, 1986, 4(3): 279-284.
    [18] Broggini M, Marchini SV, Galliera E ,et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4 [J]. Leukemia, 2003, 17(1) :52-59
    [19] Erba E, Serafini M, Gaipa G, et al. Effect of aplidine in acute lymphoblastic leukaemia cells [J]. Br J Cancer 2003, 89(4): 763-773.
    [20] Straight AM, Oakley K, Moores R,et al. Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes[J].Cancer Chemother Pharmacol, 2006, 57(1): 7-14.
    [21] Jimeno J, López-Martín JA, Ruiz-Casado A,et al. Progress in the clinical development of new marine-derived anticancer compounds[J].Anticancer Drugs, 2004 , 15(4): 321-329.
    [22] Rinehart K, Holt T, Fregeau N, et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata[J]. J Org Chem, 1990,55(15): 4512-4515.
    [23] Cuevas C, Pérez M, Martín MJ, et al. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B [J].Org Lett, 2000, 2(16): 2545-2548.
    [24] Zewail-Foote M, Hurley L. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove[J]. J Med Chem, 1999;42(14): 2493-2497.
    [25] Minuzzo M, Marchini S, Broggini M,et al. Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743 [J].Proc Natl Acad Sci U S A,2000, 97(12): 6780-6784.
    [26] Kanzaki A, Takebayashi Y, Ren XQ,et al. Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743 [J]. Mol Cancer Ther, 2002, 1(14): 1327-1334
    [27] Li WW, Takahashi N, Jhanwar S,et al. Sensitivity of soft tissue sarcoma cell lines to chemotherapeutic agents: identification of ecteinascidin-743 as a potent cytotoxic agent[J]. Clin Cancer Res, 2001, 7(9): 2908-2911.
    [28] Takebayashi Y, Pourquier P, Zimonjic DB,et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair[J]. Nat Med, 2001, 7(8): 961-966.
    [29] Damia G, Silvestri S, Carrassa L, et al. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways[J]. Int J Cancer, 2001, 92(4): 583-588.
    [30] George R. Pettit, Yoshiaki Kamano, Cherry L. Herald, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10[J]. J. Am. Chem. Soc, 1987, 109(22): 6883-6885.
    [31] Harrigan GG, Luesch H, Yoshida WY, et al. Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides[J]. J Nat Prod, 1998, 61(9):1075-1077.
    [32] Vaishampayan U, Glode M, Du W, et al. Phase II Study of Dolastatin 10 in patients with hormone-refractory metastatic prostate adenocarcinoma[J]. Clin Cancer Res, 2000, 6(11): 4205-4208.
    [33] Watanabe J, Natsume T, Fujio N, et al. Induction of apoptosis in human cancer cells by TZT-1027, an antimicrotubule agent [J]. Apoptosis, 2000, 5(4):345-353.
    [34] Natsume T, Watanabe J, Koh Y, et al. Antitumor activity of TZT-1027 (soblidotin) against vascular endothelial growth factor-secreting human lung cancer in vivo[J], Cancer Sci, 2003, 94(9): 826–833.
    [35] Kerbrat P, Dieras V, Pavlidis N, et al. Phase II study of LU 103793 (dolastatin analogue) inpatients with metastatic breast cancer[J]. Eur J Cancer, 2003, 39(3): 317–320.
    [36] Marks R, Graham D, Sloan J, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer[J]. Am J Clin Oncol, 2003, 26(4): 336–337.
    [37] Smyth J, Boneterre ME, Schellens J, et al. Activity of the dolastatin analogue, LU103793, in malignant melanoma[J]. Ann Oncol, 2001. 12(4): 509-511.
    [38] Ebbinghaus S, Hersh E, Cunningham CC, et al. Phase II study of synthadotin (SYN-D; ILX651) administered daily for 5 consecutive days once every 3 weeks in patients with inoperable locally advanced or metastatic melanoma[J]. Clinical Oncology, 2004, 22(145): 7530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700