临氢碳钢高压管失效分析与风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优质碳素结构钢(如:10、20、20G等)韧性优良、冷变形塑性好,在正常工作条件下不会发生脆性破坏,因此,碳钢高压管广泛使用于合成氨和石油裂解等装置中。临氢(H2)环境碳钢高压管设计时,通常参考Nelson曲线选材,并考虑一定的安全系数,高压管实际工作温度一般不会高于200℃,多数情况下在常温和低温运行。通常认为,上述工况环境下,碳钢高压管可以安全运行,不会造成损失恶劣的安全事故,特别是脆性断裂事故。但是,该类高压管发生脆性爆炸的脆性断裂事故竟时有发生,造成巨大的经济损失和人员伤亡。脆性断裂失效事故虽然是小概率事件,但其后果严重程度往往超出了社会、企业和个人的承受限度。为了实现在用和再建的临氢碳钢管的长周期低风险运行,作者做了如下研究:
     (1)采用泛化分析方法研究了近年来的失效案例,指出和论证了临氢碳钢高压管中失效的关键性(或普遍性)问题—“应变时效脆化”。以其中一起典型的临氢碳钢高压管失效案例的化学成分(特别是N、H含量)、力学性能、微观组织及宏微观缺陷等试验结果为基础,并结合其它失效案例的试验结果,分析了材料劣化和裂纹萌生及扩展的原因和机理,研究发现材料韧性下降是应变时效脆化所致,环境中的氢(H)会进一步加剧材料劣化;裂纹萌生表面上看是氢致开裂,根本原因是应变时效脆化导致了氢脆的门槛值降低。
     (2)采用透射电镜(TEM)观测碳化物和氮偏析物的微观组织结构,通过分析从微观机理上证明了间隙原子氮(N)是主导碳钢应变时效脆化的化学成分。详细分析观察了应变时效脆化和氢脆协同作用后的微观结构,研究表明应变时效脆化后氢脆的机理是在珠光体和铁素体的交界处大量产生微孔洞、微裂纹。分析了应变时效脆化下通过夏比冲击吸收能(KV2)估算断裂韧度(KIC或JIC)下限的方法,对我国现行标准方法提出了改进建议。对检测碳钢应变时效脆化敏感性的分析表明KV2方法具有很高的可靠性。研究了应变时效脆化对失效评定图(FAD)方法的影响,结果表明应变时效脆化会使评估点向左上方偏移。
     (3)为了降低应变时效脆化对临氢碳钢高压管安全的影响,以KV2做为材料力学性能评价指标,分析了预制中避免应变时效脆化导致高压管失效的方法及其作用机理,以及已发生劣化的临氢碳钢高压管性能恢复的方法和作用机理。研究表明:轧制过程中已发生应变时效脆化,后续的预制会加重管子的应变时效脆化程度;明确了冷变形中正火处理和去应力退火处理对于长周期避免脆化倾向有极高的可靠性;应变时效脆化消除的热处理方法对初始组织结构极为敏感,性能恢复的评价须结合使用环境(特别是使用温度);正火态高压管在冷弯成型中产生的应变时效脆化,通过再结晶退火或去应力退火即可有效消除;在制造中已发生应变时效脆化,并在服役过程中发生了氢脆的碳钢厚壁管,采用正火处理恢复其力学性能比较可靠,微孔洞和微裂纹愈合以及晶粒细化是该材料脆化消除及性能恢复的关键作用机理。
     (4)以前期失效分析、加工预防、性能恢复等研究为基础,根据失效可能性风险划分准则,构架了基于应变时效脆化失效机制的风险评估方法。根据各种可能的失效和后果提出了相应的失效可能性计算方法,即:基于失效机制的风险评估方法由一套不同情况下的失效可能性分析及风险判定准则的子方法构成。在失效可能性分析研究的基础上,分微小裂纹和宏观裂纹两种情况确立了风险划分准则,提出了等值线风险FAD方法。基于分级和分类的风险评估理念,根据临氢碳钢高压管风险评估中数据的特点,采用区间值描述基本数据单元和偏序关系将基本信息单元有层次的组织起来。采用Pawlak粗糙集理论,分别按均匀分布区间值和概率分布区间值建立了失效模式识别的算法,包括基于等值线风险FAD各种情况下的算法。
     总之,通过作者的工作,明确了应变时效脆化是临氢碳钢高压管的普遍失效模式,为临氢碳钢高压管存在冷加工情况的失效机理、评估方法的研究和为材料选择、定期检验和结构完整性评估提供了理论依据和数据支持;通过避免和消除应变时效脆化倾向研究提出的具体措施和作用机理可以直接用于降低失效可能性的工程实际:基于失效机制的风险评估方法和风险等级评定程序化的研究有助于加快规范化、实用化进程。由于临氢碳钢高压管在制造和服役过程中导致材料劣化进而失效的问题是一个多维度、多尺度、非平衡的结构强度问题,为了更好适应各种碳钢高压管的制造工艺和服役环境,特别是对弥散微裂纹和应变时效脆化的无损检验,还需要进一步在试验分析中开展工作,采集适合我国实际服役条件的比较全面数据满足风险评估的需要。
Generally, brittle failure impossibly happen of the pipe under normal operating conditions in the design life, for quality carbon structural steel (such as 10,20,20G, etc.) have excellent toughness, well plastic deformation of cold-work and high welding performance. So, many pipes are used in the high-pressure hydrogen (H2) environment of ammonia synthesis, petroleum cracking and other units. Reference to Nelson curve and taken into account adequate safety factor, the actual temperature of carbon steel pressure pipe is generally not higher than 200℃, in most cases used at room or low temperature. However, the brittle fracture occurs unexpectedly of the carbon steel high-pressure pipe under hydrogen environment, the severity of its consequences often beyond the acceptable limits of society, enterprises and individuals. In order to achieve the target of long-period low risk running of high-pressure carbon steel pipe under hydrogen environment both in-service now and be fabricated in future, research and conclusions are as follows:
     (1) Research was finished on the failure cases happened in recent years by generalization analysis method. Strain aging embrittlement (SAE), is the root sourse of the failue for carbon steel high-pressure pipe under hydrogen environment. Based on the experimental results, the chemical compositions (especially the element of N, H), mechanical properties, microstructure, macro-micro defects etc., of a type failure case, and combination with the experimental results of other cases, analysis was done for the causes and mechanisms of material degradation and crack. The further research make it clear that the decrease of material toughness due to SAE, environment hydrogen will further aggravate the degradation of material; phenomenonally crack initiation and propagation is caused by HIC (hydrogen induced cracking), however, the root cause is SAE that lowering the threshold value of HIC.
     (2) According to the C, N segregation microstructure using TEM (Transmission Electron Microscope), it is clearly that the diffusion of interstitial N is of a competitive advantage during the SAE of carbon steel. And, TEM observation was carried out for the microstructure of the interaction between hydrogen embrittlement damage and SAE of the pipe after a long term service. Results show that the main location of the hydrogen damage occurs is the pearlite and the form of damage is micro-voids, micro cracks generate along the boundary of pearlite and ferrite. Considering the case of SAE, improvement is proposed for the existing method of estimating KIC by KV2 (Charpy-V north absorded energy).KV2-based assessment method was established of SAE, its sensitivity analysis show a high credibility of KV2 method. The study was completed about the effect SAE on the failure assessment diagram approach, the results show that evaluation point will shift to the upper left cause of SAE.
     (3) For the engineering methods of lowering the possibility of SAE and other failure modes due to SAE, the mechanical property evaluated by KV2 research was finished of the method and mechanism of avoiding failure caused by SAE during high-pressure pipe fabrication, of properties recovery of the deteriorated pipe after a long term service. The results show that:the SAE come into being in rolling process and is enhanced during the bend-forming process of the pipes. Different heat treatments have different effects to eliminate or prevent the SAE, among which normalizing plus high temperature tempering is most effective. The deformation degree has a significant effect on recovering the impact properties of materials and whether aging or not after pre-deformation does not have significant effect on the heat treatment efficiency; it is of extremely sensitivity to the original structure that the heat treatment method for eliminating the SAE of the pipe, and, its effect judgment could be make well if the service condition (especially service temperature) is considered, the SAE as a result of cold bending for normalized carbon steel can be eliminated effectively by stress relief annealing or recrystallization annealing; the SAE, not only as a result of cold-worked bending but also combined with hydrogen embrittlement during in service, can be eliminated using normalizing. The healing of microvoid and microcrack play a key role for the mechanism of the eliminating, so is it the crystal grain fining.
     (4) Focused on the mechanical properties evaluation, based on the results of previous research on failure analysis, processing prevention, performance recovery, etc., the risk assessment technical approach based on the failure mechanism is proposed and established, especially for SAE. The assessment of risk criteria are established considering two cases of short-micro cracks and macro cracks. In other words, the risk assessment method is composed by a set of sub-methods of the failure possibility and risk analysis for all cases of the pipe. Isoline risk FAD is established for the carbon steel high-pressure pipe under hydrogen environment. According to the characteristics of the data of carbon steel high-pressure pipe under hydrogen environment risk assessment, based on the concept of level and classification risk assessment, an interval values information system was proposed for the risk level assessment of high-pressure pipe. Based on Pawlak's rough set theory study was finished on the expression of knowledge of risk assessment, and using of partial order to organize the equivalent classes in a hierarchy way. Study was done on the algorithms of interval-valued, both uniform and probability distribution, for risk level assessmen based on iso-line rsik FAD.
     In summary, the results show that it is clear the root cause of the brittle fracture accident is SAE; SAE, the long-neglected failure mode, and its interaction with hydrogen damage should be handled as a new typical failure mode in risk assessment nowadays; failure mechanism and evaluation methods provide a theoretical foundation and data source for the material choice, regular inspections and fitness for service assessment of the pipe in case of cold worked; the specific measures and proposed mechanism can be directly used to reduce the failure possibility in engineering practice; the study on engineering approach to risk assessment and risk level evaluation will help accelerate the standardization of practical engineering risk assessment methods and laid a foundation for other process units. For all, the contents presented in the paper make some contribution to establish and improve the long cycle safe operation technical system of a large number of the pipe, however, it need further work, especially about the Non-destructive inspection on dispersion micro-cracks and SAE, for the test analysis and collection data of actual service conditions to meet the needs of a more comprehensive risk assessment, because the problem is a multi-dimensional, multi-scale and non-equilibrium structural strength issue on material degradation and then failure during the manufacturing process and in-service of the pipe.
引文
[1]国家安全生产监督管理总局.合成氨生产企业安全标准化实施指南AQ/T 3017-2008[S].
    [2]中华人民共和国国家质量监督检验检疫总局.压力管道安全技术监察规程-工业管道TSG D0001-2009[S].北京:新华出版社,2009.
    [3]中华人民共和国国家质量监督检验检疫总局.固定式压力容器安全技术监察规程TSGR0004-2009[S].北京:新华出版社,2009.
    [4]中华人民共和国国家质量监督检验检疫总局.固定式压力容器(征求意见稿)GB150.1-150.4—2010.
    [5]谢铁军,寿比南,王晓雷,等.固定式压力容器安全技术监察规程释义[M].北京:新华出版社,2009:244-249.
    [6]American Petroleum Institute. Steels for Hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants API RP 941-2008 [S]. American Petroleum Institute, Washington,2008.
    [7]石德珂,朱维斗.材料物理[M].机械工业出版社,2006:87-106,51-56,133-184.
    [8]Hull D., Bacon D. J. Introduction to Dislocations (4th Ed.) [M]. Butterworth Heinemann, Oxford,2001:62-80.
    [9]霍立兴.应变时效对压力容器用钢使用性能的影响[J].压力容器,1986,3(5):24-29,67.
    [10]柳曾典.钢的纯净化是压力容器安全的重要保证[J].机械工程材料,1994,18(1):21-23,40.
    [11]史巨杰,柳曾典,李培宁.应变时效对失效评定图和断裂评定的影响[J].沈阳化工学院学报,1994,8(1):1-8.
    [12]侯建国,安旭文,吴春秋,等.钢材冲击韧性和应变时效敏感性问题的探讨[J].西北电力,2001,(2):35-41,63.
    [13]Serajzadeh S., Akhgar J.M. A study on strain ageing during and after warm rolling of a carbon steel [J]. Materials Letters,2008,62:946-948.
    [14]李红英,丁常伟,张希旺,等.冷却速度对热轧钢板应变时效敏感性的影响[J].矿冶工程,2007,27(4):74-76.
    [15]Graff S., Forest S., Strudel J.L., et al. Strain localization phenomena associated with static and dynamic strain ageing in notched specimens:experiments and finite element simulations [J]. Materials Science and Engineering,2004, A 387-389:181-185.
    [16]Graff S., Forest S., Strudel J. L., et al. Finite element simulations of dynamic strain ageing effects at V-notches and crack tips [J]. Scripta Materialia,2005,52:1181-1186.
    [17]Wagner D., Moreno J. C., Prioul C. Dynamic strain aging sensitivity of heat affected zones in C-Mn steels [J]. J. Nuclear Materials,1998,252:257-265.
    [18]Wagner D., Moreno J. C., Prioul C, et al. Influence of dynamic strain aging on the ductile tearing of C-Mn steels:modelling by a local approach method [J]. J. Nuclear Materials,2002, 300:178-191.
    [19]赵九州,De Cooman B. C.低碳钢应变时效过程模拟[J].金属学报,2002,38(1):37-30.
    [20]郭扬波,唐志平,程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报,23(3):249-256.
    [21]黄建中,张瑄.3500MPa级马氏体时效钢的一般腐蚀应力腐蚀和氢脆的研究[J].钢铁研究学报,1988,(03):37-42.
    [22]刘建潮,郭蕴宜,邢中枢,等.时效对Cr21Ni6Mn9N钢氢脆敏感性的影响[J].金属学报,1988,(06):386-391.
    [23]尹钟大,陈世忠.13Ni马氏体时效钢的氢脆敏感性[J].兵器材料科学与工程,1989,(05):1-7.
    [24]李秀艳,马禄铭,李依依.倒双级时效对一种高强度铁镍基合金抗氢脆性能的影响[J].金属学报,2002,38(06):593-596.
    [25]周倩青,雍兴平,翟玉春.时效处理对FV520B马氏体时效钢的氢脆敏感性的影响[J].腐蚀科学与防护技术,2008,20(06):416-419.
    [26]宋仁国,张宝金,曾梅光,等.7175铝合金时效“双峰”应力腐蚀敏感性的研究[J].金属热处理学报,1996,17(02):51-54.
    [27]萧福仁,乔桂英,谭朝鑫.时效处理对Fv520(B)钢抗H2S应力腐蚀性能的影响[J].中国腐蚀与防护学报,1999,19(02):120-124.
    [28]巩建鸣,蒋文春,唐建群,等.16Mn钢焊接接头氢扩散三维有限元模拟[J].机械工程学报,2007,43(9):113-118.
    [29]胡津,任文超,姚忠凯.时效对硼酸铝晶须增强6061Al复合材料应力腐蚀开裂行为的影响[J].腐蚀科学与防护技术,2002,14(03):136-138.
    [30]孙志华,刘明辉,张晓云,等.时效制度对Al-Zn-Mg-Cu铝合金应力腐蚀敏感性的影响[J].中国腐蚀与防护学报,2006,26(04):232-236.
    [31]李萍,李喜孟,谭家隆,等.信号特征在20钢高温时效组织状态无损评价中的应用[J].机械工程材料,2004,28(12):23-25.
    [32]王萍,郭雁行.应变时效对硬度值的影响[J].首钢科技,2002,(5):46-48.
    [33]胡赓祥,蔡询,戎咏华.材料科学基础(第3版)[M].上海:上海交通大学出版社,2010:19-56,131-155.
    [34]李培宁.进一步完善我国含缺陷压力容器安全评定标准的若干问题[A].第六届全国压力容器学术会议压力容器先进技术精选集[C],杭州:2005:24-36.
    [35]朱利洪,周剑秋.20钢管道材料的R-O曲线关系参数及其分布[J].压力容器,1998,5:6-9.
    [36]周剑秋,朱利洪,沈士明.20#碳钢管道流变应力不确定性分布的试验研究[J].压力容器,1998,6:24-28.
    [37]龙期威.金属缺陷与力学性质理论研究的进展[J].物理,1985,14(6):325-329.
    [38]李培宁,徐宏. ASME IWB-3650压力管道缺陷评定规范介绍[J].压力容器,1993,10(6):67-72.
    [39]Meyers M. A., Chawla K. K. Mechanical Behavior of Materials [M]. Cambridge, Cambridge University Press,2009,404-460.
    [40]Hosford W. F. Mechanical Behavior of Materials (2nd Ed.) [M]. Cambridge, Cambridge University Press,2010:184-195.
    [41](日)西泽泰二,郝士明(译).微观组织热力学[M].北京:化学工业出版社,2006:14-16.
    [42]Xu T.D., Cheng B.Y. Kinetics of non-equilibrium grain-boundary segregation [J]. Progress in Materials Science 2004,49:109-208.
    [43]Soenen B., De A.K., Vandeputte S., et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Materialia,2004,52:3483-3492.
    [44]Smallman R.E., Ngan A. H.W. Physical metallurgy and advanced materials (7th Ed.) [M]. Butterworth Heinemann, Oxford,2007:303-384,432-440.
    [45]Wallin K. Structural integrity assessment aspects of the Master Curve methodology [J]. Engineering Fracture Mechanics,2010,77:285-292.
    [46]国家标准质量监督检验检疫总局,国家标准化管理委员会.在用含缺陷压力容器安全评定GBT 9624-2004[S].北京:新华出版社,2004.
    [47]American Petroleum Institute, American Society of Mechanical Engineers, Fitness for Service, API 579-1/ASME FFS-1,2007 [S]. American Petroleum Institute, Washington,2007.
    [48]刘长军,李惠荣.管道评定用AKV值估算JIC值的工程方法[J].压力容器,1999,16(4):7-13.
    [49]Folch L. C. A., BurdekinF. M. Application of coupled brittle-ductile model to study correlation between Charpy energy and fracture toughness values [J]. Engineering Fracture Mechanics, 1999,63:57-80.
    [50]Sreenivasan P.R. Estimation of ASTM E-1921 reference temperature from Charpy tests: Charpy energy-fracture toughness correlation method [J]. Engineering Fracture Mechanics, 2008,75 (18):5229-5245.
    [51]Rossolla A., Berdin C., Prioul C. Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test [J]. Int. J. Fract.,2002,115:205-226.
    [52]Gubeljak N., Zerbst U., Kocak M. Prediction of the maximum load of pre-cracked welded bars using Charpy data according to the default level of the European SINTAP procedure [J]. International Journal of Pressure Vessels and Piping,2000,77(1):869-876.
    [53]Maropoulos S., Ridley N., Kechagias J., et al. Fracture toughness evaluation of a H.S.L.A. steel [J]. Engineering Fracture Mechanics,2004,71:1695-1704.
    [54]Zerbsta U., Hamann R., Wohlschlegel A. Application of the European flaw assessment procedure SINTAP to pipes [J]. International Journal of Pressure Vessels and Piping,2000,77: 697-702.
    [55]Pirondi A. Suitability of mixed-mode Ⅰ/Ⅱ assessment methods for implementation into the SINTAP procedure [J]. Engineering Fracture Mechanics,2003,70:1597-1609.
    [56]Anderson T.L. Fracture Mechanics (2nd Ed.) [M]. CRC Press LLC, Florida,1995:261-312.
    [57]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995:13-55,108-131.
    [58]Ainsworth R.A., Bannister A.C., Zerbst U. An overview of the European flaw assessment procedure SINTAP and its validation [J]. International Journal of Pressure Vessels and Piping, 2000,77:869-876.
    [59]Webster S., Bannister A. Structural integrity assessment procedure for Europe of the SINTAP programmes overview [J]. Engineering Fracture Mechanics,2000,67:481-514.
    [60]钟群鹏,李培宁,李学仁,等.国家标准《在用含缺陷压力容器安全评定》的特色和创新点综述[J].管道技术与设备,2006,1:1-5.
    [61]Budden P.J., Sharples J.K., Dowling A.R. The R6 procedure:recent developments and comparison with alternative approaches [J]. International Journal of Pressure Vessels and Piping,2000,77:895-903.
    [62]Ainsworth R.A., Gutierrez-Solana F., Ruiz O.J. Analysis levels within the SINTAP defect assessment procedures [J]. Engineering Fracture Mechanics,2000,67:515-527.
    [63]Ainsworth R.A., Hooton D.G. R6 and R5 procedures:The way forward [J]. International Journal of Pressure Vessels and Piping,2008,85:175-182.
    [64]Zhao J.P., Huang W.L., Dai S.H. A new concept: probabilistic failure assessment diagram [J]. International Journal of Pressure Vessels and Piping,1997,71(2):165-168.
    [65]Jin X., Zhong Q.P., Hong Y.J. A probabilistic fracture mechanics assessment method based on the R6 procedure [J]. International Journal of Pressure Vessels and Piping,1997,73:161-161.
    [66]Bullough R., Green V.R., Tomkins B., et al. A review of methods and applications of reliability analysis for structural integrity assessment of UK nuclear plant [J]. International Journal of Pressure Vessels and Piping,1999,76:909-919.
    [67]Wiesner C.S., Maddox S.J., XuW., et al.Engineering critical analyses to BS 7910:The UK guide on methods for assessing the acceptability of flaws in metallic structures [J]. International Journal of Pressure Vessels and Piping,2000,77:883-893
    [68]Zerbst U., Ainsworth R.A., Schwalbe K.H. Basic principles of analytical flaw assessment methods [J]. International Journal of Pressure Vessels and Piping,2000,77:855-867.
    [69]Lin Y.C., Xie Y.J., Wang X.H. Probabilistic fracture failure analysis of nuclear piping containing defects using R6 method [J]. Nuclear Engineering and Design,2004,229 (2-3): 237-246.
    [70]左尚志,钟群鹏.以R6为基础的概率风险等级评定技术和方法[J].机械工程学报,2001,37(11):32-35.
    [71]骆红云,张玉波,钟群鹏.国产压力容器用钢的概率失效评定曲线[J].北京航空航天大学学报,2006,32(4):450-454.
    [72]Wang W. Q, Liu C. J, Zhou S. J. On the probabilistic failure assessment diagram [J]. International Journal of Pressure Vessels and Piping,1999; 76:653-662.
    [73]Rahman S., Kim J.S. Probabilistic fracture mechanics analysis for nonlinear structure [J]. International Journal of Pressure Vessels and Piping,2001,78:261-269.
    [74]Lin Y. C, Xie Y. J, Wang X. H. Probabilistic fracture failure analysis of nuclear piping containing defects using R6 method [J]. Nuclear Engineering & Design 2004; 229:237-246.
    [75]Melvin F. M., Popelar H. C. Advanced Fracture Mechanics [M]. New York, Oxford University Press,1984:281-387,60-61,342-365.
    [76]British Standards Institution. BS 7910:2005:(incorporating Amendment No.1) Guide on methods for assessing the acceptability of flaws in metallic structures [S]. London, British Standards Institution.2005.
    [77]Xing X.S. On theoretical framework of nonequilibrium statistical fracture mechanics [J]. Engineering Fracture Mechanics,1996,55(5):699-716.
    [78]Pisarski H.G., Wallin K. The SINTAP fracture toughness estimation procedure [J]. Engineering Fracture Mechanics,2000,67(6):613-624.
    [79]Weber M.A. Risk assessment through probabilistic structural analysis [J]. International Journal of Pressure Vessels and Piping,1995,61(2-3):527-540.
    [80]Zhou J.Q. Reliability assessment method for pressure piping containing circumferential defects based on fuzzy probability [J]. International Journal of Pressure Vessels and Piping, 2005,82(9):669-678.
    [81]Francis M., Rahman S. Probabilistic analysis of weld cracks in center-cracked tension specimens [J]. Computers & Structures,2000,76(4):483-506.
    [82]Rahman S., Rao B.N. An element-free Galerkin method for probabilistic mechanics and reliability [J]. International Journal of Solids and Structures,2001,38 (50-51):9313-9330.
    [83]Rao B. N., Rahman S. Probabilistic fracture mechanics by Galerkin meshless methods-part ⅠI: rates of stress intensity factors [J]. Computational Mechanics,2002,28(5):351-364.
    [84]Rahman S., Rao B. N. Probabilistic fracture mechanics by Galerkin meshless methods-part Ⅱ: reliability analysis [J]. Computational Mechanics,2002,28 (5):365-374.
    [85]Gu Y. T., Liu G. R. Meshless Methods Coupled with Other Numerical Methods [J]. Tsinghua Science & Technology,2005,10(1):8-15.
    [86]Modarres M. Advanced nuclear power plant regulation using risk-informed and performance based methods [J]. Reliability Engineering and System Safety,2009,94:211-217.
    [87]Cornella E. P., Dillon. Probabilistic risk analysis for the NASA space shuttle:a brief history and current work [J]. Reliability Engineering and System Safety,2001,74:345-352.
    [88]Delvosalle C., Fievez C., Pipart A., et al. ARAMIS project: A comprehensive methodology for the identification of reference accident scenarios in process industries [J]. Journal of Hazardous Materials,2006,130:200-219.
    [89]Keller W., Modarres M. A historical overview of probabilistic risk assessment development and its use in the nuclear power industry:a tribute to the late Professor Norman Carl Rasmussen [J]. Reliability Engineering and System Safety,2005,89:271-285.
    [90]Bedford T, Cooke R. Probabilistic risk analysis [M]. Cambridge:Cambridge University Press, 2001:4-9,1738.
    [91]American Petroleum Institute. Risk-based Inspection, base resource document, API 581, 2000[S]. American Petroleum Institute, Washington,2000.
    [92]戴树和.风险分析技术(一):风险分析的原理和方法[J].压力容器,2002,119(2):1-9.
    [93]王威强,余信诚,曹怀祥,等.山东德齐龙化工集团有限公司氨分离器出口至冷交换器入口管道失效分析报告[R].山东,济南:山东省特种设备安全技术工业研究中心,2007.
    [94]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990:321-412,7-175.
    [95]褚武扬,乔利杰,陈奇志,等.断裂与环境断裂[M].北京:科学出版社,2000:82-152.
    [96]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.压力管道规范 业管道第3部分:设计和计算GB/T 20801.3-2006[S].北京:新华出版社,2006.
    [97]陈学东,王冰,等.以风险与寿命为基准的承压设备设计与制造[J].压力容器,2007, 22(7):36-44.
    [98]沈士明,赵建平.压力管道安全评定技术的进展[J].压力容器,1999,6:58-66.
    [99]王威强,李爱菊,陈鹭滨,等.20钢高压管脆断分析[J].机械强度,2004,26(6):683-69.
    [100]Elliott M.A., Apostolakis GE. Application of risk-informed design methods to select the PS ACS ultimate heat sink [J]. Nuclear Engineering and Design,2009,239:2654-2659.
    [101]国家发展和改革委员会.基于风险的检查(RBI)推荐做法SYT 6653-2006[S].北京:石油工业出版社,2006.
    [102]Etowa C.B., Amyotte P.R., Pegg M.J., et al. Quantification of inherent safety aspects of the Dow indices [J]. Journal of Loss Prevention in the Process Industries,2002,15:477-487.
    [103]Hill R.S. Implementing risk-informed life-cycle design [J]. Nuclear Engineering and Design, 2009,239:1699-1702.
    [104]陈学东,王冰等.以风险与寿命为基准的承压设备设计与制造[J].压力容器,2007,22(7):36-44.
    [105]中华人民共和国国家质量监督检验检疫总局.压力管道定期检验规则-长输(油气)管道TSG D7003-2010[S].北京:新华出版社,2010.
    [106]上海锅炉厂,浙江大学,合肥通用机械研究所.8万吨/φ1010mm氨合成塔断裂力学安全分析[J].流体机械,1977,12:1-10.
    [107]张恩泽.氨合成塔裂纹安全分析[J].吉林化工学院学报,1988,5(1):85-91.
    [108]王威强,李爱菊,刘燕,等.层板包扎氨合成塔的安全评定[A].第六届全国压力容器学术会议压力容器先进技术精选集[C].杭州,2005:707-712.
    [109]陈钢,左尚志,陶雪荣,等.承压设备的风险评估技术及其在我国的应用和发展趋势[J].中国安全生产技术,2005,1(1):34-35.
    [110]Simola K., Pulkkinen U., Talja H., et al. Comparisons of approaches for estimating pipe ruptures frequencies for risk-informed in-service inspections [J]. Reliability Engineering and System Safety 2004,84:65-74.
    [111]Chapman J. R., Dimitrijevic V. B. Challenges in using a probabilistic safety assessment in a risk informed process [J]. Reliability Engineering & System Safety,1999,63:251-255.
    [112]褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988:20-49.
    [113]Jovanovic A. Overview of RIMAP project and its deliverables in the area of power plants [J]. International Journal of Pressure Vessels and Piping,2004,81:815-824.
    [114]黄明熙.陕西省扶风氮肥厂合成工段高压管道氢腐蚀爆裂事故浅析[J].化工劳动保护(安全技术与管理分册),1996,2:20-21.
    [115]姚丽姜.氨合成塔管道的氢腐蚀分析[J].理化检验-物理分册,1998,3(11):28-31.
    [116]陈鹭滨,王威强,张炳胜,等.Φ1m氨合成塔20钢异径管失效分析[J].机械工程材料,2002,26(4):40-42.
    [117]林清宇,林靖宇,林榕端,等.氨合成塔冷气副线异径管爆裂事故分析[J].压力容器,2007,24(5):58-60.
    [118]山东省特种设备检验研究院.委托检验报告[R].山东,济南,山东省特种设备检验研究院,2007,7,15.
    [119]Law M., Bowie G. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe [J]. International Journal of Pressure Vessels and Piping,2007,84: 487-492.
    [120]张栋,钟培道,陶春虎,等.失效分析[M].北京:国防工业出版社,2004:197-205.
    [121]哈宽富.金属力学性质微观理论[M].北京:科学出版社,1983:623-630.
    [122]江军,唐懿,张勇,等.制冷压力容器用材在液氨中应力腐蚀研究[J].制冷与空调,2003,3(5):32-36.
    [123]葛庭燧,容保粹,王业宁.钢铁中碳、氮的扩散、脱溶和沉淀[J].物理学报,1955,11(1):91-106.
    [124]Chu W.Y., Wang Y.B., Qiao L.J. Interaction between blue brittleness and stress corrosion cracking [J]. Journal of Nuclear Materials,2000,280:250-254.
    [125]An T.S., Jia W.X., An Z.Z., et al. The Influence of Minute Alloy Elements (C, N, S, Mn) on the Hydrogen Embrittlement of a-Fe [J]. Metallurgical and Materials Transactions A,1986, 17(2):331-337.
    [126]黄孝瑛.材料微观结构的电子显微学分析[M].北京:冶金工业出版社,2008:179-227.
    [127]潘家祯.压力容器材料实用手册[M].北京:化学工业出版社,2000:157.
    [128]徐洪庆.正火工艺对20g钢板时效冲击性能的影响[J].山大冶金,1997,19(3):21-24.
    [129]程饴萱,郦剑,陈理淳.钢的相变显微组织[M].杭州:浙江大学出版社,1989:10-12.
    [130]李秀艳,李依依.奥氏体合金的氢损伤[M].北京:科学出版社,2003:1-33.
    [131]冯端.金属物理学:第三卷金属力学性质[M].北京:科学出版社,1999.138-139.
    [132]董超芳,李晓刚,沈卓身,等.氢腐蚀裂纹的愈合规律及机理研究[J].北京科技大学学报,2001,23(4):352-356.
    [133]Gao K.W., Qiao L.J., Chu W.Y. In Situ TEM Observation of Crack Healing in a-Fe [J]. Scripta mater,2001,44:1055-1059.
    [134]陈学东,艾志斌.基于风险的检测(RBI)中以剩余寿命为基准的失效概率评价方法[J].压力容器,2006,23(5):1-5.
    [135]陈钢,贾国栋,谢铁军,等.关于完善我国压力容器管道定期检验规范体系的思考[J].压力容器,2006,26(8):40-44.
    [136]Wang W.Q., Guo J.Z. The shortcoming of the current NDE standards and a new NDE Acceptance criterion in framework of fracture mechanics approach [J].China pressure vessel technology,2003, 1(1):64-70.
    [137]Papazian J.M., Anagnostou L.E., Engel S.J., et al. A structural integrity prognosis system [J]. Engineering Fracture Mechanics,2009,76:620-632.
    [138]Wallin K. Master Curve analysis of the "Euro" fracture toughness dataset [J]. Engineering Fracture Mechanics 2002,69(4):451-481.
    [139]Aven T. Identification of safety and security critical systems and activities [J]. Reliability Engineering and System Safety,2009,94(2):404-411.
    [140]Aven T. On how to define, understand and describe risk [J]. Reliability Engineering and System Safety,2010,95:623-631.
    [141]Aven T. A unified framework for risk and vulnerability analysis covering both safety and security [J]. Reliability Engineering and System Safety,2007,92:745-754.
    [142]陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
    [143]Langseth H, Portinale L. Bayesian networks in reliability [J]. Reliability Engineering and System Safety,2007,92:92-108.
    [144]Wilson A.G., HuzurbazarA.V. Bayesian networks for multilevel system reliability [J]. Reliability Engineering and System Safety,2007,92:1413-1420.
    [145]Pawlak Z. Rough sets and intelligent data analysis [J]. Information Sciences,2002,147:1-12.
    [146]Laukkanen A. The engineering treatment model and comparison to R6 revision 3 [J]. Engineering Fracture Mechanics,2000,67:367-380.
    [147]Wilson R. A comparison of the simplified probabilistic method in R6 with the partial safety factor approach [J]. Engineering Failure Analysis,2007,14(3):489-500.
    [148]Garricka B.J., ChristiebR. F. Probabilistic risk assessment practices in the USA for nuclear power plants [J]. Safety Science 2002,40:177-201.
    [149]Giribone R, Valette B. Principles of failure probability assessment (PoF) [J]. International Journal of Pressure Vessels and Piping,2004; 81:797-806.
    [150]Muhammed A. Background to the derivation of partial safety factors for BS 7910 and API 579 [J]. Engineering Failure Analysis,2007,14(3):481-488.
    [151]李培宁,王志文.在用压力容器安全状况等级评估与缺陷评定[J].压力容器,1991,8(3):65-70.
    [152]Pawlak Z., Skowron A. Rough sets:Some extensions [J]. Information Sciences,2007,177: 28-40.
    [153]Pawlak Z. Rough set approach to knowledge-based decision support [J]. European Joumal of Operational Research,1997,99:48-57.
    [154]Pawlak Z. Rough sets, decision algorithms and Bayes theorem [J]. European Journal of Operational Research,2002,136:181-189.
    [155]Pawlak Z. Decision's rules and flow networks [J]. European Journal of Operational Research 2004,154:184-190.
    [156]Pawlak Z. Skowron A. Rudiments of rough sets [J]. Information Sciences,2007,177:3-27.
    [157]王威强,李梦丽,崔好选.通过标准规避高压钢管应变时效脆化的发生[J].压力容器,2010,27(11):45-52.
    [158]李梦丽,王威强,李爱菊,等.热处理避免和消除20钢厚壁高压管应变时效脆化实验研究[J].材料工程,2011,1:57-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700