青蒿素生物合成在天然及人工模拟环境中的转录调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生代谢产物是医药、化工、食品和农业高附加值产品的重要原料,其中萜类化合物是植物次生代谢产物的主要组成部分。抗疟药青蒿素及抗肿瘤药紫杉醇、长春花碱等都是著名的萜类药物,其碳链骨架都是通过细胞质或质体的异戊二烯途径合成的。目前,萜类生物合成途径的中间产物及其转变过程已基本阐明,但对萜类合成中基因表达调节的分子机制却了解甚少。为了建立萜类合成基因表达研究平台,本研究以菊科蒿属植物青蒿为模式,采用RTFQ-PCR技术及GUS报告基因表型显示工具,系统而全面地开展青蒿素及其相关萜类生物合成基因在天然及人工模拟环境中的转录调控机制研究。同时,在前期工作基础上,提出“~1O_2可能是青蒿素合成诱导剂”的假说,并通过实验予以证实。本研究的目的在于建立萜类合成代谢共同途径研究模型;构筑青蒿倍半萜青蒿素合成基因表达研究平台;阐明青蒿素合成诱导及时空调节机制;探索青蒿素高产的可行方法,其主要研究内容及其成果概括如下:
     ①从青蒿中克隆了8种MVA及DXP途径基因(HMGR、FPS、DBR2、DXS、DXR、FS、CS、EPS)并测得全序列,其中DBR2基因序列为首次发表,已提交GenBank注册(登录号为EU848577),连同我们前期已克隆的ADS、CYP71AV1、CPR、SQS基因,为进一步开展青蒿功能基因组学研究及青蒿素高产代谢基因工程改良提供了丰富的素材。
     ②采用自行设计的扩增引物,对青蒿中9种MVA及DXP途径基因(HMGR、FPS、ADS、CYP71AV1、CPR、DBR2、DXS、DXR、SQS)的发育特异表达动态进行了跟踪测定,发现相应的mRNA在青蒿中的水平以6月份相对较低,7月份后迅速提高,到8月份(临近开花前)达到顶峰,9月份(开花后)开始回落,其中ADS与CYP71AV1mRNA水平在7月份后更是出现爆发式增长,最高峰时分别为6月份的40倍和18倍。同时还发现,MVA及DXP途径的其他基因与青蒿素合成基因的发育表达模式基本一致,间接表明细胞质MVA途径及质体DXP途径可能共同参与青蒿素的生物合成。
     ③在青蒿组织特异表达动态方面,处于盛花期的青蒿根、茎、叶、花中都能检测到ADS、CYP71AV1、CPR、DBR2等青蒿素合成基因的表达,而且各基因表达量差异不显著,表明苗期至盛花期间的青蒿素合成基因表达无明显组织特异性。相反,在褐变的老叶中,青蒿素合成相关基因mRNA水平显著提高,其中CYP71AV1、ADS、DBR2mRNA的上升幅度最明显,分别是绿叶的51.2、25.5、14.8倍。相应地,老叶中的青蒿素含量也相应提高,最高约为绿叶的1.5倍,从而首次发现青蒿素合成基因表达与青蒿素的积累可能受生长发育程序尤其是衰老进程的直接调控。由于老叶比绿叶释放更多的~1O_2,推测~1O_2直接参与了青蒿素合成基因表达的调控及青蒿素前体向青蒿素的非酶促转变,因而它可能是衰老过程能促进青蒿素大量合成与积累的主要原因。
     ④在转基因烟草ADSP-GUS融合系统中,根、茎、叶中都能检测到GUS活性,表明ADS启动子驱动GUS报告基因的基础表达,在转录调控上无明显组织特异性。GUS定量检测结果显示,在低温(4℃)及紫外辐射条件下,GUS活性分别提高2.2倍和1.6倍,提示ADS基因受极端环境胁迫的诱导调控,对诱导~1O_2生成的胁迫条件(如低温、紫外辐射等)高度响应。逆境诱导报告基因表型显示平台的成功建立,为进一步高通量筛选青蒿素合成基因高效表达诱导剂提供了极大方便。
     ⑤利用RTFQ-PCR技术分析了青蒿素生物合成相关基因在低温(4℃)、高温(50℃)、紫外辐射、淹水或复水(缺氧)、脱水(干旱)、NaCl(高盐)、真菌诱激(添加酵母提取物)、信号分子刺激(SA、MJ、GA_3、ABA)等12种诱生~1O_2的人工模拟环境中的转录模式。结果显示,在低温与紫外辐射条件下,青蒿素生物合成途径(包括共同途径与特异途径)的基因表达水平普遍上升;ADS和DBR2对于环境胁迫的响应更为明显:ADS在冷、紫外辐射、脱水、添加酵母提取物处理条件下的转录水平分别是对照的35.6、14.2、15.5、5.5倍,DBR2在淹水、复水、添加酵母提取物处理条件下的转录水平分别是对照的1 3.8、38.2和20.7倍。由于上述氧化胁迫条件均能导致~1O_2释放,因而本研究在成功模拟包括天然衰老过程在内的氧化胁迫条件的基础上,首次揭示了青蒿素合成基因受氧化胁迫尤其是~1O_2诱导的分子机理。
     ⑥对本实验室首次克隆的7种青蒿新EST——过氧化物酶1基因(POD1)、几丁质酶基因(CH1)、钙调素基因(CaM)、泛素结合酶基因(UCE)、干旱/低温及盐响应蛋白基因(D/LTSRP)、富含甘氨酸RNA结合蛋白基因(RGP)和生长素阻遏/休眠相关蛋白基因(AR/DAP)的低温诱导表达模式进行了定量分析。结果显示,经过4℃处理48h以后,D/LTSRP、UCE、CaM、AR/DAP、POD1基因的mRNA水平分别为对照的7.5、5.0、2.6、2.3、1.5倍,提示这些基因可能参与了青蒿低温信号启动与转导的网络调控,从而为进一步阐明青蒿素生物合成的信号转导通路及其级联调节网络提供了线索。
     ⑦对细胞质与质体萜类合成途径受到抑制后的基因表达定量分析显示,MVA与DXP两条途径表现互为补偿的机制,添加DXP途径抑制剂(磷甘霉素)后,DXP途径基因表达出现先抑制后恢复,而MVA途径基因表达则呈现先上升后回落的趋势;添加MVA途径抑制剂(洛伐他汀)后,两条途径的基因表达均被抑制,进一步表明不同的亚细胞空间(细胞质和质体)在萜类合成过程中存在着交叉对话,再次证实MVA与DXP途径都参与了青蒿素的生物合成。咪康唑对类固醇合成的抑制显示,青蒿素合成基因ADS和DBR2的表达分别提高了2倍和5倍,表明对青蒿素合成竞争途径的抑制可调节MVA途径不同分支中碳源的流向,使细胞代谢向合成青蒿素的方向移动。
     ⑧对转asSQS基因青蒿株中SQS基因及其他倍半萜合酶基因的表达变化研究表明,在转基因株中,SQS基因的表达受到明显抑制,为非转基因的0.5-0.12倍,有2株转基因株中的ADS基因表达提高3.5和3倍。经过4℃间歇冷处理后,非转基因与转基因株中的SQS基因表达不受影响,ADS与EPS基因的表达水平上调1.5-5倍,FS基因表达基本维持不变,CS基因的表达量下降,下降幅度约为50-100倍。再次证明青蒿中萜类合成具有网络调控特性,在“节流”与“引流”的双重作用下更有利于吸引碳源流向青蒿素合成途径。
     本研究的创新性在于首次从转录水平上开展了包括青蒿素合成基因在内的青蒿萜类代谢调控研究,为其他萜类(如紫杉醇、长春花碱等)的后续功能基因组学及代谢途径工程研究提供了模式,有关青蒿萜类基因表达及其调控的研究结果国内外均无报道。其次,通过对青蒿素合成基因的时间及空间表达动态的跟踪测定,初步揭示了青蒿素合成基因表达的发育及组织特异调节机制,首次发现青蒿素合成基因表达受衰老程序控制的规律,证实衰老过程中产生的过量~1O_2可能是诱导青蒿素合成基因高效表达及促进青蒿素高产的主要原因。在此基础上,利用各种环境胁迫条件模拟~O_2的释放,阐明了青蒿素合成基因的环境诱导表达及其调节机制,从而经由实验直接验证了“~1O_2是青蒿素合成诱导剂”的假说,并进一步指明青蒿素可能是其前体(双氢青蒿酸)清除~1O_2后生成的副产品。
As important raw meterials in medicine,food,chemical industry and agriculture,plant secondary metabolites possess high commercial values.Terpenoids,such as anti-malarial agent artemisinin and anti-tumor drug taxol,constitute the most major components of plant secondary metabolites.It was widely accepted that the formation of terpenoids with a common structural five-carbon unit occur via two distinctive pathways in all plants:the mevalonate(MVA) pathway in the cytosol and the 1-deoxy-D-xylulose-5-phosphate(DXP) pathway in plastids.Until now,however,we have only known little about the molecular mechanism underlying the regulated gene expression during terpenoid biosynthesis, although most of intermediates on the terpenoid biosynthesistic pathways and their conversion processes have been typically elucidated.In order to establish a platform for investigating the expression patterns of terpenoid biosynthetic genes,Artemisia annua L,a Compositae Artemesia plant,was used as a model to systematically and comprehensively study the transcriptional regulation on the biosynthesis of artemisinin and other relative terpenoids in the natural and artificial environments by RTFQ-PCR and phenotyping the GUS reporter.Meanwhile,based on our previous work,a hypothesis proposing that singlet oxygen(~1O_2) maybe an inductor for artemisinin biosynthesis was confirmed experimentally.
     This paper is aimed to set up a model to disclose the common anabolism pathway of terpenoids and construct a platform to reveal the expression mode of artemisinin biosynthesis genes,to elucidate the mechanism of conditioned stimulants,temporal and spatial modulators for artemisinin production,and finally to find out feasible approaches to enhanced artemisinin production.The main topics and results of this paper are as follows:
     Eight MVA and DXP pathway genes(HMGR,FPS,DBR2,DXS,DXR,FS,CS and EPS) were cloned from A.annua and sequenced,among which the sequence ofDBR2 gene was summitted to GenBank for the first time(accession No.EU848577).With inclusion of ADS,CYP71AV1,CPR and SQS genes previously cloned,there were 12 genes that encode the terpenoids biosynthetic key enzymes in A.annua available for further researches of functional genomics and metabolic engineering aming at high-yield artemisinin.
     To unravel the diverse expression patterns of terpenoid biosynthetic genes during the developmental stage in A.annua,the transcriptional profiles of nine MVA and DXP pathway genes(HMGR,FPS,ADS,CYP71AV1,CPR,DBR2,DXS,DXR and SQS) were quantitatively assayed by RTFQ-PCR.As results,the expression levels of all tested genes were extremely low in June,and raised dramatically in July,and reached their peak values before flowering(in August),but dropped gradually after blooming(in September). Especially,the great elevation of ADS and CYP71AV1 mRNA levels were detected in July, which were 40 and 18 times higher than those in June.The developmental expression pattems of other genes on the DXP pathway were consistent with those of artemisinin biosynthetic genes on the MVA pathway.Therefore,these results suggested that artemisinin was probably biosynthesized via both pathways.
     In the aspect of tissue-specific gene expression patterns in A.annua,artemisinin biosynthetic genes,comprising ASD,CYP71AV1,CPR and DBR2,illustrated no difference in roots,stems,leaves and flowers during flowering.Such result revealed that artemisinin biosynthetic genes in those tissues showed no obvious tissue specificity.However, artemisinin biosynthetic mRNA levels significantly elevated in senescent leaves that had tured brown.The increments of CYP71AV1,ADS,DBR2 mRNA levels were 51.2,25.5 and 14.8 times higher than those in green leaves.Accordingly,artemisinin content in senescent leaves was also promoted to 1.5 times higher than that in green leaves.In conclusion,the fashions regarding expression of artemisinin biosynthetic genes and accumulation of artemisinin might be directly regulated by the growth and developmental procedures of plants themselves,especially by the senescent process.Because senescent leaves emitted more amounts of ~1O_2 than green leaves,it is speculated that ~2O_2 may be directly involved in the regulation of artemisinin biosynthetic genes and non-enzymatic conversion from artemisinin precursors to artemisinin,thereby playing a major role in facilitating artemisinin biosynthesis and accumulation.
     To further compile evidence on the modulatory mechanism of artemisinin biosynthesis, transgenic tobacco(Nicotiana tabacum) plants that introduced an ADSP-GUS fusion gene were cultivated in the present study and showed a typical GUS phanotype in whole plants, indicating that a basal level of ADSP-driven GUS expression didn't exhibit tissue specificity.The quantitative results showed that the GUS activity in transgenic tobacco plants treated by low-temperature(4℃) and ultraviolet irradiation were 2.2 and 1.6 times higher than that in the control.It is suggested that the ADS gene is induced by adverse environmental stresses at least including cold and irradiation,and may be more sensitive to ~1O_2 generated by a variety of stress conditions.The successful establishment of the stress-inducible GUS reporter phenotyping system provided convenience for future high-throughput screening of inducers that stimulate over-expression of artemisinin biosynthetic genes.
     The transcriptional patterns of artemisinin biosynthetic genes under the circumstances of 12 artificial simulations that enhance generation of ~1O_2 were monitored by using RTFQ-PCR technology.The artificial simulative elements included low-temperature(4℃), high-temperature(50℃),ultraviolet irradiation,hypoxia(flooding and rehydration), drought(dehydration),high salt(NaCl),fungal elicitor(yeast extract) and plant signal molecules(SA,MJ,GA_3 and ABA).The results showed that the expression levels of artemisinin biosynthetic genes(including those on the common and specific biosynthetic pathways) generally up-regulated,in which ADS and DBR2 genes were more sensitive than others to those stimuli.The ADS transcript level in A.annua plantlets treated with cold, ultraviolet,dehydration and yeast extract were 35.6,14.2,15.5 and 5.5 times higher than that in the control,and the DBR2 mRNA level upon the treatment by flooding,rehydration and yeast extract were 13.8,38.2 and 20.7 times higher than that in the control.It is revealed for the first time that artemisinin biosynthetic genes are highly induced by oxidative stresses,especially by ~1O_2,based on the simulation outcomes under the oxidative stress conditions,including the natural senescence process,which enables the induction of sensitive genes by ~1O_2 release.
     Low temperature-induced expression of previously identified expressed sequence tags (ESTs) by our group were quantitatively analyzed,which included seven sequences,i.e., peroxidase 1 gene(POD1),chitinase gene(CH1),calmodulin gene(CaM), ubiquitin-conjugating enzyme gene(UCE),drought/low temperature and salt responsive protein gene(D/LTSRP),RNA-binding glycine rich protein gene(RGP),and auxin-repressed/dormancy-associated protein gene(AR/DAP).The quantitative results showed that D/LTSRP,UCE,CaM,AR/DAP and POD1 mRNA levels after 4℃treatment for 48h were 7.5,5.0,2.6,2.3 and 1.5 times higher than that of the control,suggesting that these genes may be involve in the regulation throughout the metabolic networks that relevant to initiation and transduction of the low-temperature signal in A.annua.This possibility provided a clue to reveal the mechanism underlying the signal transduction pathway and cascade regulation network for artemisinin biosynthesis.
     A specific MVA pathway inhibitor,lovastatin and a specific DXP pathway inhibitor, fosmidomycin,were used to perturb the biosynthetic flux in A.annua seedlings.The quantitative analysis at the transcriptional level showed that a mutual compensation mechanism was present in both pathways.Treatment of seedlings with fosmidomycin resulted in a transient decline of mRNA levels on the DXP pathway.After the initial drop, the mRNA levels of DXP pathway genes recovered to those corresponding to control levels, whereas mRNA levels of MVA pathway genes first increased but then decreased.As a response to lovastatin exposure,the expression activities of both pathway genes were inhibited,further suggesting that crosstalk between cytosolic and plastidial pathways for terpenoid biosynthesis might persist,and that both MVA and DXP pathways were likely involved in artemisinin production.After supplement with miconazole,an inhibitor of sterols biosynthesis,the levels of ADS and DBR2 mRNAs increased two and five times compared to the control,suggesting that carbon source was partially shifted from sterols to sesquiterpenes.
     The expression patterns of squalene synthase gene(SQS) and other sesquiterpene synthase genes(ADS,CS,FS and EPS) in transgenic A.annua plants that were integrated with one or more copies of anti-sense squalene synthase genes(asSQS) were surveyed.The results showed that the SQS gene in transgenic plantlets was significantly inhibited by the generation of asSQS mRNA,and decreased about two to six times compared to the wild-type control,whereas ADS mRNA in two of transgenic plantlets increased 3.5 and 3 times.After intermittent cold-treatment,SQS and FS mRNAs exhibited no changes in transgenic and wild-type plants,whereas ADS and EPS mRNA increased 1.5 to 5 times,and CS mRNA dramatically decreased about 50-100 folds.
     The main innovations of this paper were summarized as follows:it is the first time to survey the expression profile of metabolic regulation on terpenoid biosynthetic genes including artemisinin biosynthetic genes at the transcription level.It provided a model for the follow-up studies on the functional genomics and metabolic engineering of other terpenoids like taxol and vinblastine.Secondly,through monitoring the expression kinetics of these genes in different subcellular spaces and during different development stages, present study has preliminarily revealed a unique mode of developmental and tissuesspecific regulation on artemisinin biosynthesis,and first discovered artemisinin biosynthesis being modulated by the senescence process.On such basis,using various environmental stress conditions that simulate the senescence process,this research has elucidated that artemisinin biosynthetic genes were inducible by various environmental stresses.It was confirmed that excessive release of ~1O_2 during the senescence process is the main cause to increase the expression of artemisinin biosynthetic genes and enhance the production of artemisinin.It was also proved the hypothesis that ~1O_2 is mostly the inducer for artemisinin biosynthesis,and further clarified that artemisinin may be a by-product generated from its precursor dihydroartemisinic acid in the process of ~1O_2 scavenging.
引文
[1]汪俊韬,于少军,肖炜.复方甘草甜素(美能)在肝病领域的临床应用.中国药房,2002;13(8):500-502
    [2]王绪英,赵永芳.中药娑罗子的化学组分及七叶皂苷药用价值的研究.唐山师范学院学报,2001;23(5):7-11
    [3]马靓,丁鹏,杨广笑,等.植物类萜生物合成途径及关键酶的研究进展.生物技术通报,2006;增刊:22-30
    [4]Lichtenthaler HK.The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants.Annu Rev Plant Physiol Plant Mol Biol,1999;50:47-65
    [5]Rohmer M,Seemann M,Horbach S,et al.Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis.J Am Chem Soc,1996;118:2654-2566
    [6]Eisenreicha W,Bacher A,Arigoni D,et al.Biosynthesis of isoprenoids via the non-mevalonate pathway.Cell Mol Life Sci,2004;61(12):1401-1426
    [7]Bach TJ,Boronat A,Caelles C,et al.Aspects related to rnevalonate biosynthesis in planta.Lipids,1991;26:637-648
    [8]McGarvey JD,Croteau R.Terpenoid metabolism.The Plant Cell,1995;7:1015-1026
    [9]Lange BM,Croteau R.Isoprenoid biosynthesis via a mevalonate-independent pathway in plant:cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomeraso from peppermint.Arch Biochem Biophys,1999;365:170-174
    [10]Schwender J,Gem(u|¨)nden C,Lichtenthaler HK.Chlorophyta exclusively use the 1-deoxy-D- xylulose-5-phosphate/2-C-methy-D-erthritol 4-phosphate pathway for the biosynthesis of isoprenoids.Planta,2001;212:416-423
    [11]Rohdich F,Lauw S,Kaiser J,et al.Isoprenoid biosynthesis in plants- 2C-methy-D-erthritol- 4-phosphate synthase (IspC protein) of Arabidopsis thaliana.FEBS J,2006;273:4446-4458
    [12]Bach TJ,Rogers DH,Rudney H.Detergent-solubilization,purification,and characterization of membrane-bound 3-hydroxyl-3-methylglutaryl coenzyme A reductase from radish seedings.Eur J Biochem,1986;154:103-111
    [13]Basson MA,Thorsness M,Finer-Moore J,et al.Structural and functional conservation between yeast and human 3-hydroxyl-3-methylglutaryl coenzyme A reductase,the rate-limiting enzyme of sterol biosynthesis.Mol Cell Biol,1988;8:3797-3808
    [14]Learned RM,Fink GR.3-hydroxyl-3-methylglutaryl coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes.Proc Natl Acad Sci USA,1989;86:2779-2783
    [15]Chappell J,Wolf F,Prouix J,et al.Is the reaction catalyzed by 3-hydroxyl-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plant? Plant Physiol,1995;109:1337-1343
    [16]Stermer BA,Bostock RM.Involvement of 3-hydroxyl-3-methylglutaryi coenzyme A reduetase in regulation of sesquiterpenoid phytoalexin synthesis in potato.Plant Physiol,1987;84:404-408
    [17]Chappell J,Nable R.Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitors.Plant Physiol,1987;84:469-473
    [18]Suzuki M,Kamide Y,Nagata N,et al.Loss of function of 3-hydroxy-3-methyiglutaryl coenzyme A reductase 1(HMG1) in Arabidopsis leads to dwarfing,early senescence and male sterility,and reduced sterol levels.Plant J,2004;37:750-761
    [19]Yang ZB,Park H,Lacy GH,et al.Differential activation of potato 3-hydroxyl-3-methylglutaryl coenzyme A reduetase genes by wounding and pathogen challenge.Paint Cell,1991;3:397-405
    [20]Choi D,Word BL,Bostock RM.Differential induction and suppression of potato 3-hydroxyl-3-methylglutaryl coenzyme A reductase genes response to Phytophores infestans and to its elicitor arechidenie acid.Plant Cell,1992;4:1333-1344
    [21]Walter MH,Hans J,Strack D.Two distantly related genes encoding 1-deoxy-D-xylulose-5-phosphate synthase:differentail regulation in shoots and apocartenoid-aeeumulating mycorrhizal roots.Plant J,2002;31:243-254
    [22]Estevez JM,Cantero A,Romero C,et al.Analysis of the expression of CLA1,a gene that encodes the 1-deoxy-D-xylulose-5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis.Plant Physiol,2000;124:95-104
    [23]Kim BR,Kim SU,Chang YJ.Differential expression of three 1-deoxy-D-xylulose-5-phosphate synthase genes in rice.Biotechnol Lett,2005;27:997-1001
    [24]Estevez JM,Cantero A,Reindl A,et al.1-deoxy-D-xylulose-5-phosphate synthase,a limiting enzyme for plastidic isoprenoid biosynthesis in plant.J Biol Chem,2001;25:22901-22909
    [25]Lois LM,Rodr(?)guez-Concepci(?)n M,Gallego F,et al.Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.Plant J,2000;22:503-513
    [26]Munoz-Bertomeu J,Arrillaga I,Ros R,et al.Up-regulation of 1-deoxy-D-xylulose-5ophosphate synthase enhances production of essential oils in transgenic spike lavender.Plant Physiol,2006;142:890-900
    [27]Mahmoud SS,Croteau R.Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxylulose phosphate reductoisomerase and menthofuran synthase.Proc Natl Acad Sci USA,2001;98:8915-8920
    [28]Burke CC,Wildung MR,Croteau R.Geranyl diphosphate synthase:cloning,expression,and characterization of this prenyltransferase as a heterodimer.Proc Natl Acad Sci USA,1999;96:13062-13067
    [29]Cunillera N,Boronat A,Ferret A.The Arabidopsis thaiiana FPS1 gene generates a novel mRNA that encodes a mitochondrial famesyl-diphosphate synthase isoform.J Biol Chem,1997;272:15381-15388
    [30]Sanmiya K,Ueno O,Matsuoka M,et al.Localization of farnesyl diphosphate synthase in chloroplasts.Plant Cell Physiol,1999;40:348-354
    [31]Hemmerlin A,Rivera SB,Erickson HK,et al.Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp.Spiciformis.J Biol Chem,2003;278:32132-32140
    [32]刘长军,孟玉玲,侯蒿生,等.棉花法呢基焦磷酸合酶cDNA克隆、序列分析及其在种子发育过程中的表达特征.植物学报,1998;40(8):703-710
    [33]Liu CJ,Heinstein P,Chen XY.Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors.Mol Plant Microbe Interac,1999;12:1095-1104
    [34]Chen DH,Liu C J,Ye HC,et al.Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production.Plant Cell Tiss Org Cult,1999;57:157-162
    [35]Chen DH,Ye HC,Li GF.Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L.transgenic plants via Agrobacterium tumefaciens-mediated transformation.Plant Sci,2000;155:179-185
    [36]Li SM,Hennig S,Leide L.Shikonin:a geranyl diphosphatederived plant hemiterpenoid formed via the mevalonate pathway.Tetrahedron Lett,1998;39:2721-2724
    [37]Okada K,Saito T,Nakagawa T,et al.Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis.Plant Physiol,2000;122:1045-1056
    [38]Szkopi(?)ska A,Plochocka D.Famesyl diphosphate synthase;regulation of product specificity.Acta Biochim Pol,2005;52:45-55
    [39]Aubourg S,Lecharny A,Bohlmann J.Genomic analysis of the terpenoid synthase(AtTPS) gene family of Arabidopsis thaliana.Mol Genet Genomics,2002;267:730-745
    [40]L(u|¨)cker J,Schwab W,van Hautum B,et al.Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon.Plant Physiol,2004;134:510-519
    [41]Besumbes O,Sauret-G(u|¨)eto S,Phillips MA,et al.Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene,the first committed precursor of Taxol.Biotechnol Bioeng,2004;88:168-175
    [42]Krasnyanski S,May RA,Loskutov A,et al.Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profile of single transgenic plants.Theor Appl Genet,1999;99:676-682
    [43]Laule O,F(u|¨)rholz A,Chang HS,et al.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.Proc Natl Acad Sci USA,2003;100:6866-6871
    [44]Kasahara H,Hanada A,Kuzuyama T,et al.Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis.J Biol Chem,2002;277:45188-45194.
    [45]刘智,余龙江,李春艳,等.磷甘霉素和洛伐他汀处理对中国红豆杉悬浮培养细胞生物合成紫杉醇的影响.植物生理与分子生物学报,2005;31(2):199-204
    [46]Bick JA,Lange BM.Metabolic cross talk between the cytosolic and plastidial pathways of isoprenoid biosynthesis:unidirectional transport of intermediates the chloroplast envelope membrane.Arch Biochem Biophys,2003;415:146-154
    [47]Flugge UI,Gao W.Transport of isoprenoid intermediates across chloroplast envelope membranes.Plant Biol (Stuttg).2005;7:91-97
    [48]Romero MR,Efferth T,Serrano MA,et al.Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in in vitro system.Antiviral Res,2005;68:75-83
    [49]Borrmann S,Szlezak N,Faucher JF,et al.Artesunate and praziquantel for the treatment of Schistosoma haematobium infections:a double blind,randomized,placebo-controlled study.J Infect Dis,2001;184:1363-1366
    [50]Efferth T,Dunstan H,Sauerbrey A,et al.The anti-malarial artesunate is also active against cancer,lnt J Oncol,2001;18:767-773
    [51]Bouwmeester HJ,Wallaart TE,Janssen MH,et al.Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.Phytochemistry,1999;52:843-854
    [52]Teoh KH,Polichuk DR,Reed DW,et al.Artemisia annua L.(Asteraceae)trichome-specific cDNAs reveal CYP71AV1,a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.FEBS Lett,2006;580:1411-1416
    [53]Ro DK,Paradise EM,Ouellet M,et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast.Nature,2006;440:940-943
    [54]Zhang Y,Teoch KH,Reed DW,et al.The molecular cloning of artemisinic aldehyde Al 1(13)reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua.J Biol Chem,2008;283:21501-21508
    [55]Zeng QP,Frank Q,Yuan L.Production of artemisinin by genetically-modified microbes.Biotechnol Lett,2008;30:581-592
    [56]Wang Y,Xia ZQ,Zhou FY,et al.Studies on biosynthesis of artemisinin:the key intermediate-artemisinic acid in biosynthesis of artemisinin and arteannuin B.Acta Chim Sin,1988;46:1152-1153
    [57]Sangwan RS,Agarwal K,Luthra R,et al.Biotransformation of arteamisinic acid into arteannuin B and artemisinin in Artemisia annua.Phytochemistry,1993;34:1301-1302
    [58]Dhingra V,Narasu ML.Purification and charaterization of an enzyme involved in biochemical transformation of arteannuin B to artemisinin from Artemisia annua.Biochem Biophys Res Commun,2001;281:558-561
    [59]Wallaart TE,van Uden W,Lubberink HG,et al.Isolation and identification of dihydroartemisinic acid from Artemisia annua and its role in the biosynthesis of artemisinin.J Nat Prod,1999;62:430-433
    [60]Wallaart TE,Pras N,Quax WJ.Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua:a novel biosynthesis precursor of artemisinin.J Nat Prod,1999;62:1160-1162
    [61]Wallaart TE,Pras N,Beekman AC,et al.Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin:proof for the existence of chemotypes.Planta Med,2000;66:57-62
    [62]Brown GD,Sy LK.In vivo transformations of dihydroatemisinic acid in Artemisia annua plants.Tetrahedron,2004;60:1139-1159
    [63]Sy LK,Brown GD.The mechanism of the spontaneous antoxidation of dihydroatemisinic acid.Tetrahedron,2002;58:897-908
    [64]Covello PS.Making artemisinin.Phytochemistry,2008;69:2881-2885
    [65]Brown GD,Sy LK.In vivo transformations of atemisinic acid in Artemisia annua plants.Tetrahedron,2007;63:9548-9566
    [66]Mercke P,Bengtsson M,Bouwmeester HJ,et al.Molecular cloning,expression,and characterization of amorpha-4,11-diene synthase,a key enzyme of artemisinin biosynthesis in Artemisia annua L.Arch Biochem Biophys,2000;381:173-180
    [67]Chang YJ,Song SH,Park SH,et al.Amorpha-4,11-diene synthase of Artemisia annua:cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis.Arch Biochem Biophys,2000;383:178-184
    [68]Wallaart TE,Bouwmeester HJ,Hille J,et al.Amorpha-4,11-diene synthase:cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.Planta,2001;212:460-465
    [69]Li ZQ,Liu Y,Liu BY,et al.coli expression and molecular analysis of amorpha-4,11-diene synthase from a high-yield strain of Artemisia annua L.J Integr Plant Biol,2006;48:1486-1492
    [70]Martin VJ,Pitera DJ,Withers ST,et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.Nat Biotechnol,2003;21:796-802
    [71]Lindahl AL,Olsson ME,Mercke P,et al.Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.Biotechnol Lett,2006;28:571-580
    [72]Wu S,Schalk M,Clark A,et al.Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants.Nat Biotechnol,2006;24:1441-1447
    [73]Yin LL,Zhao C,Huang Y,et al.Abiotic streee-induced expression of artemisinin biosynthesis genes in Artemisia annua L.Chin App Environ Biol,2008;14:1-5
    [74]Bertea CM,Freije JR,van der Woude H,et al.Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua.Planta Med,2005;71:40-47
    [75]Towler MJ,Weathers PJ.Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways.Plant Cell Rep,2007;26:2129-2136
    [76]申海燕,李振秋,王红,等.青蒿倍半萜合酶(环化酶)研究进展.生物工程学报,2007;23(6):976-981
    [77]李弘剑,张毅,郭勇,等.黄花蒿培养细胞中青蒿素合成代谢的体外调节.中国生物化学与分子生物学报,1999:15(3):479-483
    [78]Yang RY,Feng LL,Yang XQ,et al.Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants.Planta Med,2008;74:1510-1516
    [79]Morales MM,Charles DJ,Simon JE.Seasonal accumulation of artemisinin in Artemisia annua L.Acta Honic,1993;344:416-420
    [80]Laughlin JC,Svoboda KP,Laughlin JC,et al.The influence of distribution of antimalarial constituents in Artemisia annua L.on time and method of harvest.Acta Horticulture,1995;390:67-73
    [81]Wang H,Ge L,Ye HC,et al.Studies on the effects of fpfl gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis.Planta Med,2004;70:347-352
    [82]Wang H,Liu Y,Chong K,et al.Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua.Plant Biol(Stuttg).2007;9:422-446
    [83]Fulzele D,Heble MR,Rao PS.Tissue culture of Artemisia annua L.plantlet cultures in bioreactor.J.Biotechnol,1995;40:139-143
    [84]Paniego NB,Giulietti AM.Artemisinin production by Artemisia annua L-transformed organ cultures.Enzyme and Microbiol Technology,1996;18:526-530
    [85]Smith TC,Weathers PJ,Cheetham RD.Effects of gibberellic acid on hairy root cultures of Artemisia annua:growth and artemisinin production.In Vitro Cell Dev Biol Plant,1997;33:75-79
    [86]Zhang YS,Ye HC,Liu BY,et al.Exogenous GA_3 and flowering induced the conversion of anemisinic acid to artemisinin in Artemisia annua plants.Russ J Plant Physiol.2005;52:58-62
    [87]Lommen WJ,Schenk E,Bouwmeester HJ,et al.Trichome dynamics and artemisinin accumulatio during development and senescence of Artemisia annua leaves.Planta Med,2006;72:336-345
    [88]Lommen WJ,Sytze E,Verstappen FW,et al.Artemisinin and Sesquiterpene precursors in dead and green leaves of Artemisia annua L.crops.Planta Med,2007;73:1133-1139
    [89]Ferreria JF,Simon JE,Janick J.Relationship of artemisinin content of tissue cultured,greenhouse and field grow plants of Artemisia annua.Planta Med,1995;61:351-355
    [90]Ferreira JF,Simom JE,Janick J.Develpomental studies of Artemisia annua:flowering and artemisinin production under greenhouse and field condition.Planta Med,1995;61:167-170
    [91]Weathers PJ,Elkholy S,Wobbe KK.Artemisinin:The biosynthetic pathway and its regulation in Artemisia annua,a terpenoid-rich species.In Vitro Cell Dev Biol Plant,2006;42:309-317
    [92]Zeng QP,Zeng XM,Yin LL,et al.Quantification of three key enzymes involved in Artemisia annua by polyclonal antisera-based ELISA.Plant Mol Biol Rep,2009;27:50-57
    [93]Shi M,Kwok KW,Wu JY.Enhancement of transhinone production in Salvia miltiorrhiza Bunge(red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor.Biotechnol Appl Biochem,2007;46:191-196
    [94]Jaleel CA,ManivannanP,Sankar B,et al.Induction of drought stress tolerance by ketoconazole in Catharanthusroseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation.Colloids Surf B Biointerfaces,2007;60:201-206
    [95]Zhang C,Fevereiro PS.The effect of heat shock on paclitaxel production in Taxus yunnanensis cell suspension cultures:role of abscisic acid pretreatment.Biotechnol Bioeng,2007;96:506-514
    [96]Zeng QP,Zhao C,Yin L,et al.Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression.Sci China(Set C:Life Sci),2008;51:232-244
    [97]Kapoor R,Chaudhary V,Bhatnaga AK.Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L.Micorrhiza,2007;17:581-587
    [98]Putalum W,Luealon W,De-Eknamkul W,et al.Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L.Biotechnol Left,2007;29:1143-1146
    [99]Wang Y,Weathers PJ.Sugar proportionately affect artemisinin production.Plant Cell Rep,2007;26:1073-1081
    [100]Baldi A,Dixit VK.Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua.Bioresoor Technol,2008;99:4609-4614
    [101]Delledonne M,Xia Y,Dixon RA,et al.Nitric oxide functions as a signal in plant disease resistance.Nature,1998;394:585-588
    [102]Zheng LP,Guo YT,Wang JW,et al.Nitric oxide potentiates olignsaccharide-induced artemisinin production in Artemisia annua hairy roots.J Integr Plant Biol,2008;50:49-56
    [103]Hu X,Nell SJ,Cai W,et al.Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng.Funct Plant Biol,2003;901-907
    [104]Xu MJ,Dong JF,Zhu MY.Involvement of NO in fungal elicitor-induced activation of PAL and stimulation of taxol synthasis in Taxus chinenesis suspension cells.Chinese Sci Bull,2004;49:1038-1043
    [105]Xu MJ,Dong JF,Zhu MY.Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell culture through a jasmonic-acid--dependent signal pathway.Plant Physiol,2005;139:991-998
    [106]Xu MJ,Dong JF,Zhu MY.Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth.Suspension cells through a salicylic acid(SA)-dependent and ajasmonic acid(JA)-dependent signal pathway.Sci Chian Ser C,2006;49:379-389
    [107]Rischer H,Oresic M,Seppanen-Laakso T,et al.Gene-to metabolite networks for terpenoid indole alkaloid biosynthesis in Catharathus roseus cells.Proc Natl Acad Sci USA,2006,103:5614-5619
    [108]Bharel S,Gulati A,Abdin MZ,et al.Enzymatic synthesis of artemisinin from natural and synthetic precursors.J Nat Prod,1998;61:633-636
    [109]Gupta SK,Singh P,Bajpai P,et al.Morphogenetic variation for artemisinin and volatile oil in Artemisia annua,Ind Crop Prod,2002;16:217-214
    [110]吴静,丁伟,张永强.栽种技术助提高青蒿素产量.中国医药报,2007-7-19,第107期
    [111]Gregersen PL,Holm PB.Transcriptome analysis of senescence in the flag leaf of wheat(Triticun aestivum L.).Plant Biotechnol J,2007;5(1):192-206
    [112]Covello PS,Teoh KH,Polichuk DR,et al.Functional genomics and the biosynthesis of artemisinin.Phytochemistry,2007;68:1864-1871
    [113]Galal AM,Ross SA,Jacob M,et al.Antifungal activity of artemisinin derivatives.J Nat Prod,2005;68:1274-1276
    [114]Maggi ME,Mangeaud A,Carpinella MC,et al.Laboratory evaluation of Artemisia annua L.extract and artemisinin activity against Epilachna paenulata and Spodoptera eridania.J Chem Ecol,2005;31:1527-1536
    [115]Sourer FF,Kim Y,Wyslouzil BE,et al.Scale-up of Arteraisia annua L.hairy root cultures produces complex patterns of terpenoid gene expression.Bioteclmol Bioeng,2003;86:653-667
    [116]Kim SH,Chang YJ,Kin SU.Tissue specificity and developmental pattern of aAmorpha-4,11-diene synthase(ADS)proved by ADS promoter-driven GUS expression in the heterologous plant,Arabidopsis thaliana.Planta Med,2008;74:188-193
    [117]Tamogami S,Rakwal R,Kodama O,et al.Phtoalexin production elicited by exogenously applied jasmonic acid in rice leaves(Oryza sativa L.) is under the control of cytokinins and ascorbic acid.FEBS Lett,1997;412:61-64
    [118]Zhao J,Sakai K.Multiple signaling pathways mediate fungal elicitor induced β-thuijaplicin accumulation in Cupressus lusitanica cell cultures.J Exp Bot,2003;54:647-656
    [119]Apel K,Hirt H.Reactive oxygen species:metabolism,oxidative stress,and signal transduction.Annu Rev Plant Biol,2004;55:373-399
    [120]Feng LL,Yang RY,Yang XQ,et al.Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua.Plant Sci,2009;177(1):57-67
    [121]Walker TS,Bais HP,Vivanco JM.Jasmonic acid induced hypercin production in Hypericura perforatum L.(St.John wort).Phytochem,2002;60:289-293
    [122]Woerdenbag HJ,Lfiers JFJ,van Uden W,et al.Production of the new antimalarial drug artemisinin in shoot cultures of Arteraisia annua L.Plant Cell Tiss Org Cult,1993;32:247-257
    [123]Guan Z,Lui CY,Morkin E,et al.Oxidative stress and apoptosis in cardiomyocyte induced by high-dose alcohol.J Cardiovasc Pharmacol,2004;44(6):696-702
    [124]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and 2~(-ΔΔCt)method.Methods,2001;25:402-408
    [125]严昕,王均永,吴小末,等.实时荧光定量PCR检测原发性肝癌中hNTKL-BP1基因的表达.复旦学报(自 然科学版),2007;46:411-416
    [126]Minorsky PV.A heuristic hypothesis of chilling in plants:a role for calcium as primary physiological transducer of injury.Plant Cell Environ,1985;8:75-94
    [127]Monroy AF,Sarhan F,Dhindsa RS.Freezing-induced changes in freezing tolerance,protein phosphorylation and gene expression:evidence for a role of calcium.Plant Physiol,1993;102:1227-1234
    [128]Monroy AF,Dhindsa RS.Low-temperature signal transduction:induction of cold acclimation specific genes of alfalfa by calcium at 25 degrees C.Plant cell,1995;7:321-331
    [129]Price A,Taylor A,Ripley SJ.Oxidative signals in tobacco increase cytosolic calcium.Plant Cell,1994;6:65-67
    [130]Knight H,Trewavas AJ,Knight MR.Freezing-calcuim signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation.Plant Cell,1996;8:489-503
    [131]林善枝,张志毅,林元震,等.钙-钙调素在零下低温诱导毛白杨扦插苗抗冻性中的作用.植物生理与分子生物学报,2004;30:59-68
    [132]Viswanathan C,Zhu JK.Molecular genetic analysis of cold-regulated gene transcription.Philos Trans R Soc Lond B Biol Sci,2002;357:877-886
    [133]Horvath DP,Chao WS,Suttle JC,et al.Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transition of leafy spurge(Euphorbia esula L.).BMC Genomics.2008;9:536
    [134]Stafstrom JP,Ripley BD,Devitt ML,et al.Dormancy-associated gene expression in pea axillary buds.Cloning and expression of PsDRM1 and PsDRM2.Planta,1998;205:547-552
    [135]Wisniewski M,Bassett C,Norelli J,et al.Expressed sequence tag analysis of the response of apple(Malus×domestica 'Royal Gala') to low temperature and water deficit.Physiol Plant,2008;133:298-317
    [136]Kim HJ,Kim YK,Park JY,et al.Light signalling mediated by phytochrome plays an important role in coldinduced gene expression through the C-repeat/dehydration responsive element(C/DRE) in Arabidopsis thaliana.Plant J,2002;29:693-704
    [137]Adam KP,Zapp J.Biosynthesis of the isoprene units of chamomile sesquiterpenes.Phytochemistry,1998;48:953-959
    [138]Steliopoulis P,Wust M,Adam KP,et al.Biosynthesis of the sesquiterpene germaerene D in Solidago Canadensis:13C and 2H labeling studies.Phytochemistry,2002;60:13-20
    [139]郝宏蕾,朱旭芬,曾云中.类异戊二烯的生物合成及调控.浙江大学学报(农业与生命科学版),2002;28(2):224-230
    [140]Laloi C,Przybyla D,Apel K.A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana.J Exp Bot,2006;57:1719-1724
    [141]Laloi C,Stachowiak M,Pers-Kamczyc E,et al.Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.Proc Natl Acad Sci USA,2007;104:672-677
    [142]Lee KP,Kin C,Landgraf F,et al.EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana.Proc Natl Acad Sci USA,2007;104:10270-10275
    [143]Croteau R,Kutchan T,Lewis N.Natural products(secondary metabolites).In:Buchanan B,Gruissem W,Jones R,eds.Biochemistry and molecular biology of plants.Rockville MD:American Society of Plant Physiologists,2000,1250-1318
    [144]Kudakasseril GJ,Lam L,Staba J.Effect of sterol inhibitors on the incorporation of 14C-isopentenyl phosphatase into artemisinin by a cell-free system from Artemisa annua tissue cultures and plants.Planta Med,1987;53:280-284
    [145]Liu Y,Ye HC,Li GF.Molecular cloning,E.coil expression and genomic organization of squalene synthase from Artemisa annua.Acta Bot Sin,2003;45:608-613
    [146]Picaud S,Brodelius M,Brodelius PE.Expression,purification and characterization of recombinant(E)-beta-farnesene synthase from Artemisia annua.Phytochemistry,2005;66:961-967
    [147]Cai Y,Jia JW,Crock J,et al.A cDNA clone for β-caryophyllene synthase from Artemisia annua.Phytochemistry,2002;61:523-529
    [148]Mercke P,Crock J,Croteau R,et al.Clone,expression,and characterization of epi-cedrol synthase,a sesquiterpene cyclase from Artemisia annua L.Arch Biochem Biophys,1999;369:213-222
    [149]Kim SH,Heo K,Chang YJ,et al.Cyclization mechanism of amorpha-4,11-diene synthase,a key emzyme in artemisinin biosynthesis.J Nat Prod,2006;69:758-762
    [150]Picaud S,Mercke P,He X,et al.Amorpha-4,11-diene synthase:mechanism and stereochemistry of the enzymatic cyclization of farnesyl diphosphate.Arch Biochem Biophys,2006;448:10-15
    [151]Van Geldre E,De Pauw I,Inze D,et al.Cloning and molecular analysis of two new sesquiterpene cyclases from Artemisia annua L.Plant Sci,2000;158:163-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700