丁二烯/异戊二烯/苯乙烯星形梳状高支化聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高支化聚合物作为树枝形聚合物家族中继树形和超支化聚合物之后的新成员,由于其兼具有树形聚合物的迭代增长和超支化聚合物的支链无规分布的特点,并拥有以聚合物链为接枝单元,反应步骤少可合成高分子量且窄分子量分布(MWD<1.50)的高支化聚合物的优势,日益引起人们的普遍关注。活性阴离子聚合是实现聚合物分子结构设计最为精确和有效的方法之一,但由于其对杂质极其敏感,用来合成高分子量聚合物的难度较大。将活性阴离子聚合和偶联反应技术相结合来合成结构可控的高分子量的高支化聚合物是一个重要的研究方向。目前通过偶联法来合成的高支化聚合物一般是以线形聚合物为基质的,其分子拓扑结构比较单一。
     本文采用活性阴离子聚合和偶联反应技术合成了星形液体聚丁二烯,通过原位过氧甲酸法环氧化反应并精制得环氧化星形液体聚丁二烯偶联剂,以此新型环氧化物偶联剂进行偶联反应成功制备了一系列丁二烯/异戊二烯/苯乙烯星形梳状聚合物,并已形成专利技术;以环氧化星形液体聚丁二烯为偶联剂,制备了新型的星形梳状丁二烯/苯乙烯嵌段共聚物,其冲击性能十分优异,并已形成专利技术。本文始终贯穿高分子设计思想,以正丁基锂为引发剂、环己烷为溶剂、四氢呋喃为极性添加剂、环氧化物为偶联剂,立足于三种大宗单体一丁二烯、异戊二烯、苯乙烯,采用环氧化反应-偶联反应迭代增长技术合成了线形梳状高支化聚丁二烯、星形梳状高支化聚丁二烯和星形梳状高支化聚异戊二烯,并采用环烷酸镍/三异丁基铝催化体系对G0-G4代星形梳状高支化聚丁二烯进行加氢反应得到G0-G4代星形梳状高支化聚乙烯,同时对高支化聚合物的分子参数、支化参数和热性能等进行了较为深入的研究。
     纵观全文,主要结论如下:
     采用活性阴离子聚合技术设计合成线形和星形液体聚丁二烯,通过原位过氧甲酸法环氧化反应制备环氧化线形和星形液体聚丁二烯,精制后得可用于阴离子聚合体系的不含卤原子的环氧化线形和星形液体聚丁二烯偶联剂。
     以星形聚丁二烯为基质,以环氧化聚丁二烯为偶联剂,采用环氧化反应-偶联反应的迭代增长技术首次合成拓扑结构新颖的G0-G4代星形梳状高支化聚丁二烯:分级后G0-G4代星形梳状高支化聚丁二烯均具有对称的单峰且为窄分布(MWD<1.23),其分子量和支化度随着代数增加而呈几何级数的增长;支化因子随着代数的增加,逐渐变小;星形梳状高支化聚丁二烯的分子拓扑是密实的球形结构。G4代星形梳状高支化聚丁二烯的分子量分布仅为1.17,重均分子量(M_w)高达1.4×10~7,其支化度(f_w)高达3700,支化因子(g')仅为0.0040。
     采用环烷酸镍/三异丁基铝催化体系对分级后的G0-G4代星形梳状高支化聚丁二烯氢化反应,首次制备了高支化的G0-G4代星形梳状聚乙烯,其加氢度均大于99.0%,并具有一定结晶性和极性,是一类良好的模型聚乙烯。G4代星形梳状高支化聚丁二烯为G0-G4代星形梳状高支化聚丁二烯中分子量最高且支化程度也最高的星形梳状高支化聚丁二烯(M_w=1.8×10~7,f_w=6790),其加氢难度也最大,氢化G4代星形梳状高支化聚丁二烯的加氢度也高达99.5%;高度支化的氢化G4代星形梳状聚丁二烯的熔点和结晶温度均较低,且其结晶度仅为22.2%,但其耐热性比加氢前有了显著提高。
     以星形聚异戊二烯为基质,以环氧化聚异戊二烯为偶联剂,采用环氧化反应-偶联反应的迭代增长技术,首次合成了拓扑结构新颖的G0-G4代星形梳状高支化聚异戊二烯:随着代数的增加,其分子量和支化度呈几何级数的增长,支化因子随着代数的增加,逐渐变小;星形梳状高支化聚异戊二烯的分子拓扑是疏松的球形结构。G4代星形梳状高支化聚异戊二烯的重均分子量高达3.6×10~6,其支化度为765,而支化因子仅为0.0091。
     以环氧化星形液体聚丁二烯为偶联剂合成了结构新颖的星形梳状丁苯嵌段共聚物,其缺口冲击强度高达216J/m,且为冲击不断的材料。
The third class dendritic polymers, the dendrigraft polymers, combine features of dendrimers and hyperbranched polymers. The syntheses of dendrigraft polymers follow a generation-based growth scheme similar to dendrimers. Since the coupling reaction is a random process, the branched structure of dendrigraft polymers is similar to that of hyperbranched polymers. Utilization of polymeric chains as building blocks leads to a very rapid increase in molecular weight per generation, and the branched polymers with high molecular weight and narrow molecular weight distribution (MWD<1.50) can be produced in a few steps. As such, the dendrigraft polymers are increasingly a focus of widespread interests. Anionic polymerization is one of the most accurate and effective methods for the design of polymer architecture, though the synthesis of high molecular weight polymers is severely challenging due to its extremely sensitive to system cleanliness. The combination of anionic polymerization and coupling reaction for preparation of a high molecular weight and highly branched polymers with a controlled architecture is an important research direction. Recently, the dendrigraft polymers have been synthesized by grafting-onto method with a linear polymer chain serving as 'core' for the molecules, and its molecular topology is relatively simple.
     In this paper, star liquid polybutadienes were synthesized by the living anionic polymerization and coupling reaction, and then epoxidized by in situ peroxyformic acid. The epoxidized star liquid polybutadienes were refined until water and oxygen content below 10ppm to use as coupling agent for anionic polymerization system. A series of butadiene/isoprene/styrene star-comb homopolymers were successfully synthesized with the epoxidized star liquid polybutadiene as coupling agent, and the method has applied a Chinese patent; the star-comb butadiene/styrene block copolymers (SC-SBC) were prepared with the epoxidized star liquid polybutadiene as coupling agent, the impact performances of SC-SBCs are very excellent, and the method has applied a Chinese patent. Based on the philosophy of macromolecular design throughout the thesis, the author fully utilized the monomers of butadiene, isoprene, and styrene produced in bulk to synthesize a series of novel dendrigraft polymers with n-butyllithium as initiator, cyclohexane as solvent, THF as polar additives, epoxidized polymer as coupling agent. Following were the typical dendrigraft polymers prepared in this work, including the linear-comb dendrigraft polybutadiene, the star-comb dendrigraft polybutadiene, and the star-comb dendrigraft polyisoprene. In addition, the G0-G4 star-comb dendrigraft polybutadienes were hydrogenated by nickel naphthenate/3-isobutyl aluminum catalyst system to obtain G0-G4 star-comb dendrigraft polyethylenes. Furthermore, the molecular parameters、branching factors and thermal properties of the novel dendrigraft polymers mentioned above were thoroughly investigated.
     From the summary of the full thesis, it came to the main conclusions that:
     The linear and star liquid polybutadienes were synthesized by anionic polymerization and subsequent epoxidized by in situ peroxyformic acid method. Then the epoxidized liquid polybutadienes were refined and used as coupling agent for anionic polymerization system.
     A series of G0-G4 star-comb dendrigraft polybutadienes were successfully synthesized by cycles of epoxidation and coupling reaction with epoxidized polybutadiene as coupling agent and star polybutadiene as 'core'. The star-comb dendrigraft polybutadienes have narrow molecular weight distributions (MWD<1.23) consistent with a uniform molecular size and display geometric increases in molecular weight and branching functionality for successive generations. The branching factors decrease quickly as the increase of generation number. The molecular topology of the star-comb dendrigraft polybutadiene has a dense spherical structure. G4 star-comb dendrigraft polybutadiene has narrow MWD as low as 1.17, high molecular weight up to 1.4×10~7, branching functionality up to 3700, and branching factor as low as 0.0040.
     A series of G0-G4 star-comb dendrigraft polybutadienes were converted into the corresponding G0-G4 star-comb dendrigraft polyethylenes through the hydrogenation of polybutadienes. Catalytic hydrogenation was carried out with nickel naphthenate/ triisobutylaluminium system. The hydrogenation degrees of G0-G4 hydrogenated star-comb dendrigraft polybutadienes are as high as 99.0%. The star-comb dendrigraft polyethylenes exhibit certain degree of crystallinity and demonstrate certain degree of polarity, and are a class of good model polyethylene. G4 star-comb dendrigraft polybutadiene (M_w=1.8×10~7, f_w=6790), the highest molecular weight and most highly branched among G0-G4 star-comb dendrigraft polybutadienes, also has the bigger difficulty during hydrogenation. The hydrogenation degree of G4 hydrogenated star-comb dendrigraft polybutadiene is up to 99.5% and its degree of crystallinity is only 22.2%. Due to highly branched structure, G4 star-comb dendrigraft polyethylene has low melting temperature and crystallization temperature. Compared to G4 star-comb dendrigraft polybutadiene, the thermal stablity of G4 star-comb dendrigraft polyethylene has increased.
     A series of G0-G4 star-ccmb dendrigraft polyisoprenes were successfully synthesized by cycles of epoxidation and coupling reaction with epoxidized polyisoprene as coupling agent and star polyisoprene as 'core'. The star-comb dendrigraft polyisoprenes display geometric increases in molecular weight and branching functionality for successive generations. The branching factors decrease as the increase of generation number. The molecular topology of the star-comb dendrigraft polyisoprenes has a loose spherical structure. G4 star-comb dendrigraft polyisoprene has narrow MWD as low as 1.17, high molecular weight up to 3.6×10~6, branching functionality up to 765, and branching factor as low as 0.0091.
     The star-comb styrene/butadiene block copolymer was synthesized by anionic polymerization and coupling reaction with epoxidized star liquid polybutadiene as coupling agent. The notched izod impact strength of the star-comb butadiene/styrene block copolymer reaches as high as to 216J/m. The instrumented impact curve shows that the material is no fracture in 4ms.
引文
[1] TEERTSTRA S J, GAUTHIER M. Dendrigraft Polymers: Macromolecular Engineering on a Mesoscopic Scale[J]. Progress in Polymer Science, 2004, 29(4):277-327.
    [2] FRECHET J M J, TOMALIA D A. Dendrimers and Other Dendritic Polymers [M]. New York: Wiley VCH,2001.
    [3] NEWKOME G, MOOREFIELD C, VOGTLE F. Dendrimers and Dendrons: Concepts, Syntheses, Applications[M]. New York: Wiley VCH, 2001.
    [4] TOMALIA D A, DVORNIC P R. What Promise for Dendrimers[J]. Nature, 1994, 372 (6507): 617-618.
    [5] ZIMMERMAN S C, ZENG F, REICHERT D E C, et al. Self-Assembling Dendrimers[J]. Science, 1996, 271(5252):1095-1098.
    [6] 谭惠民,罗运军.树枝形聚合物[M].北京:化学工业出版社,2002.
    [7] 谭惠民,罗运军.超支化聚合物[M].北京:化学工业出版社,2005.
    [8] GAUTHIER M, MOLLER M. Uniform Highly Branched Polymers by Anionic Grafting: Arborescent Graft Polymers[J]. Macromolecules, 1991, 24(16):4548-4553.
    [9] TOMALIA D A, HEDSTRAND D M, FERRITTO M S. Comb-burst Dendrimer Topology. New Macromolecular Architecture Derived from Dendritic Grafting[J]. Macromolecules, 1991, 24(6): 1435-1438.
    [10] CLOUTET E, FILLAUT J L, ASTRUC D, et al. Newly Designed Star-Shaped Polystyrene: Synthesis and Characterization[J]. Macromolecules, 1998,31(20):6748-6755.
    [11] GRUBBS R B, HAWKER C J, DAO J, et al. A Tandem Approach to Graft and Dendritic Graft Copolymers Based on Living Free Radical polymerization[J]. Angewandte Chemie International Edition, 1997, 36(3):270-272.
    [12] KNAUSS D M, AL-MUALLEM H A, HUANG T, et al. Polystyrene with Dendritic Branching by Convergent Living Anionic Polymerization[J]. Macromolecules, 2000, 33(10):3557-3568.
    [13] ARSLAN H, HAZER B, HIGASHIHARA T, et al. Synthesis of Asymmetric Star-Branched Block Copolymers Based on PS, PTHF, and PMMA by Combination of Cationic Ring Opening Polymerization and Redox Polymerization Methods[J]. Journal of Applied Polymer Science, 2006, 102(1):516-522.
    [14] MINAKI N, KANKI K, MASUDA T. Synthesis of Star Polymer by Means of the Living Polymerization of [(o-trifluoromethyl)phenyl]acetylene Using a MoOCl_4-based Catalyst and the Linking Method[J]. Polymer, 2003,44(8):2303-2306.
    [15] SZWARC M, LEVEY M, MILKOVICH R. Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers[J]. Journal of the American Chemical Society, 1956,78(11):2656-2657.
    [16] 张洪敏,侯元雪.活性聚合[M].北京:中国石化出版社, 1998.
    [17] MIYAMOTO M, SAWAMOTO M, HIGASHIMURA T. Living Polymerization of Isobutyl Vinyl with the Hydrogen Iodide Initiating[J]. Macromolecules, 1984, 17(3):265-268.
    
    [18] FAUST R, NAGY A, KENNEDY P. Living Carbocationic Polymerization. 5. Linear Telechelic Polyisobutylenes by Bifunctional Initiators[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1987, 24(6) :595-609.
    [19] GEORGES M K, VEREGIN R P N, KAZMAIER P M, et al. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process[J]. Macromolecules, 1993,26(11): 2987-2988.
    [20] HAWKER C J, BARCLAY G G, ORELLANA A, et al. Initiating Systems for Nitroxide-Mediated "Living" Free Radical Polymerizations: Synthesis and Evaluation[J]. Macromolecules, 1996,29(16):5245-5254.
    [21] EMRICK T, HAYES W, FRECHET J M J. A TEMPO-Mediated "Living" Free-Radical Approach to ABA Triblock Dendritic Linear Hybrid Copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(20):3748-3755.
    [22] WANG J S, MATYJASZEWSKI K. Controlled "Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes[J]. Journal of the American Chemical Society, 1995,117(20):5614-5615.
    [23] PATTEN T E, XIA J, ABERNATHY T, et al. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization [J]. Science, 1996, 272(5263) :866-868.
    [24] MIN K, GAO H, MATYJASZEWSKI K. Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET) [J]. Journal of the American Chemical Society, 2005,127(11):3825-3830.
    [25] MAYADUNNE R T A, RIZZARDO E, CHIEFARI J, et al. Living Polymers by the Use of Trithiocarbonates as Reversible Addition—Fragmentation Chain Transfer (RAFT)Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps[J]. Macromolecules, 2000,33(2):243-245.
    [26] FAVIER A, CHARREYRE M-T. Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process[J]. Macromolecular Rapid Communications, 2006, 27(9):653-692.
    [27] WEBSTER J O W, HERDER W R, SOGAH D Y, et al. Group-transfer Polymerization. 1. A New Concept for Addition Polymerization with Organo-silicon Initiator[J]. Journal of the American Chemical Society, 1983, 105(17):5706-5708.
    [28] HERDER W R, SOGAH D Y, WEBSTER J O W, et al. Group-transfer Polymerization. 3. Lewis Acid Catalysis[J]. Macromolecules, 1984,17(7):1415-1417.
    [29] HADJICHRISTIDIS N, PITSIKALIS M, PISPAS S, et al. Polymers with Complex Architecture by Living Anionic Polymerization[J]. Chemical Review, 2001, 101 (12): 3747-3792.
    [30] 李爱香,鲁在君.结构明确的梳形支化聚合物的合成与表征[J].高分子学报,2008,(3):203-208.
    [31] RUCKENSTEIN E, ZHANG H. Well-defined Graft Copolymers Based on the Selective Living Anionic Polymerization of the Bifunctional Monomer 4-(vinylphenyl)-1-butene[J]. Macromolecules, 1999,32(19):6082-6087.
    [32] KOWALCZUK M, ADAMUS C X, JEDLINSKI Z. Synthesis of New Graft Polymers via Anionic Grafting of Beta-butyrolactone on Poly (methyl methacrylate) [J]. Macromolecules, 1994,27(2):572-575.
    [33] BEERS K L, GAYNOR S G, MATYJASZEWSKI K, et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules, 1998 31(26):9413-9415.
    [34] EDERLE Y, ISEL F, GRUTKE S, et al. Anionic Polymerization and Copolymerization Macromonomers: Kinetics, Structure Control[C]. Macromolecular Symposium, 1998,132:197-206.
    [35] KANAOKA S, SUEOKA M, SAWAMOTO M, et al. Star-shaped Polymers by Living Cationic Polymerization. Ⅶ. Amphiphilic Graft Polymers of Vinyl Ethers with Hydroxyl Groups Synthesis and Host-guest Interaction[J]. Journal of Polymer Science Polymer Chemistry Edition, 1993,31:2513-2521.
    [36] HONG K, UHRIG D, JIMMY W. Living Anionic Polymerization[J]. Current Opinion in Solid State and Materials Science, 1999, 4(6):531-538.
    [37] HATADA K, KITAYAMA T. Star Polymer Synthesis[M]. New York: Marcel Dekker, 1997.
    [38] GUAN Z. Control of Polymer Topology Through Late-transition-metal Catalysis[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(14):3680-3692.
    [39] ROOVERS J, ZHOU L L, TOPOROWSKI P M, et al. Regular Star Polymers with 64 and 128 Arms. Models for Polymeric Micelles[J]. Macromolecules, 1993,26(16): 4324-4331.
    [40] TSITSILIANIS C, LUTZ P, GRAFF S, et al. Core-First Synthesis of Star Polymers with Potentially Ionogenic Branches[J]. Macromolecules, 1991, 24(22) : 5897-5902.
    [41] ROOVERS J, TOPOROWSKI P. Relaxation by Constraint Release in Combs and Star-Combs[J]. Macromolecules, 1987, 20(9):2300-2306.
    [42] SCHAPPACHER M, DEFFIEUX A. New Polymer Chain Architecture: Synthesis and Characterization of Star Polymers with Comb Polystyrene Branches[J]. Macromolecules, 2000,33(20):7371-7377.
    [43] KOUTALAS G, IATROU H, LOHSE D J, et al. Well-Defined Comb, Star-Comb, and Comb-on-Comb Polybutadienes by Anionic Polymerization and the Macromonomer Strategy[J]. Macromolecules, 2005,38(12):4996-5001.
    [44] KAPNISTOS M, KOUTALAS G, HADJICHRISTIDIS N, et al. Linear Rheology of Comb Polymers with Star-like Backbones: Melts and Solutions[J]. Rheologica Acta, 2006, 46(2): 273-286.
    [45] LI J, GAUTHIER M. A Novel Synthetic Path to Arborescent Graft PolystyrenesQ]. Macromolecules, 2001,34(26):8918-8924.
    [46] HEMPENIUS M A, MICHELBERGER W, MOLLER M. Arborescent Graft Polybutadienes [J]. Macromolecules, 1997,30(19):5602-5605.
    [47] YUAN Z S, GAUTHIER M. Synthesis of Arborescent Isoprene Homopolymers[J]. Macromolecules, 2005,38(10):4124-4132.
    [48] LI J, GAUTHIER M, TEERTSTRA S J, et al. Synthesis of Arborescent Polystyrene-graft-polyisoprene Copolymers Using Acetylated Substrates[J]. Macromolecules, 2004, 37(3):795-802.
    [49] KEE R A, GAUTHIER M. Arborescent Polystyrene-graft-polyisoprene Copolymers [J]. Macromolecules, 1999,32(20):6478-6484.
    [50] KEE R A, GAUTHIER M. Arborescent Polystyrene-graft-poly(2-vinylpyridine) Copolymers: Synthesis and Enhanced Polyelectrolyte Effect in Solution[J]. Macromolecules, 2002,35(17):6526-6532.
    [51] GAUTHIER M, LI J, DOCKENDORFF J. Arborescent Polystyrene-graft -poly(2-vinylpyridine) Copolymers as Unimolecular Micelles. Synthesis from Acetylated SubstratesQ]. Macromolecules, 2003, 36(8):2642-2648.
    [52] KEE R A, GAUTHIER M. Synthesis of Poly(2-vinylpyridine) and Poly(tert-butyl methacrylate) Arborescent Copolymers: Branched Polyelectrolyte Precursors [J]. Polymer Preprints, 1999, 40(2):165-166.
    [53] SIX J L, GNANOU Y. From Star-shaped to Dendritic Poly(ethylene oxide)s: toward Increasingly Branched Architectures by Anionic Polymerization[C]. Macromolecular Symposium, 1995,95:137-150.
    [54] TROLLSAS M, HEDRICK J L. Dendrimer-like Star Polymers[J]. Journal of the American Chemical Society, 1998, 120(19):4644-4651.
    [55] FENG X S, TATON D, CHAIKOF E L, et al. Toward an Easy Access to Dendrimer-like Poly (ethylene oxide)s[.J]. Journal of the American Chemical Society, 2005, 127(31) : 10956-10966.
    [56] LEPOITTEVIN B, MATMOUR R, FRANCIS R, et al. Synthesis of Dendrimer-Like Polystyrene by Atom Transfer Radical Polymerization and Investigation of Their Viscosity Behavior[J]. Macromolecules, 2005, 38(8):3120-3128.
    [57] MATSUO A, WATANABE T, HIRAO A. Synthesis of Weil-Defined Dendrimer-like Branched Polymers and Block Copolymer by the Iterative Approach Involving Coupling Reaction of Living Anionic Polymer and Functionalization[J]. Macromolecules, 2004,37(17):6283-6290.
    [58] HIRAO A, SUGIYAMA K, TSUNODA Y, et al. Precise Synthesis of Well-Defined Dendrimer-Like Star-Branched Polymers by Iterative Methodology Based on Living Anionic Polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006,44(23):6659-6687.
    [59] TATON D, FENG X S, GNANOU Y. Dendrimer-like Polymers: a New Class of Structurally Precise Dendrimers with Macromolecular Generations[J]. New Journal of Chemistry, 2007,31:1097-1110.
    [60] YUAN Z S, GAUTHIER M. One-Pot Synthesis of Arborescent Polystyrenes[J]. Macromolecules, 2006,39(6):2063-2071.
    [61] WALACH W, KOWALCZUK A, TRZEBICKA B, et al. Synthesis of High-molar Mass Arborescent-branched Polyglycidol via Sequential Grafting[J]. Macromolecular Rapid Communications, 2001, 22(15):1272-1277.
    [62] HAWKER C J, FRECHET J M J. Preparation of Polymers with Controlled Molecular Architecture. A new Convergent Approach to Dendritic Macromolecules [J]. Journal of American Chemical Society, 1990,112(21):7638-7647.
    [63] GUNATILLAKE P A, ODIAN G, TOMALIA D A. Thermal Polymerization of a 2-(carboxyalkyl)-2-oxazoline[J]. Macromolecules, 1988,21(6):1556-1562.
    [64] KIM Y H, WEBSTER 0 W. Water-Soluble Hyperbranched Polyphenylene: a Unimolecular Micelle[J]. Journal of American Chemical Society, 1990,112(11):4592-4593.
    [65] FRECHET J M J, HENMI M, GITSOV I, et al. Self-condensing Vinyl Polymerization: an Approach to Dendritic Materials[J]. Science, 1995, 269(5227):1080-1085.
    [66] PUSKAS J E, GRASMULLER M. Star-branched and Hyperbranched Polyisobutylenes[C]. Macromolecular Symposium, 1998,132:117-126.
    [67] PAULO C, PUSKAS J E. Synthesis of Hyperbranched Polyisobutylenes by Inimer-type Living Polymerization. Part 1. Investigation of the Effect of Reaction Conditions[J]. Macromolecules, 2001, 34(4):734-739.
    [68] MEZZENGA R, MANSON J A E. Thermo-mechanical Properties of Hyperbranched Polymer Modified Epoxies[J]. Journal of Materials Science, 2001,36:4883-4891.
    [69] KNAUSS D M, AL-MUALLEM H A. Polystyrene with Dendritic Branching by Convergent Living Anionic Polymerization. Part II. Approach using Vinylbenzyl Chloride[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(23):4289-4298.
    [70] MEZZENGA R, BOOGH L, MANSON J A E. A Review of Dendritic Hyperbranched Polymers as Modifiers in Epoxy Composities[J]. Composities Science and Technology, 2001, 61(5):787-795.
    [71] KARGER-KOCSIS J, FROHIICH J, GRYSHCHUK O, et al. Synthesis of Reactive Hyperbranched and Star-like Polyethers and Their Use for Toughening Vinylester-Urethane Hybrid Resins[J]. Polymer, 2004, 45(4):1185-1195.
    [72] KLEE J E, SCHNERDER C, HSLTER D, et al. Hyperbranhced Polyesters and Their Application in Dental Composites: Monomers for Low Shrinking Composites[J]. Polymers for Advanced Technologies, 2001,12(4):346-354.
    [73] JOHANSSON M, MALMSTROM E, JASSON A, et al. A Novel Concept for Low Temperature Curing Powder Coating Based on Hyperbranched Polyesters[J]. Journal of Coating Technology, 2000, 72(906):49-54.
    [74] ZHANG Y D, WADA T, SASABE H. A New Hyperbranched Polymer with Polar Chromophores for Nonlinear Optics[J]. Polymer, 1997,38(12):2893-2897.
    [75] KOU H G, ANILA A, SHI W F. Photopolymerizable Acrylated Hyperbranched Polyisophthesters Used for Photorefractive Materials: I. Synthesis and Characterization[J]. European Polymer Journal, 2002, 38(10):1931-1936.
    [76] DUAN L, QIU Y, HE Q G, et al. A Novel Hyperbranched Conjugated Polymer for Electroluinescence Application[J]. Synthetic Metals, 2001,124(2/3):373-377.
    [77] GAOC, YAN D. Hyperbranched Polymers: From Synthesis to Applications[J]. Progress in Polymer Science, 2004,29(3):183-275.
    [78] SVENSON S, TOMALIA D A. Dendrimers in Biomedical Applications-Reflections on the Field[J]. Advanced Drug Delivery Reviews, 2005,57:2106-2129.
    [79] TOMALIA D A. Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Polymer Chemistry[J]. Progress in Polymer Science, 2005,30(3/4):294-324.
    [80] ZENG F W, ZIMMERMAN S C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly[J]. Chemical Review, 1997, 97(5):1681-1712.
    [81] FROEHLING P E. Dendrimers and Dyes[J]. Dyes and Pigments, 2001,48:187-195.
    
    [82] COOPER A I, LONDONO J D, WIGNALL G. Extraction of a Hydrophilic Compound From Water Into Liquid CO_2 using Dendritic Surfactants[J]. Nature, 1997,389:368-371.
    [83] HEST J C M, DELNOYE D A P, BAARS M, et al. Polystyrene-Dendrimer Amphiphilic Block Copolymers with a Generation-Dependent Aggregation[J]. Science, 1995,268(5217):1592-1595.
    [84] 王维.液体聚丁二烯在橡胶加工、树脂、电子及电力工业中的应用[J].弹性体,2000,10(1):30-33.
    [85] 陈勇,赵巍,谢洪泉.顺丁橡胶及环氧化产物作为增容剂的研究[J].弹性体,2007,17(1):28-31.
    [86] ZHANG C Q, CHEN C, ZHANG H X, et al. Coupling Agent of Epoxidized Liquid Polybutadiene for Anionic Polymerization of Butadiene[J]. China Synthetic Rubber Industry, 2008, 31(5):403.
    [87] ZUCHOWSKA D. Polybutadiene Modified by Epoxidation. 1. Effect of Polybutadiene Microstructure on the Reactivity of Double Bonds[J]. Polymer, 1980,21(5): 514-520.
    [88] RUDLER H, GREGORIO J R, Denise B, et al. Assessment of MTO as a Catalyst for the Synthesis of Acid Sensitive Epoxides. Use of the Biphasic System H_2O_2/CH_2Cl_2 with and without Bipyridine and Influence of the Substituents on the Double Bonds[J]. Journal of Molecular Catalysis A: Chemical, 1998,133:255-265.
    [89] GILMAN H, HAUBEIN A H. The Quantitative Analysis of Alkyllithium Compounds[J]. Journal of the American Chemical Society, 1944, 66(9):1515-1516.
    [90] AGUIAR M, MENZEZES S C DE, AKCELRUD L. Configurational Double Bond Selectivity in the Epoxidation of Hydroxy-terminated Polybutadiene with M-chloroperbenzoic Acid[J]. Macromolecular Chemistry and Physics, 1994,195(12):3937-3948.
    [91] ALAVI NIKJE M M, RAFIEE A, HAGHSHENAS M. Epoxidation of Polybutadiene using in Situ Generated Dimethyl Dioxirane(DMD) in the Presence of Tetra-n-butyl Ammonium Bromide[J]. Designed Monomers and Polymers, 2006,9(3):293-303.
    [92] 王维,安宁.液体聚丁二烯的环氧化[J].石化技术,1996,3(1):24-27.
    [93] MAENZ K, SCHUETZ H. STADERMANN D, et al. Structural Investigations on Low Molecular Weight Polybutadienes and the Corresponding Epoxides[J]. European Polymer Journal, 1993,29(6):855-861.
    [94] GREGORIO J R, GERBASE A E , MENDES A N, et al. Pre-determination of the Epoxidation Degree of Polydienes using Methyltrioxorhenium-CH_2Cl_2/H_2O_2 Biphasic Catalytic System[J]. Reactive & Functional Polymers, 2005,64(2):83-91.
    [95] WANG Y R, QI S C, SONG X Q, et al. Epoxidation of Low Vinyl Polybutadiene Rubbers[J]. China Synthetic Rubber Industry, 1998,21(2):1.
    [96] WANG X S, WINNIK M A, MANNERS I. Synthesis of the First Organometallic Miktoarm Star Polymer[J]. Macromolecular Rapid Communications, 2003, 24(5/6):403-407.
    [97] 易严德.星形SBS德的偶联反应[J].合成橡胶工业,2000,23(2):78-80.
    [98] LIU S Y, ZHANG C Q, ZENG F J. Anionic Homopolymerization of Butadiene with Epoxidized Soybean Oil as Coupling Agent[J]. China Synthetic Rubber Industry, 2006, 29(3):227.
    [99] TURNER R B, GEORGETOWM T X, CASPER D M. Method of Preparing an Epxoidized Functional Vegetable Oil:USA,2005159608[P].2005, 7,21.
    [100] HELLER J, SCHIMSCHEIMER J F, PASTERNAK R A, et al. Synthesis of 4-vinylbiphenyl -isoprene Block Copolymer and Their Characterization by Gel-permeation Chromatography[J]. Journal of Polymer Science. Part A. Polymer Chemistry,1969,7:73-81.
    [101] 金关泰,李大虎.四氢吠喃添加剂对丁二烯阴离子聚合的影响[J].化工学报,1985,2:215-223.
    [102] 薛联宝,金关泰.阴离子聚合的理论和应用[M].北京:中国友谊出版公司,1990.
    [103] 刘炼,顾明初,应圣康.丁二烯阴离子聚合动力学及活性种的研究[J].高分子学报,1987,3:206-221.
    [104] LIANG G D, XU J T, FAN Z Q. Synthesis of Polystyrene-b-poly(ethylene-co-butene) Block Copolymers by Anionic Living Polymerization and Subsequent Noncatalytic HydrogenationLJ]. Journal of Applied Polymer Science, 2006, 102(3):2632-2638.
    [105] F1ORY P J. Principles of Polymer Chemistry[M]. 1st ed. London: Cornell University Press, 1953.
    [106] HADJICHRISTIDIS N, XENIDOU M, IATR0U H, et al. Well-Defined, Model Long Chain Branched Polyethylene. 1. Synthesis and Characterization[J]. Macromolecules 2000, 33(7):2424-2436.
    [107] ODIAN G. Principles of Polymerization[M]. 4th ed. New York: John Wiley & Sons, 2004.
    [108] ROY S, GUPTA B R, DE S K. Elastomer Technology Handbook[M]. Florida: CRC Press, 1993.
    [109] DEUBEL D V. Are Peroxyformic Acid and Dioxirane Electrophilic or Nucleophilic Oxidants[J]. The Journal of Organic Chemistry, 2001,66(11):3790-3796.
    [110] BENDER J T, KNAUSS D M. Synthesis of Low Polydispersity Polybutadiene and Polyethylene Stars by Convergent Living Anionic Polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(2):828-836.
    [111] XU Z, SONG M, HADJICHRISTIDIS N, et al. Method for Gel Permeation Chromatography Calibration and the Evaluation of Mark-Houwink-Sakurada Constants[J]. Macromolecules, 1981,14(5):1591-1594.
    [112] WOOLEY K L, HAWKER C J, POCHAN J M, et al. Properties of Dendritic Macromolecules: a Study of Glass Transition Temperature[J]. Macromolecules, 1993, 26(7):1514-1519.
    [113] GAUTHIER M, LI W, TICHAGWA L. Hard Sphere Behaviour of Arborescent Polystyrenes: Viscosity and Differential Scanning Calorimetry Studies[J]. Polymer, 1997, 38(26):6363-6370.
    [114] ROLAND C M. Terminal and Segmental Relaxations in Epoxidized Polyisoprene[J]. Macromolecules, 1992, 25(25):7031-7036.
    [115] THAMES S F, POOLE P W. The Modification of Secondary High Molecular Weight Guayule Rubber with Metachloroperoxybenzoic Acid[J]. Journal of Applied Polymer Science, 1993, 47(7):1255-1262.
    [116] ORFANOU K, IATROU H, LOHSE D J, et al. Synthesis of Well-Defined Second (G-2) and Third (G-3) Generation Dendritic Polybutadienes[J]. Macromolecules, 2006, 39(13):4361-4365.
    [117] Bender J T, KNAUSS D M. Dendritic Polystyrene with Hydroxyl-Functionalized Branch Points by Convergent Living Anionic Polymerization[J]. Macromolecules, 2009,42(7):2411-2418.
    [118] PRYKE A, BLACKWELL R J, MCLEISH T C B, et al. Synthesis, Hydrogenation, and Rheology of 1, 2-Polybutadiene Star Polymers[J]. Macromolecules, 2002, 35(2):467-472.
    [119] PAN Q M, REMPEL G L. Hydrogenation of Styrene-Butadiene Rubber Catalyzed by Ru(CH=CHPh)Cl(C0)(PCy_3)_2[J]. Macromolecluar Rapid Communication, 2004, 25(8): 843-847.
    [120] FERNYHOUGH C M, YOUNG R N, POCHE D, et al. Synthesis and Characterization of Polybutadiene and Poly(ethylene-l-butene) Combs[J]. Macromolecules, 2001, 34(20):7034-7041.
    [121] LOHSE D J, GARCIA-FRANCO C, HADJICHRISTIDIS N. Synthesis and Use of Well-defeined Highly-branched Saturated Hydrocarbon Polymers: USA, 2007/0135583[P]. 2007,6,14.
    [122] KNAUSS D M, HUANG T Z. ((PS),,PS). Star-Shaped Polystyrene with Star-Shaped Branches at the Terminal Chain Ends by Convergent Living Anionic Polymerization[J].Macromolecules, 2003, 36(16):6036-6042.
    [123] GEMMER R V, GOLUB M A. ~(13)C NMR Spectroscopic Study of Epoxidized 1,4-Polyisoprene and 1,4-Polybutadiene[j]. Journal of Polymer Science Polymer Chemistry Edition, 1978,16:2985-2990.
    [124] PEACOCK A J. Handbook of Polyethylene Structures: Properties, and Applications[M]. New York: Marcel Dekker, Inc. ,2000.
    [125] MO Z S, ZHANG H F. Structure of Crystalline Polymers by X-ray Diffraction[M]. 1st ed, Beijing: Science Press, 2003.
    [126] VELDEN G VAN DER, DIDDEN C, VEERMANS T, et al. New Method for the Microstructure Determination of Polybutadiene with Cz's-1,4, Trans-1,4, and Vinyl-1, 2 Units by ~(13)C NMR[J]. Macromolecules, 1987,20(6):1252-1256.
    [127] ROOVERS J. Linear Viscoelastic Properties of Polybutadiene. A Comparison with Molecular Theories[J]. Polymer Journal, 1986,18(2):153-162.
    [128] HWANG J, FOSTER M D, QUIRK R P. Synthesis of 4-, 8-, 12-arm Star-branched Polybutadienes with Three Different Chain-end Functionalities using a Functionalized Initiator[J]. Polymer, 2004,45(3):873-880.
    [129] GREGORIO J R, GERBASE A E, MARTINELLI M, et al. Very Efficient Epoxidation of 1, 4-polybutadiene with the Biphasic System Methyltrioxorhenium (MTO)-CH_2Cl_2/H_2O_2[J]. Macromolecular Rapid Communications, 2000, 21(7):401-403.
    [130] RAFAEL H N, HERRERA NAJERA R, PETIT A, et al. Selective Hydrogenation of Butadiene-Styrene Copolymers using a Ziegler-Natta Type Catalyst: 1. Kinetic Study[J]. European Polymer Journal, 2000,36(9):1817-1834.
    [131] MOHANTY S, MUKUNDA P G, NANDO G B. Thermal Analysis of Blends of Poly(ethylene-co-acrylic acid) (PEA) and Epoxidised Natural Rubber (ENR)[J]. Polymer Degradation and Stability,1995,50:21-28.
    [132] GNECCO S, POOLEY A, KRAUSE M. Epoxidation of Low-molecular-weight Euphorbia Lactiflua Natural Rubber with "in situ" Formed Performic Acid[J]. Polymer Bulletin, 1996,37(5):609-615.
    [133] WANG X H, ZHANG H X, WANG Z G, et al. Toughening of Poly(butylene terephthalate) with Epoxidized Ethylene Propylene Diene Rubber[J]. Polymer, 1997, 38(7): 1569-1572.
    [134] MORESE-SEGUELA B, ST-JACQUES M, RENAUD J M, et al. Distribution of Cis-1, 4 and Trans-1, 4 Units in 1, 4-Polyisoprene Prepared with Butyllithium in Nonpolar Solvent[J]. Macromolecules, 1977,10(2):431-432.
    [135] JACKSON C, CHEN Y J, MAYS J W. Size Exclusion Chromatography with Multiple Detectors: Solution Properties of Linear Chains of Varying Flexibility in Tetrahydrofuran[J]. Journal of Applied Polymer Science, 1996, 61(5):865-874.
    [136] MOCZYGEMBA G A, SWISHERGM, DEPORTER C D, et al. Conjugated diene/monovinylarene Block Copolymers Blends: USA, 2004059057[P]. 2004,3,25.
    [137] 谢尔斯,普里迪.现代苯乙烯系聚合物[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700