天然产物分离纯化过程中层析技术的研究——应用及相关过程模型化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层析分离技术是应用最广泛的一种天然产物分离纯化技术。目前对该技术的研究可以概括为应用和理论研究两个方面,但两个方面的研究都存在着一些不足之处。在应用方面,现存层析工艺大多存在处理量低、应用成本较高等缺陷;在理论研究方面,则主要是缺乏完善的过程模拟计算方法。这些问题的存在严重阻碍了该技术的进一步发展。因此,建立高效、廉价、简便的层析工艺,完善相关层析过程的模型化研究具有非常重要的理论与实际意义。
     本文探讨了大孔吸附树脂固定床层析技术在天然产物分离纯化中的应用,旨在建立一条低成本,适合工业化生产的工艺路线。并着重对相关层析过程进行了模型化研究,基于人工神经网络(ANN)强大的非线性系统描述能力,分别建立了ANN-大孔吸附树脂固定床传质动力学模型(ANN-Fixed bed)、ANN-高效液相色谱优化模型(ANN-HPLC)以及ANN-高速逆流色谱优化模型(ANN-HSCCC),进一步完善了层析过程的模拟计算方法。
     本文首先建立了大孔吸附树脂固定床层析与结晶相结合的纯化工艺,并从热力学的角度考察了吸附过程的本质。通过工艺条件的优化,实现了茄尼醇的纯化,一次性将其纯度从50%左右提高到了94.51%,说明大孔吸附树脂固定床层析技术是实现工业化生产切实可行的办法。研究结果表明,高极性溶剂和低温环境有利于增大树脂的吸附量;增大料液浓度、降低流速、增大层析柱高径比,会提高柱吸附量。但浓度过高会降低溶质在柱床中的保留时间,流速过慢会使上样周期变长,柱子越长柱压会相应的增大;在洗脱过程中,随着洗脱剂极性的增大,产品纯度提高但收率降低,因此在本文中采用分步洗脱的方式;热力学研究表明,大孔树脂对茄尼醇的吸附为物理吸附,吸附过程能够自发进行,茄尼醇被树脂吸附后运动受到更大限制使系统变得更有序。以上研究结果可以为进一步将大孔吸附树脂固定床层析技术应用于天然产物的分离纯化提供有效的帮助。
     为了更深入的认识大孔吸附树脂固定床层析过程,本文对其分离过程中的传质动力学进行了研究。改进了传统的普通速率模型(GR模型),用于描述层析过程中的穿透行为。相比传统的GR模型,本文从粒径分布(PSD)和等温线变化(VOI)两方面对模型进行了完善。模型计算结果表明,当GR模型只考虑PSD或只考虑VOI的时候,计算结果与实验结果有比较明显的差别。当模型没有考虑PSD的影响时,计算得到的穿透曲线斜率较大,穿透点提前,而且更早的达到平衡;当模型没有考虑到VOI时,计算得到的穿透曲线具有更小的斜率,穿透时间延长,达到平衡的时间延长;当将以上两方面的因素补充到GR模型后,计算结果与实验值更加接近。这些研究结果为进一步完善GR模型提供了参考。
     鉴于GR模型表达式及求解过程相对复杂。本文建立了一种更加简单、准确的模型-ANN-Fixed bed模型,预测层析过程的穿透行为。结果表明,ANN-Fixed bed模型预测结果能够更好的与实验结果相吻合,线性相关系数R~2>0.98,平均方差小于0.05。利用该模型对实验参数进行考察发现,随着原料液浓度的降低、吸附介质粒径的减小、吸附介质颗粒孔隙率的增加以及高径比的增加,穿透曲线变陡,达到穿透点所需要的时间变长;随着流速的增加以及柱床空隙率的增加,达到穿透点所需要的时间缩短。这些研究结果对于进一步优化层析工艺,提高层析吸附量具有很好的指导意义。
     在建立ANN-HPLC模型过程中,本文首次通过序列的结合ANN和色谱响应函数(CRF)建立了一种新的化学计量学模型,用于色谱分离条件的优化。利用该模型,本文成功的一次性优化得到了适用于三种不同色谱分离目的的最优操作条件,并在预测的最优操作条件下得到了预期的色谱图,证明了该模型的有效性。该方法改善了以往模型灵活性不足的缺点,同时也为建立更加灵活、有效的色谱分离条件优化模型提供了新思路。
     在建立ANN-HSCCC模型过程中,本文首次利用ANN探讨了逆流色谱分离过程中固定相的保留机理,通过对网络输入变量的考察发现,固定相保留率随着流动相流速和黏度的增加而减小,随着转速和溶剂体系上下相密度差的增加而增大,并且输入变量之间存在明显相互作用。在此基础上,通过结合Box-Behnken响应面模型与Derringer色谱响应函数,建立了逆流色谱分离条件优化模型。方差分析结果表明,p-value<0.0001,R~2(Adj)>0.96,说明建立的模型能够很好的描述本文所研究的体系。利用该模型,本文成功实现了对逆流色谱分离过程中分辨率和分析时间的综合优化。由于在逆流色谱分离过程中,一般需要较长的分析时间和消耗大量的溶剂,这些研究结果将有助于更加有效的优化逆流色谱分离过程,提高色谱分离效率。
Chromatography has become one of the most widely used techniques in separation and purification of natural substances. However, the relevant studies on this technique are not comprehensive, especially on the fundamental studies. The goal of this paper is to study the chromatographic processes widely used in natural substances separation and purification, including both application and fundamental aspects. In application research, an economical method combining adsorption chromatography and crystallization was developed. In modeling research, the artificial neural network (ANN) was used to simulate the chromatographic processes. In this paper, the ANN-flxed bed model, ANN-reverse phase liquid chromatography model (ANN-HPLC) and ANN-high speed counter current chromatography model (ANN-HSCCC) were developed.
     In this paper, the separation of solanesol using fixed bed chromatography with macroporous resins was studied and then the solanesol was further purified by crystallization. By using this method, the purity of solanesol increased from 50% to 94.51%. The results showed that high-polarity solvent and low temperature were advantageous to the adsorption process; the stepwise elution was adopted in desorption process; the thermodynamic parameters such as enthalpy, Gibbs free energy and entropy changes were calculated and these values showed that solanesol adsorption process was exothermic and spontaneous. The results obtained in this part may provide scientific references for the large-scale solanesol production from tobacco leaves extracts.
     The general rate model including particle size distribution (PSD) and variation of isotherm (VOI) was developed. To examine the validity of the model, the theoretical predictions were compared with the experimental data obtained at different conditions. The results showed that the theoretical predictions were well consistent with the experimental data. The calculated results also showed that apparent differences can be observed between experimental data and the simulated results when only the PSD or VOI was taken into account. The theoretical predictions by model without considering PSD showed that the breakthrough occurred earlier and approached the plateau concentration much faster. The theoretical predictions by model without considering VOI showed that the breakthrough curve became less steeper and the time required to reach breakthrough point and plateau concentration was delayed.
     When developing the ANN- fixed bed model, the model was developed to describe the breakthrough behavior in fixed bed with macroporous resins. The encouraging simulated results showed that the ANN model could describe present system better than the modified general rate model. By using the predictive ability of ANN model, the influence of each experimental parameter was investigated. Predicted results showed that with the increases of particle porosity and the ratio of bed height to inner column diameter (ROHD), the breakthrough time was delayed. On the contrary, an increase in feed concentration, flow rate, mean particle diameter and bed porosity decreased the breakthrough time. When developing the ANN-HPLC model, an optimization strategy combining ANN and chromatographic response function (CRF) for chromatographic separation in HPLC was proposed. The ANN was used to simultaneously predict the resolution and analysis time, which are the two most important aspects in chromatographic separation. Subsequently, a CRF consisting of resolution and analysis time was used to predict the optimal operation conditions for different specialized purposes. The expected chromatograms were obtained at the predicted conditions, which verified the applicability of present method. Based on the results of this study, sequential combination of ANN and CRF can provide a more general, flexible and efficient optimization method for chromatographic separation.
     When developing ANN-HSCCC model, the effects of separation parameters on retention of stationary phase (S_f), resolution and retention time were studied. The ANN was used to simultaneously predict the effects of operation conditions and physical properties of two-phase systems on S_f. It was found that more accurate predictions were achieved by means of the ANN. Subsequently, a chemometrics approach combining Box-Behnken response surface model and Derringer's desirability function was applied for simultaneous optimization of resolution and analysis time in HSCCC. The merging of the two parameters was accomplished using the Derringer's desirability function with subsequent optimization by a Box-Behnken response surface design. The developed model was checked by statistical analysis. By implementing the optimal conditions predicted by the validated model, enhanced resolution between two similar analytes was achieved in a reasonable time. The analyses and results obtained in this paper will benefit to improve the efficiency of CCC separation.
引文
[1]Rihard J P C.Natural Products Isolation[M].Totowa,New Jersey:Humana Press,1998,1-51
    [2]Leslie S E.The centenary of the invention of chromatography[J].Journal of Chromatographic Science,2003,41(5):225-226
    [3]Karlsson E,Ryden L,Berwer J.Ion exchange chromatography.In:Janson J C,Ryden L,eds.Protein Purification,Principles,High resolution methods and application[M].NewYork:Wiley,1989,107-148
    [4]Ryszard A,Feeridoon S.A rapid chromatographic method for separation of individual catechins from green tea[J].Food Research International,1996,29(1):71-76
    [5]Bevan C D,Masrhall P S.The use of supercritical fluids in the isolation of natural Products[J].Natural Product Reports,1994,11(5):451-466
    [6]Rodrigues A E,Loureiro J M,Chenou C,Rendueles de la Vega M.Bioseparations with Permeable Particles[J].Journal of Chromatography B,1995,664:233-240
    [7]贺湘凌,谭天伟,Jnason J C.利用环糊精键合固定相分离纯化葛根素[J].色谱,2003,21(6):610-613
    [8]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1993,347-352
    [9]达世禄.色谱学导论[M].武汉:武汉大学出版社,1999,53-90
    [10]Gu T.Mathematical Modeling and Scale-up of Liquid Chromatography[M].Berlin:Springer,1995,9-10
    [11]Liu R M,Chu X,Sun A L.Journal of Chromatography A,2005,1074(1/2):139-144
    [12]Tong S Q,Yah J Z,Lou J Z.Journal of Liquid Chromatography & Related Technologies,2005,28(18):2979-2989
    [13]Liu Z L,Yu Y,Shen P N.Separation and Purification Technology,2008,58(3):343-346
    [14]金艳,沈平婊,张继全.中药研究与信息,2005,7(12):13-15.
    [15]Liu Z L,J in Y,Shen P N.Talanta,2007,71(5);1873-1876
    [16]Wang X,Geng Y L,Li F W.Journal of Chromatography A,2006,1115(1/2):267-270
    [17]褚建军,颜继忠.浙江工业大学学报,2006,34(1):59-61
    [18]陈建华,黄少烈,李忠.中国现代应用药学,2006,23(4):295-297
    [19]Tang Q F,Yang C H,Ye W C.Journal of Chromatography A,2007,1144(2):203-207
    [20]OuYang X K,Jin M C,He C H.Separation and Purification Technology,2007,56(3):319-324
    [21]Han C,Chen J H,Liu J.Talanta,2007,71(2):801-805
    [22]Jerz G,Arrey T N,Wray V.Innovative Food Science and Emerging Technologies,2007,8:413-418
    [23]Liu R M,Li A F,Sun A L.Journal of Chromatography A,2005,1064(1):53-57
    [24]Wu S J,Sun A L,Liu R M.Journal of Chromatography A,2005,1066(1/2):243-347
    [25]Li H B,Chen F.Journal of Chromatography A,2005,1074(1/2):107-110
    [26]马晓丰,屠鹏飞,陈英杰.色谱,2005,23(3):299-301
    [27]彭金咏,范国荣,吴玉田.中国药学杂志,2006,41(13):977-979
    [28]孙爱玲,孙清华,柳仁民.分析化学,2006,34:243-246
    [29]Li H B,Chen F.Journal of Chromatography A,2005,1083(1/2):102-105
    [30]Zhou T T,Zhu Z Y,Fan G R.Journal of Pharmaceutical and Biomedical Analysis,2007,44:96-100
    [31]Sun Q H,Sun A L,Liu R M.Journal of Chromatography A,2006,1104(1/2):69-74
    [32]Hart X,Ma X F,Zhang T Y.Journal of Chromatography A,2007,1151(1/2):180-182
    [33]Du Q Z,Li L,Jerz G.Journal of Chromatography A,2005,1077(1):98-101
    [34]Wang X,Cheng C G,Sun Q L.Journal of Chromatography A,2005,1075(1/2):127-131
    [35]Ma C J,Li G S,Zhang D L.Journal of Chromatography A,2005,1078(1/2):188-192
    [36]Kohler N,Winterhalter P.Journal of Chromatography A,2005,1072(2):217-222
    [37]Maier T,Sanzenbacher S,Kammerer D R.Journal of Chromatography A,2006,1128(1/2):61-67
    [38]Chen J H,Wang F M.Talanta,2006,69(1):172-179
    [39]Gu M,Wang X L,Su Z G.Jourmal of Chromatography A,2007,1140(1/2):107-111
    [40]Wang X,Geng Y L,Li F W.Journal of Chromatography A,2006,1103(1):166-169
    [41]Zhao W H,Gao C C,Ma X E Journal of Chromatography B,2007,850(1/2):523-527
    [42]Geng Y L,Liu J H,Lv R M.Separation and Purification Technology,2007,55(1):40-43
    [43]Lu J J,Wei Y,Yuan Q P.Sep Purif Technol,2007,55(1):40-43
    [44]Wei Y,Ito Y.Journal of Chromatography A,2006,1115(1/2):112-117
    [45]Liu R M,Sun Q H,Shi Y R.Journal of Chromatography A,2005,1076(1/2):127-132
    [46]Liu R M,Sun Q H,Shi Y R.Journal of Chromatography A,2005,1072(2):195-199
    [47]Peng J Y,Dong F Q,Xu Q W.Journal of Chromatography A,2006,1135(2):151-157
    [48]Yan J Z,Tong S Q,Sheng L Q.Journal of Liquid Chromatography & Related Technologies,2006,29:1307-1315
    [49]Peng J Y,Zhang L B,Dong F Q.Separation and Purification Technology,2007,6:18-25
    [50]Wang X,Li F W,Sun Q L.Journal of Chromatography A,2005,1063(1/2):247-251
    [51]Huang T H,Shen P N,Shen Y J.Journal of Chromatography A,2005,1066(1/2):239-242
    [52]Peng J Y,Fan G R,Qu L P.Journal of Chromatography A,2005,1082(2):203-307
    [53]Li H B,Chen E Journal of Chromatography A,2005,1083(1/2):102-105
    [54]Li A F,Sun A L,Liu R M.Journal of Chromatography A,2005,1076(1/2):193-197
    [55]Frighetto N,Welendorf R M,Da Silva A M P.Phytochemical Analysis,2005,16(6):411-414
    [56]Lu Y B,Sun C R,Pan Y J.Journal of Separation Science,2006,29(2):314-318
    [57]Shi S P,Jiang D,Zhao M B.Journal of Chromatography A,2007,852(1/2):679-683
    [58]Chu X,Sun A L,Liu R M.Journal of Chromatography A,2005,1097(1/2):33-39
    [59]杨悦武,郭治昕.化学工业与工程,2007,24(1):48-51
    [60]潘霞,曹学丽,董银卯.色谱,2005,23(1):96-99
    [61]Yao S,Li Y,Kong L Y.Journal of Chromatography A,2006,1115(1/2):64-71
    [62]Li L,Tsao R,Liu Z Q.Journal of Chromatography A,2005,1063(1/2):161-169
    [63]Du Q Z,Li L,Jerz G.Journal of Chromatography A,2005,1077(1):98-101
    [64]Ha Y W,Lim S S,Ha I J.Journal of Chromatography A,2007,1151(1/2):37-44
    [65]Lu J J,Wei Y,Yuan Q P.Journal of Chromatography B,2007,857(1):175-179
    [66]Zhou T T,Fan G R,Hong Z Y.Journal of Chromatography A,2005,1100(1):76-80
    [67]张莉,李总成,陈健,包铁竹.逆流色谱溶剂体系选择的溶液理论模型.清华大学学报(自然科学版),1997,37(12):25-28
    [68]Li Zongcheng,Zlaou Yujie,Chen Fuming.Property calculation and prediction for selecting solvent systems in CCC[J].Journalof Liquid Chromatography and Related Technologies,2003,26(9/10):1397-1415
    [69]Chen Fuming,Zhou Yujie,Li Zongcheng.Estimation of separation factor for analogues in CCC using UNIFAC[J].Journal of Liquid Chromatography and Related Technologies,2003,26(9/10):1431-1447
    [70]Fedotov P S,Maryutina T A,Pukhovskaya V M.J Liq Chromatogr,1994,17(16):3491-3506
    [71]Armstrong D W,Bertrand G L,Berthod A.Study of the origin and mechanism of band broadening and pressure drop in centrifugal countercurrent chromatography[J].Anal Chem.,1988,60:2513-2519
    [72]Menet J M,Rolet M C,Thiebant D.Fundamental chromatographic parameters in countercurrent chromatography:Influence of the volume of stationary phase and the flow rate[J].J Liq Chromatogr,1992,15(15/16):2883-2908
    [73]Lu X H,Ren Q L,Wu P D.Mathematical model of the dynamics of countercurrent chromatography[J].Journal of Zhejiang University SCIENCE,2002,3(2):151-156
    [74]Kostanian A E.Modelling counter-current chromatography:a chemical engineering perspective[J].Journal of Chromatography A,2002,973:39-46
    [75]夏薇,俞迪虎,陈新志.废次烟叶浸膏中茄尼醇的提取[J].中国医药工业杂志,2003,34(7):328-329
    [76]岑波,段文贵,赵树凯.从废次烟草中提取茄尼醇的新工艺研究[J].广西大学学报 (自然科学版),2002,27(3):240-242
    [77]吴井峰.从提取过烟碱的烟草中提取茄尼醇的一种方法[P].CN1115751,1996
    [78]方幼兰,林曦,张永祥.茄尼醇的纯化及其结构表征[C].全国第七界工业生化学术会议论文集,2002,100-101
    [79]姚文,栾和林.SOT溶剂体系从烟渣中萃取茄尼醇的研究[J].矿冶,1995,4(4):93-96
    [80]张征,武永昆,杨睿,林军.微波辅助萃取废烟叶中茄尼醇工艺研[J].云南化工,2005,32(1):7-10
    [81]张征,武永昆,尹海川,林军.微波辅助萃取应用于提取烟叶中茄尼醇的研究[J].云南大学学报(自然科学版),2005,27(2):157-160
    [82]李烈,马振元,丛晓东.超临界CO2从烟叶中萃取茄尼醇的工艺研究[J].中国药科大学学报,2002,33(4):351-355
    [83]孙心齐,赵瑾,王超杰,陈伯森.从废次烟叶中提取茄尼醇的研究[J].河南大学学报(自然科学版),1995,25(2):20-25
    [84]徐环听,江邦和,季华,沈永雷,刘坐镇.一种提取制备茄尼醇的方法[P].CN1810747,2006
    [85]陈恬.一种茄尼醇的纯化方法[P].CN1772720,2006
    [86]郑松明,高勇.从废次烟叶中分离茄尼醇、烟草提取物和萃余物的综合利用工艺[P].CN1843230,2006
    [87]孔宁川,唐自文.一种对烟草浸膏深加工制烟草净油及富集茄尼醇的方法[P].CN1400300,2003
    [88]Asahina M,Kato H,Fukawa H.Solanesol from Potato leaves[P].DE2019835,1970
    [89]Koho K T.Substance Purification[P].JP54046733,1981
    [90]蒋文伟,赖崇伟.液液两相提取高含量茄尼醇浸膏的方法[P].CN1742709,2006
    [91]Tawara T,Matsushima S,Ninomiya N,Hashimoto T,Terada I,ShirmzuY,Preparation of solanesol from tobacco extracts[P].JP63190840,1988
    [92]Zhao Y,Du Q.Separation of solanesol in tobacco leaves extract by slow rotary counter-current chromatography using a novel non-aqueous two-phase solvent system[J].Journal of chromatography A,2007,1151(1-2):193-196
    [93]Du Q,Wang D,ItoY.Preparation of solanesol from a tobacco leaf extract using high speed counter current chromatography[J].Journal of Liquid Chromatography&Related Technologies,2006,29(17):2587-2592
    [94]Prabhu S R,Mahendra K,Rao C V N,Raj K,Srivastava S,Bhaduri A P.Process for purification of solanesol(95+%) from crude/enriched extracts of tobacco green leaf/tobacco cured leaf/tobacco waste[P].IN2002-DE1071,2005
    [95]王发森,刘涛.从马铃薯叶中提取高纯茄尼醇的方法[P].CN1800124,2006
    [96]李祥庆.从低含量茄尼醇浸膏中提取高纯茄尼醇的方法[P].CN1821196,2006
    [97]Kim K S.Separation and Purification method of solanesol by precipitating solanesol from unsaponifiable product,extracting solanesol extract,and reprecipitating solanesol crystal[P].KR200608600,2006
    [98]Takeroura M,Amano M.Solanesol from tobacco leaf extracts[P].JP78-45260,54138510,1979
    [99]顾正桂.减压蒸馏与液液萃取及结晶相结合提取茄尼醇的方法[P].CN1807374,2006
    [100]Toyoda H,Fukawa H,Seo H,ShimizuT.Prenyl alcohols of 9-12 isoprene units[P].JP45013823,1970
    [101]袁增良,申醒,王国平等.一种纯化茄尼醇的方法[P].CN1736971,2006
    [102]马震.一种高纯茄尼醇的提取方法及异癸异戊二烯醇的合成[P].CN1629115,2005
    [103]Choi W S.Synthesis of solanesol from tobacco leaves by simple solvent extraction[P].KR2006086000,2006
    [104]刘快之,李德亮,陈伯森,孙心齐,赵瑾.薄层分离.库仑滴定法测定茄尼醇[J].分析化学研究简报,1999,27(2):34-37
    [105]岳长荣,王春明,吴魁旺.薄层色谱-紫外光谱法测定精制烟膏中游离茄尼醇[C].第十届全国有机分析学术研讨会,1999,B17l
    [106]科技部,国家计委,国家经贸委,卫生部,国家药品监督管理局,国家中医药管理局,国家知识产权局.中国科学院.中药现代化发展纲要(2002-2010年).
    [1]王瑞新.烟草化学[M].北京:中国农业出版社,2003
    [2]李伯庭,王湘,李小进.大孔吸附树脂在天然产物分离中的应用[J].中草药,1990,2(8):42-45
    [3]叶振华.化工吸附分离过程[J].中国石化出版社,1992
    [4]Cooney D O.Adsorption Design for Wastewater Treatment[M].Lewis Publishers,Boca Raton,FL,1999
    [5]Taty-Costodes V C,Fauduet H,Porte C,Ho Y S.J.Hazard.Mater.,2005,B123:135-144
    [6]Vijayaraghavan K,Jegan J,Palanivelu K,Velan M.Chemosphere,2005,60:419-426
    [7]Ghorai S,Pant K K.Sep.Purif.Technol.,2005,42:265-271
    [8]潘杰,王静康.头孢曲松钠结晶过程的研究[J].化学工业与工程,2003,20(6):337-341
    [9]王静康,陈建新.化工可持续发展的思考[J].现代化工,2003,23(10):1-7
    [1]赵振国.固液界面的吸附作用:吸附作用应用原理[M].北京:化学工业出版社,2005,190-199
    [2]Weber Jr W J,Morris J C.Kinetics of adsorption on carbon from solution[J].J.Sanit.Eng.Div,ASCE89(SAZ),1963,33:31-59
    [3]Aharoni C,Sparks D L,Levinson S.Kinetics of soil chemical reactions:Relationships between empirical equations and diffusion models[J].Soil Sci.Soc.AM.J.,1991,55:1307-1313
    [4]Lagergern S.About the theory of so-called adsorption of soluble substances[J].Kungliga Svenska Vetenskapsakademiens Handlingar Band,1898,24(4):1-39
    [5]Boyd G E,Adamson A W,Myers L S.The exchange adsorption of ions from aqueous Solutions by organic zeolites(11) kinetics[J].J Am Chem Soc,1947,55(69):2836-2848
    [6]Ho Y S,MeKay G.Pseudo-second-order model for sorption processes[J].Process Biochem.,1999,34:451-465
    [7]Ho Y S,MeKay G.The sorption of Lead(11) ions on Peat[J].Water Res,1999,33(2):578-584
    [8]Mall I D,Srivastava V C,Agarwal N K.Removal of orange-G and methyl Violet dyes by adsorption onto bagasse fly ash kinetic study and equilibrium isotherm analyses[J].Dyes Pigments,2006,69:210-223
    [9]Azizian S.Kinetic models of sorption:a theoretical analysis[J].Journal of Colloid and Interface Science,2004,276:47-52
    [10]Martinez S,Stem I.Appl.Surf.Sci.,2002,199:83-89
    [11]Tumsek F,Intel O.Chem.Eng.J.,2003,94:57-63
    [12]Damas C.Frochot C,Naejus R.J.Colloid interface Sci.,2001,241:188-195
    [13]Raji C,Anirudhan T S.Water Res.,1998,32:3772-3778
    [14]Khan AA,Singh R P.Colloids Surf.A:Physicochem.Eng.Aspects,1997,24:33-37
    [1] Wang Sh, Ma Zh F, Yao H Q. Modeling of fixed-bed adsorption for aromatics-paraffins separation[J]. Journal of Chemical Engineering of Chinese Universities, 2000, 14(1): 65-70
    
    [2] Golshan-Shirazi S, Guiochon G Theory of optimization of the experimental conditions of preparative elution chromatography optimization of column efficiency[J]. Anal. Chem., 1989,61(13): 1368-1375
    [3] Zhang Zh Q, Su Zh G Column dynamics of taxol purification on reversed phase chromatography [J]. Journal of Chemical Industry and Engineering, 2001, 52(6): 476-481
    [4] Bohart G S, Adams E Q. J. Am. Chem. Soc., 1920,42: 523
    
    [5] Guiochon G Preparative Liquid Chromatography[J]. J. Chromatogr. A, 2002, 965: 129-161
    [6] Wilson J N. J. Am. Chem. Soc., 1940, 62: 1583
    [7] Vault D D. J. Am. Chem. Soc., 1943, 65: 532
    [8] Weiss J. J.Chem. Soc., 1943,297-303
    [9] Glueckauf E. J.Chem. Soc., 1947,1302-1309
    [10] Helfferich F, Klein G Multicomponent Chromatography: Theory of Interference[M]. New York, 1970
    
    [11] Aris R, Amundson N R. Mathematical Methods in Chemical Engineering[M]. Prentice-Hall, New York, 1973
    
    [12] Rhee H K. NATO Adv. Study Inst. Ser., Ser. E, 1981
    
    [13] Giddings J C. Unified Separation Science[M]. Wiley, New York, 1990
    
    [14] Gu T, Zheng Y. A study of the scale-up of reversed-phase liquid chromatography[J]. Separation and Purification Technology, 1999,15:41-58
    [15] Morbidelli M, Servida A, Storti G, Carra S. Simulation of multicomponent adsorption beds, model analysis and numerical solution[J]. Ind. Eng. Chem. (Fundam), 1982, 21:123-131
    [16] Golshan-Shirazi S, Guiochon G. The Equilibrium-Dispersive Model of Chromatography, Theoretical Advancement in Chromatography and Related Separation Techniques, F. Dondi and G. Guiochon, eds.[M]. Kluwer, 1992
    [17] Seidel-Morgernstern A, Jacobson S C, Guiochon G. Study of band broadening in encntioselective separations using microcrystalline cellulose triacetace[J]. J. Chromatogr., 1993,637:19-28
    
    [18] Kaczmarski K, Bellot J C. J. Chromatogr. A, 2005,1069: 91-95
    [19] Silva E A, Cossich E S, Granhen Tavare C R. Modeling of copper(II) biosorption by marine alga Sargassum Sp. in fixed-bed column[J]. Process Biochemistry, 2002,38: 791-799
    [20] Gritti F, Piatkowski W, Guiochon G. Study of the mass transfer kinetics in a monolithic column[J]. J. Chromatogr. A, 2003,983: 51-71
    [21] Gu T, Truei Y H, Tsai G J, Tsao G T. Modeling of gradient elution in multicomponent nonlinear chromatography[J]. Chemical Engineering Science, 1992,47(1): 253-262
    [22] Yun J X, Yao S J, Lin D Q, Lu M H, Zhao W T. Chem. Eng. Sci., 2004, 59:449-454
    [23] Wilke C R, Chang P. AIChE. J., 1955,1: 264-271
    [24] Ko C K D, Porter J F, McKay G. Water Res., 2001,35: 3876-2883
    [25] Wijffels R H, Verheul M, Beverloo W A, Tramper J. J. Chem. Technol. Biotechnol., 1998, 71: 147-152
    
    [26] Ranz W E, Marshall W R. Chem. Eng. Prog., 1952,48: 41-45
    [27] Hopfield J J. Proc. Nat. Acad. Sci., 1982,79: 2554-2559
    [28] Rumelhart D E, Hinton G E, Williams R J. in Microstructures of Cognition Vol.1 (Eds. Rumelhart D E, MCclelland J L)[M]. MIT Press, Cambridge, 1986,318
    [29] Lippmann R P. IEEE ASSP Magazine, 1987
    [30] Zupan J, Gasteiger J. Anal. Chim. Acta, 1991,248: 1-10
    
    [31] Sumpter B G, Gettino C, Noid D W. Annu. Rev. Phys. Chem., 1994,45: 439-445
    [32] Sumpter B G, Noid D W. Annu. Rev. Mater. Sci, 1996,26: 223-227
    [33] 许禄,胡昌玉,化学进展,2000,12: 18-23
    [34]Nazer Joseph A.Proc.Am.Power Co.,1991,53:943-948
    [35]Rumelhart D E,Hinton G E,Williams R J.Learning representations of by back-propagation errors[J].Nature,1986,323:533-536
    [36]Zupan J,Gasteiger J.Neural networks:a new method for solving chemical problems or just a passing phase[J].Anal.Chim.Acta,1991,248:1-30
    [37]Xie Y,Sandt E V D,Weerd T D,Wang N H L.J.Chromatogr.A,2001,908:273-278
    [38]Otero M,Zabkova M,Rodrigues A E.Chem.Eng.J.,2005,110:101-106
    [39]Otero M,Zabkova M,Rodrigues A E.Sep.Purif.Technol.,2005,45:86-91
    [40]Rasmuson A.The effect of particles of variable size,shape and properties on the dynamics of fixed beds[J].Chem.Eng.Sci.,1985,40(4):621-629
    [41]Communar G,Keren R,Li F H.Deriving boron adsorption isotherms from soil column displacement experiments[J].Soil Sci.Soc.Am.J.,2004,68:481-488
    [42]Xie Y,Sandt VE,Weerd DT,Wang LNH.Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator[J].J.Chromatogr.A.2001,908(1-2):273-291
    [43]Gupta S,Babu B V.Proceedings of International Symposium & 57th Annual Session of IIChE in association with AIChE(CHEMCON-2004)[C].Mumbai,2004
    [1]Kuesters E,Gerber G.Enantiomeric separation of racemic sulfoxides on chiral stationary Phases by gas and liquid chromatography[J].Chromatographia,1997,44:91-96
    [2]Saleh M I,Pok F W.Separation of primary and secondary amines as their sulfonarnide derivatives by reversed-phase high-performance liquid chromatography[J].J.Chcomatogr.A,1997,763:173-178
    [3]Santos-Montes A,Izquierdo-homillos R.Optimization of separation of a complex mixture of natural and synthetic corticoids by micellar liquid chromatogrhy using sodium dodecyl sulfate application to urine samples[J].J.Chromatogr.B.,1999(724):53-63
    [4]Snyder L R,Dolan J W.Reversed-Phase separation of achiral isomers by varying temperature and either gradient time or solvent strength[J].J.Chromatogr.A,2000,892:107-121
    [5]Marengo E,Gennaro M C,Gianotti V,Prenesti E.Optimization of the separation of monoand dichioroanilines in ion-interaction high-Performance liquid chromatography.J.Chromatogr.A,1999,863:1-11
    [6]Pavel C,Karel S,Henk A,Claessens M J,Hardy M W.Separation and quantification of ropinirole and some impurities using capillary liquid chromatography[J].Journal of Chromatography A,1999,732:437-444
    [7]Spendley W,Hext G R,Himswo F R.Sequential application of simplex designs in optimization and evolutionary operation[J].Technometrics,1962,4:441-461
    [8]Ryan P B,Barr R L,Todd H D.Performance of the super modified simplex[J].Anal.Chem.,1977,49:1422-1432
    [9]王洪,胡汉芳,尚素芬,丁天慧,顾峻岭,傅若农.单纯形算法动态优化毛细管胶束电动色谱分离体系[J].色谱,1998,16:293-296
    [10]Lu P C,Huang H X.An intelligent search method for HPLC optimization[J].J.Chromatogr.Sci.,1989,27:690-697
    [11]黄红心,张玉奎,林从敬,卢佩章.智能搜索用于实际样品的液相色谱分离条件的优化[J].色谱,1992,10:125-128
    [12]黄红心.全盘自动化高效液相色谱优化及其专家系统的研究[D].大连化学物理研究所,1988
    [13]Cimpoiu C,Jantsehi L,Hodisan T.A new mathematical model for the optimization of the mobile Phase composition in HPTLC and the comparison with other models[J].J.Liq.Chrom.& Rel.Teehnol.,1999,22:1429-1441
    [14]Sun S W,Chen L Y.Optimization of micellar electrokinetic chromatographic separation of aperphine alkaloids by overlapping resolution mapping[J].J.Liq.Chrom.& Rel.Technol.,1998,21:1613-1627
    [15]Rukhadze M D,Bezarashvili G S,Sebiskveradze M V,Meyer V R.Separation of barbiturates with micellar liquid chromatography and optimization by a second order mathematical design[J].J.Chromatogr.A,1998,805:45-53
    [16]Nsengiyumva C,DeBeer J O,Van de wanw W,Vlietinek A J,De Swaef S,Parmentier F.Optimization of solvent selectivity for the chromatographic separation of fat soluble vitamins using a mixture-design statistical technique[J].Chromatographia,1998,47:401-412
    [17]Guillaume Y,Cavalli E J,Peyrin E,Guinehard C.A new approach to study benzodiazepine separation and the differences between a methanol/water and acetonitrile/water mixture on column efficiency in liquid chromatography[J].J.Liq.Chlom.& Rel.Technol.,1997,20:1741-1756
    [18]Santana Mahugo C,Sosa Z,Ferrera J J.Simultaneous optimization of surfactant concentration and organic modifier in micellar liquid chromatography.Application to the separation of Phenolic compounds[J].Analytical Letters,2000,33:1691-1709
    [19]Goga S,Heiniseh S,Roeca J L.Retention and Column efficiency in reversed Phase liquid chromatography as a function of PH for optimization Purposes[J].Chromatographia,1998,48:237-244
    [20]Sehoenmakers P J,Tijssen R.Modeling retention of ionogenic solutes in liquid chromatography as a function of pH for optimization purposes[J].J.Chromatogr.A,1993,656:577-590
    [21]Haddad P R,Drouen A C J H,Billiet H A H,DeGalan L.Combined optimization of mobile Phase pH and organic modifier content in high-performance liquid chromatography[J].J.of Chromatogr.,1983,282:71-81
    [22]Kiel J S,Morgan S L,Abramson R K.Computer assisted optimization of a high-performance liquid chromatographic separation for chlorpromazine and thirteen metabolites[J].J.of Chromatogr.,1989,485:585-596
    [23]Glajeh J L,Kirkland J J,Squire K M,Minor J M.Optimization of solvent strength and selectivity for reversed-phase liquid chromatography using an interactive mixture-design statistical technique[J].J.Chromatogr.,1980,199:57-79
    [24]Wieling J,Sehepers J,Hempenius J,Mensink C K,Jonkman J H G.Optimization of chromatographic selectivity of twelve sulphonamides in reversed-phase liquid chromatography using mixture design and multi-criteria decision making[J].J.Chromatogr.,1991,545:101-114
    [25]Hu T Z,Massart D L.Uniform shell designs for optimization in reversed-phase liquid chromatography[J].J.Chromatogr.,1989,485:311-323
    [26]胡育筑,Massart D L.叠加分辨率时间图及其在色谱优化中的应用[J].色谱,1992,10:254-256
    [27]Goldberg A P,Nowakowska E,Antle P E,Snyder L R.Retention optimization strategy for the high-performance liquid chromatographic ion-pair separation of samples containing basic compounds[J].J.Chromatogr.,1984,316:241-260
    [28]Laub R J,Pumell J H.Quantitative optimization of system variables for chromatogrhic separations[J].J.Chromatogr.,1978,161:49-57
    [29]Kridena W,Poole C F.Structure-driven retention model for optimization of tenary solvent systems in reversed-phase liquid chromatography[J].Chromatographia,1998,48:607-614
    [30]Kridena W,Poole C F.Structure-driven retention model for solvent selection and optimization in reversed-phase thin-layer chromatography[J].Journal of Chromatography A,1998,802:335-347
    [31]Havel J,Madden J E,Haddad P R.Prediction of retention times for anions in ion chromatography using artificial neural networks[J].Chromatographia,1999,49:481-488
    [32]Bylund D,Bergens A,Jacobsson S P.Optimization of Chromatographic separation by use of a chromatographic response function,empirical modeling and multivariate analysis[J].Chromatographia,1997,44:74-80
    [33]Novotna K,Havlis J,Havel J.Optimisation of high performance liquid chromatography separation of neuroproteetive peptides:Fractional experimental designs combined with artificial neural networks[J].J.Chromatogr.A,2005,1096:50-57
    [34]Safa F,Hadjmohammadi M R.Simultaneous optimization of the resolution and analysis time in micellar liquid chromatography of phenyl thiohydantoin amino acids using Derringer's desirability function[J].J.Chromatogr.A,2005,1078:42-50
    [35]Novotna K,Havlis J,Havel J.Optimisation of high performance liquid chromatography separation of neuroprotective peptides:Fractional experimental designs combined with artificial neural networks[J].J.Chromatogr.A,2005,1096:50-57
    [36]Sander L C,Purseh M,Wise S A.Shape Selectivity for Constrained Solutes in Reversed-Phase Liquid Chromatography[J].Anal.Chem.,1999,71:4821-4830
    [37]Osten D W.Selection of optimal regression models via.cross-validation[J].J.Chemometr.,1988,2:39-48
    [38]Cramer R D,Patterson D E,Bunce J D.Comparative molecular field analysis(CoMFA) 1Effect of shape on binding of steroids to carrier proteins[J].J.Am.Chem.Sot.,1988,110:5959-5967
    [39]Safa F,Hadjmohammadi M R.Simultaneous optimization of the resolution and analysis time in micellar liquid chromatography of phenyl thiohydantoin amino acids using Derringer's desirability function[J].J.Chromatogr.A,2005,1078:42-50
    [1]袁黎明,傅若农,张天佑.高速逆流色谱在植物有效成分分离中的应用[J].药物分析,1998,18(1):60-64
    [2]张天佑.逆流色谱技术[M].北极科学技术出版社,1991,274-303
    [3]张莉,李总成,陈健,包铁竹.逆流色谱溶剂体系选择的溶液理论模型.清华大学学报(自然科学版),1997,37(12):25-28
    [4]Li Zongcheng,Zhou Yujie,Chen Fuming.Property calculation and prediction for selecting solvent systems in CCC[J].Journalof Liquid Chromatography and Related Technologies,2003,26(9/10):1397-1415[5]Chen Fuming,Zhou Yujie,Li Zongcheng.Estimation of separation factor for analogues in CCC using UNIFAC[J].Journal of Liquid Chromatography and Related Technologies,2003,26(9/10):1431-1447
    [6]Fedotov P S,Maryutina T A,Pukhovskaya V M.J Liq Chromatogr,1994,17(16):3491-3506
    [7]Armstrong D W,Bertrand G L,Berthod A.Study of the origin and mechanism of band broadening and pressure drop in centrifugal countercurrent chromatography[J].Anal Chem.,1988,60:2513-2519
    [8]Menet J M,Rolet M C,Thiebant D.Fundamental chromatographic parameters in countercurrent chromatography:Influence of the volume of stationary phase and the flow rate[J].J Liq Chromatogr,1992,15(15/16):2883-2908
    [9]Zhang T,Pannell L K and Ito Y.Rapid separation of flavonoids by analytical high-speed counter-current chromatography[J].Journal of Chromatography,1988,445:199-206
    [10]Berthod A,Armstrong D W.Centrifugal Partition Chromatography IV-Preparative Sample Purification and Partition Coefficient Determination[J].Journal of Liquid Chromatography,1988,11:1187-1204
    [11]Ito Y.High-Speed Countercurrent Chromatography[J].Nature,1987,326:419-420
    [12]Ito Y,Conway W D.Development of Countercurrent Chromatography[J].Analytical Chemistry,1984A,56:534-551
    [13]Ito Y.Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography[J].Journal of Chromatography,1991,538:99-108
    [14]Oka H,Harada K,Ito Y.Separation of antibiotics by counter-current chromatography[J].Journal of Chromatography A,1998,812:35-52
    [15]Matsuda K,Matsuda S,Ito Y.Toroidal coil counter-current chromatography achievement of high resolution by optimizing flow-rate,rotation speed,sample volume and tube length[J].Journal of Chromatography A,1998,808:95-104
    [16]Peng J Y,Jiang Y Y,Fan G R,Chen B,Zhang Q Y,Chai Y F,Wu Y T.Optimization suitable conditions for preparative isolation and separation of curculigoside and curculigoside B from Curculigo orchioides by high-speed counter-current chromatography[J].Separation and Purification Technology,2006,52:22-28
    [17]Du Q,Wu C,Qian C,Wu P,Ito Y.Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography[J].Journal of Chromatography A,1999,835:231-235
    [18]Xia L,Hsu J.Countercurrent chromatography[J].Journal of Liquid Chromatography,1992,15:2801-2817
    [19]Foucault A P,Bousquet O,Goffic F L,Cazes J.Countercurrent chromatography with a new centrifugal partition chromatographic system[J].Journal of Liquid Chromatography,1992,15:2721-2733
    [20]Zheng W,Fan W,Kusters E,Mak C P,Wang Y.Application of coil centrifugal counter-current chromatography to the separation of macrolide antibiotic analogues:Ⅲ.Effects of flow-rate,mass load and rotation speed on the peak resolution[J].Journal of Chromatography A,2001,925:139-149
    [21]Berthod A.Schmitt N.Water-organic solvent systems in countercurrent chromatography: liquid stationary phase retention and solvent polarity[J].Talanta,1993,40:1489-1498
    [22]Berthod A.Practical approach to high-speed counter-current chromatography[J].Journal of Chromatography A,1991,550:677-693
    [23]Berthod A,Mallet A I,Bully M.Measurement of Partition Coefficients in Waterless Biphasic Liquid Systems by Countercurrent Chromatography[J].Analytical Chemistry,1996,68:431-436
    [24]He C H,Zhao C X.Retention of the Stationary Phase for High-Speed Countercurrent Chromatography[J].AIChE Journal,2007,53:1460-1471
    [25]Yang F Q,Zhang T Y.Application of analytical and preparative high-speed chromatography for separation of alkaloids from Coptis Chinese franch[J].Journal of Chromatography A,1998,83(2):137-141
    [26]陈四平,赵佳琴,潘海峰.应用高速逆流色谱分离黄答中的黄酮类成分[J].北京医科大学学报,1999,19(4):328-332
    [27]杜其珍.高速逆流色谱分离茶叶中黄酮成分的研究[J].茶叶科学,2000,20(1):40-44
    [28]蔡定国,刘文勇.黄酮类成分的药理研究进展[J].中药新药与临床药理,1999,10(6):364-366
    [29]袁黎明,夏涛.高速逆流色谱对大黄有效成分的制备性分离研究[J].化学世界,2002,4:185-186
    [30]陈存社,刘玉峰,周志兰.高速逆流色谱对芦荟有效成分的制备性分离研究[J].分析化学,2003,31(2):251-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700