三种药用植物的化学成分和生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文共由六章组成。第一章综述了杜鹃花科(Ericaceae)活性成分的研究进展。第二章详细论述了杜鹃花科马醉木属(Pieris)植物马醉木(Pieris japonica)中木藜芦烷二萜成分的分离和鉴定及生物活性研究。第三章报道了大戟科黑面神属(Breynia)植物黑面神(Breynia fruticosa)的化学成分及生物活性研究。第四章介绍了对蕨类七指蕨属(Helminthostachys)植物七指蕨(Helminthostachys zeylanica)的化学成分研究。第五章报道了对淫羊藿异戊烯基黄酮抗骨质疏松活性研究的结果。第六章对论文所做工作进行了总结和讨论。
     从上述三种药用植物中共分离鉴定了60个化合物,其中18个为新化合物。已鉴定的化合物类型涉及二萜、三萜、木脂素、黄酮和酚性成分等。新化合物主要为二萜类成分,其中2个为结构新颖的18位含氯的3,4-开环的多酰化木藜芦烷二萜,此外还有2个6,10环氧的木藜芦烷二萜以及1个4,7环氧的木藜芦烷二萜;对分离得到的木藜芦烷二萜类化合物进行了昆虫拒食活性筛选,对黄酮及酚性成分做了抗氧化活性筛选。
     一、马醉木(Pieris japonica)系杜鹃花科马醉木属有毒植物,家畜误食茎和叶会引起中毒反应。国内外很多学者很早就对马醉木属植物进行过研究。迄今已经从中分到了三萜,甾体和二萜等类型的化合物,主要以木藜芦烷二萜为主。我们对采自云南寻甸的马醉木的花进行了系统的化学成分研究,从乙酸乙酯部分中分离鉴定了34个化合物。其中14个为新化合物,分别被命名为:neopierisoid A (1), neopierisoid B (2), neopierisoid C (3), neopierisoid D (4), neopierisoid E (5), neopierisoid F (6), neopierisoid G (7), neopierisoid H (8), neopierisoid I (9), neopierisoid J (10), neopierisoid K (11), neopierisoid L (12) neopierisoid M (13)和benzyl2-hydroxy-4-O-β-D-glucopyranosyl-benzoate (14),20个己知化合物分别被鉴定为:pierisformotoxin G (15), secorhodomollolide A-B (16-17), pierisformotoxins E-F (18-19), secorhodomollolides E-H (20-23), secorhodomollolides C-D (24-25), pierisoids A-B (26-27), pierisformotoxins A-B (28-29), pierisformosins B, C (30,31),(2S,3R)-ent-catechin (32), quercetin (33),和1-phenylbutane-2,3-diol (34)。本实验分离得到的木藜芦烷型二萜多为3,4-裂环的多酰化木藜芦烷二萜,其中包括16个3,4-裂环且C-3与C-5成五元环内酯的木藜芦烷二萜,9个3,4-裂环且C-3与C-10成五元环内酯的多酰化木藜芦烷二萜,3个5/7/6/5环骨架的木藜芦烷型二萜以及2个3,4-开环未环合的木藜芦烷型二萜。值得一提的是,在3,4-裂环的多酰化木藜芦烷二萜中有两个含氯的3,4裂环且C-3与C-5成五元环内酯的木藜芦烷二萜,具有一定的昆虫拒食活性,这是首次从杜鹃花科中分离得到的含氯的二萜。而其良好的拒食活性说明杜鹃花科有毒植物的木藜芦毒素成分可能与该植物的化学防御功能有一定的关系;此外,我们对分离得到的黄酮和酚性成分进行了抗氧化活性的筛选,发现了多酚羟基的酚性成分具有较强的抗氧化活性。
     二、黑面神(Breynia fruticosa)为大戟科(Euphorbiaceae)黑面神属(Breynia)植物。作为中国传统的民间草药,黑面神具有清湿热,化淤滞的功效。主治腹痛吐泻,疗毒,疮疖,湿疹,皮炎,跌打肿痛等症。此外,还可作为蛇药治疗毒蛇咬伤。我们对采自云南西双版纳的黑面神全株进行了系统的化学成分研究,从其甲醇提取物的乙酸乙酯部分和正丁醇部分中分离鉴定了20个化合物,主要为酚类成分。其中2个为新的木脂素化合物,分别被命名为:(7S,8R,7'S)-9,7',9'-trihydroxy-3,4-methylenedioxy-3'-methoxy[7-O-4',8-5']neolignan (1),(7S,8R,7'S)-9,9'-dihydroxy-3,4-methylenedioxy-3',7'-dimethoxy[7-O-4',8-5'] neolignan (2),18个为已知化合物,分别被鉴定为:9,9'-dihydroxy-3,4-methylenedioxy-3'-methoxy [7-O-4',8-5'] neolignan (3)、(-)-machicendiol (4)、松脂素(5)、4”-苯酚基-6-O-甲基丙酰基-β-D-吡喃葡萄糖苷(6)、hydroquinone O-[6-(3-hydroxyisobutanoyl)]-β-galactopyranoside (7) β-D-glucopyranoside,4-hydroxyphenyl,6-(2-methylbutanoate)(8)、arbutin6'-butyrate(9)、熊果苷(10)、pyrocatechol-O-β-D-glucopyranoside (11)、α/β-D-glucopyranose,6-(4-hydroxybenzoate)(12)、α/β-D-glucopyranose,6-(3-phenyl-2-propenoate)(13)、熊果酸(14)、apocynol A (15)、柚皮素(16)、反式肉桂酸(17)、肉桂酸(18)、对二苯酚(19)和3,4-二羟基肉桂醛(20)。此外,我们通过ORD、CD和ECD的方法,首次确定了2个新木脂素(7S,8R,7'S)-9,7',9'-trihydroxy-3,4-methylenedioxy-3'-methoxy[7-O-4',8-5']neolignan (1)和(7S,8R,7'S)-9,9'-dihydroxy-3,4-methylenedioxy-3',7'-dimethoxy[7-O-4',8-5'] neolignan(2)的绝对构型,以及两个未确定构型的已知化合物9,9'-dihydroxy-3,4-methylenedioxy-3'-methoxy [7-0-4',8-5'] neolignan (3)、(-)-machicendiol(4)的绝对构型。对黑面神中分离得到的木脂素类化合物做了细胞毒活性筛选,发现从黑面神中分离得到的5个木脂素类化合物在浓度为50μM时并未表现出明显的细胞毒性,说明这类成分可能不是有毒药用植物中的毒性成分。
     三、七指蕨(Helminthostachys zeylanica (L.) Hook.),俗名入地蜈蚣,属于七指蕨科七指蕨属多年生陆生蕨类植物,民间常用来治疗痨热咳嗽,跌打肿痛,咽痛,痈疮,毒蛇咬伤等症。近年来,台湾学者从七指蕨中分离得到结构类型丰富的异戊烯基黄酮类化合物,这些化合物也表现出了免疫调节,抗肿瘤,以及抗氧等活性。我们对采自云南西双版纳的七指蕨全株的化学成分进行了研究,从乙酸乙酯部分中分离鉴定了6个化合物。其中1个为新的异戊烯基黄酮,命名为neougonin A (1),5个已知的异戊烯基黄酮,分别为:4"a,5",6",7",8",8"a-hexahydro-5,3',4'-trihydroxy-5",5",8"a-trimethyl-4H-chromeno[2",3":7,8]flavone(2),4"a,5",6",7",8",8"a-hexahydro-5,3',4'-trihydroxy-5",5",8"a-trimethyl-4H-chromeno[2",3":7,8]flavone (3), ugonin J (4), ugonin E (5), ugonin N (6)。
     四、在小檗科淫羊藿属植物中,异戊烯基黄酮化合物是其中的特征性成分,这类黄酮除了传统的抗微生物、杀虫和类雌激素等作用外,还有降血压、抗血凝、抗病毒、抗骨质疏松等活性。我们对前期从淫羊藿中分离得到的异戊烯基黄酮化合物进行了抗骨质疏松活性的筛选,此外,通过活性追踪方式,确定了淫羊藿中的活性段位为乙酸乙酯萃取相经氯仿丙酮划段的7:3部分,并从该活性段位得到了两个异戊烯基黄酮化合物-脱水淫羊藿素和2”-羟基-3”-烯-脱水淫羊藿素。对这两个异戊烯基黄酮进行抗骨质疏松活性初步研究,发现了它们具有促进小鼠前成骨细胞增殖,分化和矿化的作用。
The thesis consists of six chapters. Chapter one presents a review on the bioactive chemical constituents of plants in family Ericaceae. The second chapter elaborates the studies on the grayanane diterpenoids from Pieris japonica. Chapters three and four deal with the isolation and determination of the chemical constituents of two plants--Breynia fruticosa and Helminthostachys zeylanica. In the fifth chapter, bioactivities of the prenylated flavonoids isolated from the Epimedium brevicornum Maxim. are reported. And the last chapter is the conclusion of the whole thesis.
     Sixty compounds, including eighteen new ones, were isolated from the above three specicies, and these compounds contain diterpenoids, triterpenoids, lignans, and flavonoids. The structures of the compounds were elucidated on the basis of extensive spectroscopic analysis. The new compounds are mainly diterpenoids, among them, two unique chlorinated multi-acylated3,4-seco grayanane diterpenoids, two novel6,10epoxy3,4-seco grayanane diterpenoids and a4,7epoxy3,4-seco grayanane diterpenoids were obtained. The absolute configuration of one of the chlorinated diterpenoids neopierisoid A was ditermined by X-ray diffraction. The antifeedant effect of some of the obtained diterpenoids and the antioxidant activity of flavonoids and phenolic compounds in Pieris japonica were evaluated.
     Pieris japonica, a well-known poisonous plant belonging to the family Ericaceae, has a rich distribution in hill and valley regions. It has been reported that livestock fall into a coma after accidental ingested of the plant. Previous chemical investigations on this plant resulted in the isolation of triterpenoids, diterpenoids, flavonoids and phenolic glycosides, while grayanane diterpenoids are the main constitutes in P. japonica. Our meticulous investigation on the chemical constituents, especially grayanane diterpenoids, from the flowers of P. japonica led to the isolation of34compounds, including13new grayanane diterpenoids and a new phenolic glycoside:neopierisoid A (1), neopierisoid B (2), neopierisoid C (3), neopierisoid D (4), neopierisoid E (5), neopierisoid F (6), neopierisoid G (7), neopierisoid H (8), neopierisoid I (9), neopierisoid J (10), neopierisoid K (11), neopierisoid L (12), neopierisoid M (13), and benzyl 2-hydroxy-4-O-β-D-glucopyranosyl-benzoate (14). The known compounds were identified as:pierisformotoxin G (15), secorhodomollolides A-B (16-17), pierisformotoxins E-F (18-19), secorhodomollolides E-H (20-23), secorhodomollolides C-D (24-25), pierisoids A-B (26-27), pierisformotoxins A-B (28-29), pierisformosins B, C (30,31),(2S,3R)-ent-catechin (32), quercetin (33),1-phenylbutane-2,3-diol (34). Most of the isolated diterpenoids are3,4-seco grayanane diterpenoids, including sixteen3,4-seco grayanane diterpenoids with the lactone group located between C-3and C-5, nine compounds with the lactone group located between C-3and C-10and two3,4-seco grayanane diterpenoids without acylated substitute. Other grayanane diterpenoids (three ones) have normal5/7/6/6skeleton. It is meaningful that among the31grayanane diterpenoids, we firstly reported two unusual defensive chlorinated diterpenoids bearing5,7,6,5ring system and12chiral center from the whole family Ericaceae. The antifeedant effect of some of the obtained diterpenoids compounds in Pieris japonica were evaluated. The results showed the unusual highly acylated chlorinated3,4-seco-grayanane diterpenoids, neopierisoids A and B, had antifeedant activity against pieris brassicae indicating the toxic properties of P. japonica might serve as a defensive role in the plant. The antioxidant activity of flavonoids and phenolic compounds in Pieris japonica were also evaluated.
     Breynia fruticosa (L.) Hook. f. is widely distributed in southern China and used as a Chinese folk medicine for the treatment of chronic bronchitis and inflinflammation. In addition, B. fruticosa had been used as an important ingredient of the plant medicine in the treatment of snakebite. Our further investigation of this plant collected from Xishuangbanna of Yunnan Province led to the isolation of20compounds, including2new ones:(7S,8R,7'S)-9,7',9'-trihydroxy-3,4-methylenedioxy-3'-methoxy[7-O-4',8-5']neolignan (1),(7S,8R,7'S)-9,9'-dihydroxy-3,4-methylenedioxy-3',7'-dimethoxy [7-0-4',8-5'] neolignan (2). The18known compounds were identified as:9,9'-dihydroxy-3,4-methylenedioxy-3'-methoxy [7-0-4',8-5'] neolignan (3),(-)-machicendiol (4), pinoresinol (5),4"-phenol group-6-O-methyl-propionyl-β-D-pyranglucoseglycoside (6), hydroquinone O-[6-(3-hydroxyisobutanoyl)]-β-galactopyranoside (7),β-D-glucopyranoside,4-hydroxyphenyl,6-(2-methylbutanoate)(8), arbutin6'-butyrate (9), arbutin (10), pyrocatechol-O-β-D-glucopyranoside (11), α/β-D-glucopyranose,6-(4-hydroxybenzoate)(12), α/β-D-glucopyranose,6-(3-phenyl-2-propenoate)(13), ursolic acid (14), apocynol A (15), naringenin (16), trans-cinnamic acid (17), cinnamic acid (18), diphenol (19),3,4-dihydroxy-cinnamic aldehyde (20). By the using of calculations of OR spectrum, together with OR and calculated ECD spectra method, we established the absolute configurations of C-7' hydroxy group substituted neolignans for the first time. The neolignans were tested for in vitro cytotoxicity against A459,150HCT116, MCF-7and U87-MG human cancer cell lines using the MTT method. However, none of them showed obvious cytotoxicities with values of IC50>50μM, which suggested that these compounds were not the poisonous constituents in the plant.
     In Chinese traditional medicine, Helminthostachys zeylanica (L.) Hook., known as "Ding-Di-U-Gon", have been used for centuries in the treatment of inflammation and various hepatic disorders. The plant has been shown to exhibit anti-inflammatory, antiphlogistic, antipyretic, and hepatoprotective activities. Flavonoids with prenyl or geranyl groups have been reported to have specific bioactivities, such as cytotoxic activity, inhibitory activity and strong antioxidant effects. The flavonoids, ugonins A-L, a have been identified from H. zeylanica.The present study on the ethanolic extract of the dried whole plant of H. zeylanica collected from Xishuangbanna of Yunnan Province resulted in the isolation and characterization of a new prenylated flavonoid, neougonin A, and five known compounds:4"a,5",6",7",8",8"a-hexahydro-5,3',4'-trihydroxy-5",5",8"a-trimethyl-4H-chromeno[2",3":7,8]flavone(2),4"a,5",6",7",8",8"a-hexahydro-5,3',4'-trihydroxy-5",5",8"a-trimethyl-4H-chromeno[2",3":7,8]flavone (3), ugonin J (4), ugonin E (5), ugonin N (6).
     Epimedium brevicornu Maxim. is one of the most frequently used Chinese herbs that has been used for thousands of years in formulas prescribed for the nourishment of bone and gonadal functions. Prenyl-flavonoids were the main and characteristic components of the plant E. brevicornu and showed anti-microbial, insecticidal as well as lowering blood pressure, anti-bloodcoagulation, anti-viral, anti-osteoporosis activity. Two prenyl-flavonoids, anhydroicaritin and2"-hydroxy-3"-en-anhydro-icaritin, were isolated from the main effective fraction (CHCl3-Me2CO,7:3part) and proved, for the first time, to have the ability to promote proliferation and differentiation of murine osteoblastic MC3T3-E1cells, which suggested that both compounds have the potential to be candidates for osteogenic compounds for bone regenerative medicine.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志[M]2000,北京:科学出版社.
    [2]戴胜军,烈香杜鹃和光叶桑化学成分及生物活性研究[博士学位论文].2004,北京:中国协和医科大学.
    [3]宋小平,映山红总黄酮的镇痛作用及其作用机理[博士学位论文].2006,安徽:安徽医科大学.
    [4]杨秀岭,袁志芳,张兰桐.照山白总黄酮的药理作用研究[J].中草药,2006,37(4):583-584.
    [5]钟国华,胡美英.杜鹃花科植物活性成分及作用机制研究进展[J].武汉植物学研究,2000,18(6):509-514.
    [6]李蓉涛,李晋玉,王京昆.金叶子的化学成分[J].云南植物研究,2005,27(5):565-571.
    [7]Erturk OU Uslu. Antifeedant, growth and toxic effects of some plant extracts on Leptinotarsa decemlineata (Say.) (Coleoptera, Chrysomelidae)[J]. Fresenius Environ. Bull.,2007,16 (6):601-607.
    [8]Chu H G. On the Toxic Principle from Naoyanghua, Rhodendron Hunnewellianum: 1. The Effect on Circulation and Respiration[M].1931:Chinese Physiological Society.
    [9]Tallent W, Riethof M L, Horning E. Studies on the occurrence and structure of acetylandromedol (andromedotoxin)[J]. J. Am. Chem. Soc.,1957,79 (16): 4548-4554.
    [10]贾丹兵,王立强,范玉玲.越桔口服后血中移行成分的生物活性研究[J].中医药研究,2000,16(5):48-49.
    [11]胡雅馨,李京,惠伯棣.蓝莓果实中主要营养及花青素成分的研究[J].食品科学,2006,27(10):600-603.
    [12]Zhong G H.Hu M Y, Wei X Y, et al. Grayanane Diterpenoids from the Flowers of Rhododendron molle with Cytotoxic Activity against a Spodoptera frugiperda Cell Line[J]. J. Nat. Prod.,2005,68 (6):924-926.
    [13]钟国华,胡美英,赵善欢等.黄杜鹃提取物对亚洲玉米螟生物活性的研究[J].昆虫知识,2001,38(1):55-58.
    [14]Klocke J A, Hu M Y, Chiu S F, et al. Grayanoid diterpene insect antifeedants and insecticides from Rhododendron molle [J]. Phytochemistry,1991,30 (6): 1797-1800.
    [15]Li C H, Niu X M, Luo Q, et al. Novel Polyesterified 3,4-seco-Grayanane Diterpenoids as Antifeedants from Pieris formosa[J]. Org. Lett.,2010,12 (10): 2426-2429.
    [16]Zhang H P, Wang L Q, Qin G W. Grayanane diterpenoids from the leaves of Craiobiodendron yunnanense[J].Bioorg. Med. Chem.,2005,13 (17):5289-5298.
    [17]Pelhate M, Zlotkin E. Actions of insect toxin and other toxins derived from the venom of the scorpion Androctonus australis on isolated giant axons of the cockroach (Periplaneta americana)[J]. J. Exp. Biol.,1982,97 (1):61-11.
    [18]李晓东,陈文奎.印楝素,闹羊花素-Ⅲ对斜纹夜蛾的生物活性及作用机理的研究[J].华南农业大学学报,1995,16(2):80-85.
    [19]赵善欢,张兴.植物质杀虫剂对水稻三化螟的拒食及内吸毒力试验[J].中国农业科学,1982,2:55-62.
    [20]Zhong G H, Hu M Y, Chiu S F, et al. Effects of Rhodojaponin-Ⅲ on Nervous System of Larvae of Imported Cabbage Worm, Pieris rapae L.[J]. Chinese Journal of Pesticide Science,2000,1(2):13-18.
    [21]冯夏,赵善欢.黄杜鹃有效成分作用机制的初步研究[J].广东农业科学,1990,3:40-41.
    [22]钟国华,刘金香,官珊.闹羊花素类化合物对斜纹夜蛾幼虫表皮成分的影响及构效关系[J].昆虫学报,2004,47(6):705-714.
    [23]钟国华,胡美英,林进添.闹羊花素-Ⅲ对菜青虫海藻糖含量及海藻糖酶活性的影响[J].华中农业大学学报,2000,19(2):119-123.
    [24]钟国华.林进添.闹羊花素-Ⅲ对菜粉蝶幼虫血淋巴和中肠酯酶的影响[J].华中农业大学学报,2001,20(001):15-19.
    [25]Zhong G H. Liu J X, Weng Q F, et al. Laboratory and field evaluations of rhodojaponin-Ⅲ against the imported cabbage worm Pieris rapae (L.)(Lepidoptera:Pieridae)[J]. Pest. Manag. Sci.,2006,62 (10):976-981.
    [26]Zhong G H, Hu M Y, Chiu S F, et al. Preliminary studies on the bioactivities of extracts from yellow azalea, Rhododendron molle G. Don on the larvae of Ostrnia furnacalis (Guenee)[J]. Entomol. Knowledge,2001,38 (1):55-58.
    [27]Cheng X A, Xie J J, Hu M Y, et al. Induction of Intracellular Ca2+ and pH Changes in Sf9 Insect Cells by Rhodojaponin-III, A Natural Botanic Insecticide Isolated from Rhododendron molle[J]. Molecules,2011,16 (4):3179-3196.
    [28]Klocke J, Kubo A. Defense of plants through regulation of insect feeding behavior[J]. Fla. Entomol.,1991,74(1):18-23.
    [29]Terai T, Osakabe K, Katai M, et al. Preparation of 9-Hydroxy Grayanotoxin Derivatives and Their Acute Toxicity in Mice[J]. Chem. Pharm. Bull.,2003,51 (3): 351-353.
    [30]Ascioglu M, Ozesmi C, Dogan P, et al. Effects of Chronic Grayanotoxin-Ⅰ Administration on Hepatic and Renal Functions in Rats[J]. Tohoku J. Exp. Med., 1996,179(1):47-53.
    [31]Terai T, Sato M, Narama I, et al. Transformation of grayanotoxin Ⅲ to 10-epi-grayanotoxin Ⅲ. Its X-ray crystallographic analysis and acute toxicity in mice[J]. Chem. Pharm. Bull.,1996,44:1245-1247.
    [32]王佐飞,刘世新曾凡波.闹羊花根对狗肝,肾亚急性毒性的研究[J].中药新药与临床药理,1993,4(2):27-29.
    [33]童德文,曹光荣.美丽马醉木叶毒素对家兔的毒性研究[J].西北农业大学学报,1996,24(3):68-71.
    [34]董亮,阿都阿且.羊美丽马醉木中毒的毒理学研究[J].中国兽医科技,1991,21(8):3-5.
    [35]董亮,阿都阿且.美丽马醉木对心脏的毒性作用[J].中国兽医科技,1992,22(12):37-38.
    [36]李蕙琴,文正兴.闹羊花中毒致高度房室传导阻滞一例[J].广西中医药,1996,19(2):37-37.
    [37]汪礼权,秦国伟.杜鹃花科木藜芦烷类毒素的化学与生物活性研究进展[J].天然产物研究与开发,1997,9(4):82-89.
    [38]Hikino H, Ohta T, Ogura M, et al. Structure-activity relationship of ericaceous. Toxins on acute toxicity in mice[J]. Toxicol. Appl. Pharm.,1976,35 (2):303-310.
    [39]Mager P. Seese A. Takeya K. Structure-toxicity relationships applied to grayanotoxins[J]. Pharmazie,1981,36 (5):381-382.
    [40]Masutani T, Seyama I, Narahashi T, et al. Structure-activity relationship for grayanotoxin derivatives in frog skeletal muscle[J]. J. Pharmacology. Exp. Therap., 1981,217 (3):812-819.
    [41]陈常英,刘助国,潘心富.杜鹃花科植物有毒成分的电子结构及构效关系[J].化学学报,1992,50(3):237-243.
    [42]Nazemiyeh H, Bahadori F, Delazar A, et al. Antioxidant phenolic compounds from the leaves of Erica arborea (Ericaceae)[J]. Nat. Prod. Res.,2008,22 (16): 1385-1392.
    [43]Huang X Z, Liu Y, Yu S S, et al. Triterpenoids from the roots of Craibiodendron henryi W. W. Smith[J]. J. Integr. Plant Biol.,2007,49 (11):1615-1618.
    [44]Dastmalchi K, Flores G, Petrova V, et al. Edible neotropical blueberries: Antioxidant and compositional fingerprint analysis[J]. J. Agric. Food Chem.,2011, 59 (7):3020-3026.
    [45]Myagmar B E, Shinno E, Ichiba T, et al. Antioxidant activity of medicinal herb Rhodococcum vitisidaea on galactosamine-induced liver injury in rats[J]. Phytomedicine,2004,11 (5):416-423.
    [46]Huang X Z, Wang Y H, Yu S S, et al. Iridoid glycosides and grayanane diterpenoids from the roots of Craibiodendron henryi[J].J Nat. Prod.,2005,68 (11):1646-1650.
    [47]Kim Y H, Bang C Y, Won E K, et al. Antioxidant activities of Vaccinium uliginosum L. extract and its active components[J]. J. Med. Food.,2009,12 (4): 885-892.
    [48]Tavares L, Fortalezas S, Carrilho C, et al. Antioxidant and antiproliferative properties of strawberry tree tissues[J]. J. Berry. Res.,2010,1 (1):3-12.
    [49]Cheng H Y, Lin T C, Yang C M, et al. In vitro anti-HSV-2 activity and mechanism of action of proanthocyanidin A-1 from waccinium vitisidaea[J]. J. Sci. Food Agric.,2005,85(1):10-15.
    [50]Huang Y, Nikolic D, Pendland S, et al. Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli, COX-2 activity, pro-inflammatory cytokine release and the NF-N:N2 transcriptional response in vitro[J]. Pharm. Biol. (London, U. K.),2009,47 (1):18-25.
    [51]Sonar P K, Singh R, Khan S, et al. Isolation, characterization and activity of the flowers of Rhododendron arboreum (Ericaceae)[J]. J. Chem.,2012,9 (2): 631-636.
    [52]张德山,李凌夫,王亚贤.汶川杜鹃的抗菌实验及镇咳作用的临床观察[J].中医药学报,1988,4(21):36-37.
    [53]赵国举,张覃沐吕富华.闹羊花和八里麻的镇痛作用及毒性[J].药学学报,1958,6(1):17-20.
    [54]Kim M H, Nugroho A, Choi J, et al. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum[J]. Arch. Pharmacal Res.,2011,34 (6):971-978.
    [55]郝朴.洋金花和闹羊花的区别[J].新中医,1976,2(28):49-50.
    [56]Esperanza J C, Cuendet M, Park E J, et al. Potential cancer chemopreventive agents from Arbutus unedo[J]. Nat. Prod. Res,2006,20 (4):327-334.
    [57]Yao G M, Ding Y, Zuo J P, et al. Dihydrochalcones from the leaves of Pieris japonica[J]. J. Nat. Prod.,2005,68 (3):392-396.
    [58]Mekhfi H, ElHaouari M, Bnouham M, et al. Effects of extracts and tannins from Arbutus unedo leaves on rat platelet aggregation[J]. Phytother. Res,2006,20 (2): 135-139.
    [59]Legssyer A, Ziyyat A, Mekh H, et al. Tannins and catechin gallate mediate the vasorelaxant effect of Arbutus unedo on the rat isolated aorta[J]. Phytother. Res, 2004,18 (11):889-894.
    [60]Sener B, Orhan I. Exploring turkish biodiversity:a rich source of chemical diversity for drug leads discovery[J]. Pure. Appl. Chem.,2011,83 (9):1699-1707.
    [61]Rodrigues R A F, Carvalho J E, Sousa I M d O, et al. Antiproliferative activity, isolation and identification of active compound from Gaylussacia brasiliensis[J]. Rev. Bras. Farmacogn.,2011,21 (4):622-626.
    [62]Saaby L, Rasmussen H B, Jager. A K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull[J]. J. Ethnopharmacol.,2009,121 (1):178-181.
    [63]Wu Z Y, Li H M, Li Y D, et al. Grayanane Diterpenoids from the Fruits of Pieris formosa[J]. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences,2012,67 (2):171-175.
    [64]Wu Z Y. Li Y D. Wu G S, et al. Three new highly acylated 3.4-seco-grayanane diterpenoids from the fruits of Pieris formosa[J].Chem. Pharm. Bull. (Tokyo), 2011.59 (4):492-495.
    [65]Wang S, Lin S, Zhu C, et al. Highly acylated diterpenoids with a new 3,4-secograyanane skeleton from the flower buds of Rhododendron molle[J].Org Lett,2010,12(7):1560-1563.
    [66]Wu Z Y, Li Y D, Wu G S, et al. Three new highly acylated 3,4-seco-grayanane diterpenoids from the fruits of Pieris formosa[J]. Chem. Pharm. Bull.,2011,59 (4):492-495.
    [67]Wu Z Y, Li H M, Li Y D, et al. Highly Acylated 3,4-Secograyanane Diterpenoids from the Fruits of Pieris formosa[J]. Helv. Chim. Acta,2011,94 (7):1283-1289.
    [68]Li C H, Niu X M, Luo Q, et al. Novel polyesterified 3,4-seco-grayanane diterpenoids as antifeedants from Pieris formosa[J]. Org. Lett,2010,12 (10): 2426-2429.
    [69]Wang L Q, Ding B Y, Qin G W, et al. Chemical Studies on Ericaceae Plants.2. Grayanoids from Pieris formosa[J].Phytochemistry,1998,49 (7):2045-2048.
    [70]孙燕荣,董俊兴吴曙光.杜仲化学成分研究[J].中药材,2004,27(5):341-343.
    [71]刘晓秋,陈发奎,吴立军.拳参的化学成分[J].沈阳药科大学学报,2004,21(3):187-189.
    [72]D'arcy B R, Rintoul G B, Rowland C Y, et al. Composition of Australian honey extractives.1. Norisoprenoids, monoterpenes. and other natural volatiles from blue gum(Eucalyptus leucoxylon) and yellow box(Eucalyptus melliodora) honeys[J]. J. Agri. Food. Chem.,1997,45 (5):1834-1843.
    [73]Mckenzie N. Helson B, Thompson D, et al. Azadirachtin:An effective systemic insecticide for control of Agrilus planipennis(Coleoptera:Buprestidae)[J]. J. Econ. Entomol., 2010,103 (3):708-717.
    [74]Klocke J, Kubo A I. Defense of plants through regulation of insect feeding behavior[J]. Fla. Entomol..1991,74 (1):18-23.
    [75]Ahmed S, Tabassum S, Shakeel F, et al. A Facile Electrochemical Analysis to Determine Antioxidant Activity of Flavonoids against DPPH Radical [J]. J. Electrochem. Soc.,2012,159 (5):103-109.
    [76]Syamaladevi R M, Andrews P K, Davies N M, et al. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries[J]. J. Sci. Food Agric.,2012,4 (92): 916-924.
    [77]王晓宇,杜国荣李华.抗氧化能力的体外测定方法研究进展[J].食品与生物技术学报,2012,31(3):29-34.
    [78]Dangles O. Antioxidant activity of plant phenols:chemical mechanisms and biological significance[J]. Curr. Org. Chem.,2012,16 (6):692-714.
    [79]Yuen M S M, Xue F, Mak T C W,et al. On the absolute structure of optically active neolignans containing a dihydrobenzo[b]furan skeleton[J]. Tetrahedron, 1998,54(41):12429-12444.
    [80]Van Dyck S M O, Lemiere G L F, Jonckers T H M, et al. Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalysed acetylation[J]. Tetrahedron: Asymmetry,2001,12 (5):785-789.
    [81]Antus S, Kurtan T, Juhasz L, et al. Chiroptical properties of 2,3-dihydrobenzo[b]furan and chromane chromophores in naturally occurring O-heterocycles[J]. Chirality,2001,13 (8):493-506.
    [82]Kim T H, Ito H, Hayashi K, et al. Aromatic constituents from the heartwood of Santalum album L.[J]. Chem. Pharm. Bull.,2005,53 (6):641-644.
    [83]Lin W H, Fang J M, Cheng Y S. Lignans from Taiwania cryptomerioides[J]. Phytochemistry,1999,50 (4):653-658.
    [84]Schneiders G E, Stevenson R. Synthesis of (±)-machicendiol[J]. J. Org. Chem., 1979,44 (25):4710-4711.
    [85]冷光,王海鸥明东升.连翘中松脂素的分离鉴定和含量测定[J].山西医科大学学报,2003,34(3):227-228.
    [86]Li C, Yang X, Zhao J, et al. The chemical constituents of Breynia rostrata][J] Acta pharmaceutica Sinica,2006,41 (2):125-126.
    [87]Meng D H, Wu J A, Zhao W M. Glycosides from Breynia fruticosa and Breynia rostrata[J]. Phytochemistry,2010,71 (2):325-331.
    [88]Kitagawa M, Yamamoto S, Sogabe A, et al., Acyl hydroquinone glycosides, and topical formulations containing them[M].2009, Toyobo Co., Ltd., Japan; Pola Chemical Industries, Inc.
    [89]Yang R L, Li N, Li R F, et al. A highly regioselective route to arbutin esters by immobilized lipase from Penicillium expansum [J]. Bioresource. technol.,2010, 101 (1):1-5.
    [90]张彩霞,李玉林 胡凤冢.珠芽蓼全草化学成分研究[J].天然产物研究与开发,2005,17(2):177-178.
    [91]Kumar M, Rawat P, Khan M F, et al. Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity[J]. Fitoterapia, 2010,81 (6):475-479.
    [92]Ohsugi M, Fan W, Hase K, et al. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra[J]. J.Ethnopharmacol.,1999,67(1):111-119.
    [93]Kojima M. A new activated metabolic intermediate of aromatic carboxylic acid-carboxylic acid glucose ester[J]. Seikagaku,1985,57(12):1605-1608.
    [94]常军民,卡斯本热娜.新疆鼠尾草的化学成分研究[J].天然产物研究与开发,2001,13(1):27-29.
    [95]Murakami T, Kishi A, Matsuda H, et al. Medicinal foodstuffs. ⅩⅩⅣ. Chemical constituents of the processed leaves of Apocynum venetum L.:absolute stereostructures of apocynosides Ⅰ and Ⅱ[J]. Chem. Pharm. Bull.,2001,49 (7): 845-848.
    [96]赵雪梅,叶兴乾,席屿芳.胡柚皮有效成分的分离鉴定及其药理活性[J].果树学报,2006,23(3):458-461.
    [97]杨丽娟,羊晓东,李良.藏药云南兔耳草的化学成分研究[J].中药材,2006,28(9):767-768.
    [98]张卫东,孔德云.灯盏花的化学成分研究Ⅲ[J].中国医药工业杂志,2000,31(8):347-348.
    [99]王素娟,裴月湖.白桦叶化学成分的研究[J].沈阳药科大学学报,2000,17(4):256-257.
    [100]Duran E, Duran H, Gorrichon L. Synthesis of para hydroxycinnamaldehyde substrates of cinnamic alcohol dehydrogenase[J]. Holzforschung,1992,46 (1): 21-24.
    [101]Huang Y C, Hwang T L, Chang C S, et al. Anti-inflammatory Flavonoids from the Rhizomes of Helminthostachys zeylanica[J]. J. Nat. Prod.,2009,72 (7): 1273-1278.
    [102]Tanasova M S, Sturla J. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents[J]. Chem. Rev.,2012,112 (6):3578.
    [103]Wei M. A clinical study on paclitaxe! plus cisplatin combined therapy in the treatment of advanced non-small cell lung cancer[J]. Liaoning Pharmacy and Clinical Rehedies,2003,6 (5):386-387.
    [104]师宝忠,张磊,罗都强.天然抗肿瘤药物鬼臼毒素的生物转化研究[J].安徽农业科学,2012,16(1):95-96.
    [105]Fotakis G J, Timbrell A. In vitro cytotoxicity assays:comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride[J]. Toxicol. Lett.,2006,160(2):171-177.
    [106]Suja S R, Latha P G, Pushpangadan P, et al. Evaluation of hepatoprotective effects of Helminthostachys zeylanica (L.) Hook against carbon tetrachloride-induced liver damage in Wistar rats[J]. J. Ethnopharmacol.,2004,92 (1):61-66.
    [107]Chen C C, Huang Y L, Yeh P Y, et al. Cyclized geranyl stilbenes from the rhizomes of Helminthostachys zeylanica[J].Planta. Med.,2003,69 (10):964-967.
    [108]Huang Y C, Hwang T L, Yang Y L, et al. Acetogenin and Prenylated Flavonoids from Helminthostachys zeylanica with Inhibitory Activity on Superoxide Generation and Elastase Release by Neutrophils[J]. Planta. Med.,2010,76 (5): 447-453.
    [109]Huang Y L, Yeh P Y, Shen C C, et al. Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica[J]. Phytochemistry,2003,64 (7):1277-1283.
    [110]Grayer R J, Harborne J B. A survey of antifungal compounds from higher plants[J]. Phytochemistry,1994,37 (1):19-42.
    [111]石晓伟,张嫡群王云志.苦参异戊烯基黄酮生物活性研究进展[J].河北医科大学学报,2006,27(4):318-320.
    [112]Lincoln D E, Walla M D. Flavonoids from Diplacus aurantiacus leaf resin[J]. Biochem. Syst. Ecol.,1986,14 (2):195-198.
    [113]Roussis V, Ampofo S A, Wiemer D F. Flavanones from Lonchocarpus minimiflorus [J]. Phytochemistry,1987,26 (8):2371-2375.
    [114]Woo E R, Kwak J H, Kim H J, et al. A New Prenylated Flavonol from the Roots of Sophora flavescens[J]. J. Nat. Prod.,1998,61 (12):1552-1554.
    [115]Meragelman K M, McK.ee T C, Boyd M R. Anti-HIV Prenylated Flavonoids from Monotes africanus 1 [J]. J. Nat. Prod.,2001,64 (4):546-548.
    [116]Seo E K, Silva G, Chai H B, et al. Cytotoxic prenylated flavanones from Monotes engleri [J]. Phytochemistry,1997,45 (3):509-515.
    [117]Chansakaow S, Ishikawa T, Sekine K, et al. Isoflavonoids from Pueraria mirifica and their estrogenic activity[J]. Planta. Med.,2000,66 (6):572-575.
    [118]Oshima Y, Konno C, Hikino H, et al. Structure of moracenin B, a hypotensive principle of Morus root barks[J]. Tetrahedron. Lett.,1980,21 (35):3381-3384.
    [119]Shieh W L, Lin C N. A quinonoid pyranobenzoxanthone and pyranodihydrobenzoxanthone from Artocarpus communis [J]. Phytochemistry, 1992,31 (1):364-367.
    [120]Zhao J Y, Ohba S, Komiyama Y, et al. Icariin:A Potential Osteoinductive Compound for Bone Tissue Engineering[J]. Tissue. Eng. Part A.,2010,16 (1): 233-243.
    [121]Zhang J f, Li G, Chan C Y, et al. Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/beta-catenin signaling pathway[J]. Mol. Cell. Endocrinol.,2010,314 (1): 70-74.
    [122]Hsieh T P, Sheu S Y, Sun J S, et al. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-[kappa]B regulated HIF-1 [alpha] and PGE2 synthesis[J]. Phytomedicine,2011,18 (2-3):176-185.
    [123]Li F, Gong Q H, Wu Q, et al. Icariin isolated from Epimedium brevicornum Maxim attenuates learning and memory deficits induced by D-galactose in rats[J]. Pharmacol. Biochem. Be.,2010,96 (3):301-305.
    [124]Songlin P, Ge Z, Yixin H, et al. Epimedium-derived flavonoids promote osteoblastogenesis and suppress adipogenesis in bone marrow stromal cells while exerting an anabolic effect on osteoporotic bone[J]. Bone,2009,45 (3):534-544.
    [125]Liu M. Liu H, Lu X, et al. Simultaneous determination of icariin, icariside Ⅱ and osthole in rat plasma after oral administration of the extract of Gushudan (a Chinese compound formulation) by LC-MS/MS[J]. J. Chromatogr. B.,2007,860 (1):113-120.
    [126]Ma HP, Ming LG, Ge BF, et al. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro[J]. J. Cell. Biochem.,2011, 112 (3):916-923;
    [127]Kretzschmar G, Zierau O, Wober J, et al. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein[J]. J. Steroid. Biochem., 2010,118(1-2):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700